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LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSE S

BERTRAND CLOEZ

ABSTRACT. We consider a particles system in continuous time, disgrepulation, with spatial motion, and nonlocal branch-
ing. The offspring weights and their number may depend omtbther’'s weight. Our setting capture, for instance, the pro
cesses indexed by Galton-Watson tree. Using an (sized)iasiliary process for the empirical measure, we detegrttiis
asymptotic behaviour. Our model is a microscopic desaoriptif a random (discrete) population of individuals. We albtain

a large population approximation as weak solution of a gnefindagmentation equation. A size-structured populaticydet
and an infected cell model illustrate our results.
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1. INTRODUCTION AND STATEMENT OF RESULT

This work is devoted to a continuous time model for dividiefi€already studied in [2, 4, 5, 6, 20]. This model comes
from biology and physic, we can interpret it as the size of/pwrs or some biological content of cells (nutriments,
parasites...). With biological reference, in [5], it is é&iped why the division time must depend of this content. We
first determine the asymptotic behaviour of the empiricahsuee. A long time behaviour for a similar discrete model
is developed in [12]. The proof is based on a many-to-one éikerand an auxiliary process. In [16], we get a law of
large number for long time for a model with a continuum pogiata The proof is based on a spectral analysis and an
auxiliary process.

Let us begin by describe our model. LBtbe a Polish space. We start with one cell that have a weiglt E. For
each cellu, its weightX™ evolves as a cadlag strong Markov process);>o, until it dies, an event such that

B(u)
/ r(X¥) ds ~ Exp(1)
a(u)

wherea(u), 5(u) are respectively the birth date and the death date of theucell is a non-negative, measurable
and locally bounded function. The cellis then replaced by a random numbérof offspring, that follows a law
(Pr(XE - Dreqr....ky» On{1,..., k}, which depends of the mother’'s weight. The weights of themfhg are given
by (F" (X% ,,_ ©))1<<x With © a uniform variable o0, 1] and(F}")) ;<. e a family of measurable functions.
The new born branches evolve then independently from edr.ot

Date 2011.
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Before giving the main and general results, let us give amg@ka It models a size-structured population which
represents the cell mitosis, and it is described as followss a deterministic and linear function and when a cell dies,
it divide in two equal parts. Formally,

1) E=10,+00), Vf € C', Af = f' and ps = 1,

) Vo e E, V0 € [0,1], F{?(z,0) = F{? (2,0) = g

In this case, one cell lineage is generated by:

Ve Ol Ve >0, Gf = f'(x) + r(x) [f (g) - f(x)} .

This process have some application in computer sciencesdretimes called the TCP (Transmission Control Proto-
col) process. The emergence of TCP has spurred an enormousitai research, we refer to [9, 19, 26, 33] for some
result about approximation, long time behaviour or momeastsnates. Our main result about this model is :

Theorem 1.1(Convergence of the empirical measure for a mitosis mad&ksume (1-2). If there existsr, such that
0 <r <r < 7andr(z) is constant equal te for a large enoughe, then there exists a probability measuresuch
that, for any continuous and bounded functigrwe have

. 1 w . .
ti@m N uezv g(X}) = / g dm in probability

where X}* is the size of celli, V; the set of cell alive at time, and, N; = card(V;) is the number of cell alive. In
particular for a constant rate, = has Lebesgue density:

2r =X/L 2 _gntl,y
(3) xH—+W(1_2_n)Z<H1_2k>e .

n=1 n=0 \k=1

This explicit formula 3 is not new [34, 35], but here, the ergall measure convergences in probability, while in these
papers, there is a convergence for the mean measure or thesoagic process (see theorem 1.5). We give an analogue
result forr affine (see proposition 4.4).

Let Z; = > v, dxp be the measure which describes the population. When the- riateonstant, the process is
simpler to study. For instance, we can calculate the momfe#; ¢see proposition 4.6). We also obtain a speed of
convergence. Let us explain how we estimate the distaneeskettwo random measuié,, M,. We embed the space
of random measure with the Wasserstein distance [37, 4fihedkEby

WP (L(My), L(Ms)) = (inf E[d(M;, My)P])*/?

where the infimum runs over all couplés/y, M>) such thatM; ~ L£L(M;) andMs ~ L(M>). dis a distance on the
measure and (-) stands for the law of the random variable. We tadke W‘(‘l) = W),. Itis the Wasserstein distance
on(E,|-|). And we have:

Theorem 1.2(Quantitative bounds)Under the same assumptions of theorem 1.1 andsitonstant, we get, for every

t>0,
(1) Zt ZENY < 1 ot
o (e(2).¢(2) <o

e (L (E[Zjit]) £ (E[Z](yft]» <lz—yle ™

whereZ* (resp.ZY) is the empirical measure starting with one cell that hawewreightz (resp.y) in [0, +00) .

The proofis based on coupling and matching arguments. €higtrdoes not give a boundWV({}‘)_‘ (L(ZFJE[NY]), L (7))

or W‘E;‘)_‘ (L(ZF/Ny), L (7)), wherer is the limit measure of the theorem 1.1 (see remark 4.7).

To obtain a limit theorem, we follow the approach of [4]. listbaper, the cell's death rateand the law of offspring
(px)k>1 are constant. A many-to-one formula, which looks like thdd¥armula, is proved:

1
@) AR [Z FXE)

u€Vy

= E[f(V2)].
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WhereV; denote the set of the cell alive at timeN; = cardV;), X;* is the weight of cellu andY is an auxiliary
process with infinitesimal generator:

k
5) VS € D(A), Vo € E, Gf(x) = Af(x +rm2kpk/ (%Zf(Fj(k)(fc,@))—f(fc))dé’

k>1

where(A4, D(A)) is the generator ok andm = ), ., kpy, is the mean of news offspring. This process evolveX as
until it jumps, at an exponential time with meayy-m. We observe that is not the jump rate of the auxiliary process.
There is a biased phenomenon, already described in [4, 2Ghair references. We can interpret it by the fact that the
faster the cells divide, the more descendants they have.iFldny a uniformly chosen individual has an accelerated
rate of division. It is like the bus paradox already obserfiagdhe Poisson process. A possible generalisation of (4) is
a Feynman-Kac interpretation as in [20]:

A
ueVy
whereY is an auxiliary process starting a3 and generated by (5). An other formula with Poisson measugé/en

in [5] to prove criterion for extinction. However, it is diffult to exploit these formulas. In this paper, we follow an
alternative approach, which is inspired by [25, 34, 35]. Ha expression (4)y" can be understood as a uniformly
chosen individual. The problem is,sifis not constant, a uniformly chosen individual is not a Markoocess. Our
solution is to choose this individual, with an appropriateight which gives a Markov process. This weight is the
eigenvector of the following operator which is not a Marlkavgenerator,

Af(z) = Af(x KZZ/ f(F, ) do pi.(x >) —f(:c)] :

) [f(yt)efo‘ r(&)(mm)—nds}

k>0 j5=1

Under some assumptions, which are given thereafter theaisl many-to-one formula:

(6) E[Zuev, VO lz FIXHV > HXMV(X

eVs u€eVy

e M = E[f(Y;)]

whereY is an auxiliary Markov process, startingaat, generated by
Sen Diea o V (FP (@ 9))f( F¥) (2,0)) db pu(a) o
— X
ZkGNZj 1fo ( (@ 9)) do pi(z)

() Gf(x) = Bf(z) + A(x) {

where A(f x V)(x) — fx)AV(x) _ 2Da(f,V)(2)
X x)— f(x x AlJ, T
b= V() V()
andI' 4 is the “carré du champs”operator associated {@ee (12)) and

[ZZ/ F(k)xe) do pi(x)

keN j=1

+ Af(x)

Let us further agree to cafl a determining class if two probability measur@s) are identical whenever they agree on
£.

Theorem 1.3(Weighted many-to-one formula)f

forallt >0, N; < +oo a.s.

A have eigenelement¥, \o) with a positivel’

G generate a non explosive strong Markov process

Dy(G) = {f € D(A) |Vz € E, | Gf(x)| < 1} is a determining class.
then (6) holds for any non negative and measurable fungtion

This formula seems to be complicated, but for the mitosisehitdeduces to:
2V (x/2) x
1 > Y eV \rr=) i )
Vi€ CL Y20, Gf = @)+ )= £ (5) @)
We also observe a biased phenomenon. But contrary to [4jrR@Eneral, the bias is present in the motion and the
branching mechanism. We can interpret the bias in the divigart as follow: When a cell dies, we have more chance
to choose the daughter that is more appropriate ftine bigger or the smaller for example). For the bias in théono
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we can observe that ifl is a vector field, Af(x) = a(z).Vf(x), (i.e. X is deterministic) therB = A. Butif A
is the generator of a diffusior3 is also the generator of a diffusion but with biased drift. eOmterpretation is that
we have more chance to choose the cell with smaller or biggisen Note also that we do not assume thats the
first eigenvalue. So, it is possible to have some auxiliapcpsses (see section 4.3). We can find some result about
existence of eigenelements in [13, 32] and theirs referenidirst application of this formula is that if is ergodic,
with invariant measure, we obtain
= /f dm

Theorem 1.4(Convergence of the empirical measure for the long tinrfeysume the hypothesis of theorem 1.3 End
is ergodic with invariant measure. Consider a real functiog and assume that:

e There exist&” > 0, such that for alk: € E, g(x) < CV (z).
e There existsy < \g, such tha€[V?(Y;)] < Ce®* and

17;((@) /01 > > pk(Ys)V(Fa(k)(Ys,@))V(F,fk)(YS,G)) 0

a,beN* ,a#b k>max(a,b)

V(X lZqu

ueVy

1;
t—i-ﬁ-moo E [ZUEV

for all bounded functiorf. We improve this result:

< Ce“t.

Then we get,
. — Aot uy ' g
tilinooe ng(Xt)W/Vdﬂ
ueVy
V(X})] and the convergence holds in probability. If furthermdél/ (Y;)] <

whereW = hmt—H—oo e_/\OtE[ZuEVt
Ce®t and there exists > 0 such thatvx € E,V (z) > ¢, then,

1
lim Nﬁéo Z (X1) = 1W¢0/ 2 dﬁ//_ dm in probability

t——+o0
ueVy

Forr constant, we have = 1 is an eigenvector and this theorem generalises [4, theorEn 1

In the other hand, our model is a microscopic interpretatiba population is discrete. And, we are also interested
by the behaviour of our process in a large population. Moeeigely, we take a sequen#é™ distributed asz, the

empirical measure, such that the starting distribuﬂé’?‘? grows to infinity withn. Consider the following renormalised
processX (") = Z(™ /n, and we get:

Theorem 1.5(Law of large number for the large populatiorjet?” > 0, assume- is bounded and one of the following
hypothesis:
(i) Eis compact
(i) FCR, |FJ.("’) (x,0)| < |=|, and for allk € N*, there exists);, : £ — R such that:
Vo € E, 1qoo(2) < Yr(2) < Ljp—1,400(w) @nd3C, Ay, < Chpq

So, IfX; (n) converges in distribution to a deterministic measiigin M (E) (embedded with the weak topology), then
X ™ converges in distribution i([0, 7], M(FE)) to a deterministic measut¥, such that, for allf € D(A),

®) /f X, (dz) = /f ) Xo(dz) //Af

whereD([0, T], M(E)) is the space of cad-lag functions embedded with the skohopmdogy[7, 22]

The second assumption is verified by all the operator uppended by a differential operator [23, 29]. We can ob-
serve that the equation (8) is the Fokker-Planck (or Kolmmogpequation. Thus is equal to the mean measuref
(e.9.f — E[[, f(z) Zi(dx)]). This average phenomenon is predicable for two same rea3dre first is that after a
branching event, each cell evolves independently from e#uér, there is not interaction or mutation. The second is
the linearity of the operatad. From theorem 1.3, one can see that, in large populatiorertipral measure (not the
mean measure!) behaves as the auxiliary process. The grbaséed on the Aldous-Rebolledo criterion [22, 38] and it
is inspired by [17, 29, 39]. In these papers, there are otloetats of structured populations.

In the mitosis case, the equation, (8) can be written by:
9 on(t, x) + Opn(t, z) + r(z)n(t,x) = 4r(2z)n(t, 2x)



LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSE 5

wheren is the density ofX. This equation was studied in [25, 34, 35]. In these papkesconstant case and the non
constant case are separated. For a consfdhé authors prove the following exponential decay

n(t,.)e™™ — N2 <e ",

whereN is the density of the stationary distribution. There impleconvergence in total variation. In contrast, we also
obtain the convergence to an equilibrium state for the simgctured population, and we have an exponential decay in
Wasserstein distance (see theorem 1.2). It is showed tisadjitimal in [25]. For the non constant case, we can also
find an exponential decay,

[(n(t,.)e 2" — N)V||11 < e C,
proved by a perturbation method (s explicit). This expression can be understood as a totétian decay for one
cell lineage. Itis not easy to find a total variation bound bymling method. When is affine, we can find Wasserstein
bound in [9], for one cell lineage. In contrast, without spe¢ convergence, we find a convergence in the case where
r is affine (which means non bounded). Furthermore, for thidehave estimate the fluctuation between the empirical
measure and its approximation. It is defined by,

and we get:

Theorem 1.6(Central limit Theorem for size-structured populatiohpt7 > 0. Assume (1-2); is bounded an@b(()")
converges and
+oo
E [sup/ 1+ Xo(n)(dx)} < 400.
n>1.J0
Then the sequendg™),,>; converges iD([0, 7], C~2°) to the unique solution of the following evolution equation:
Forall f € C%9,

@ [ @t = [ remwn s [ [ 7w (21 (5) - 1) i) ds+ i)

whereM (f) is a martingale and a Gaussian process with bracket:

T

- t “+o0 2
= [ [ 2w (1 (5) ~ @) Xo(aa) s
AndC??Y is the set of functio'?, such thatf, f/, " vanish to zero wheu vanishes to infinityC'—2.° is its dual space.

Strucure of the paper: In the next section, we introduce some notations and givgénerator of the measure-valued
process. In section 3, we focus our interest in the long tivile.prove the theorem 1.3, others many-to-one formulas
and we deduce a general limit theorem which implies TheordmThen we give two instructive examples in section 4.
The first describes the cell mitosis, the proofs of theoretrahd theorem 1.2 are in this section. The second example
can describe cell division with parasite infection. In thi@mple, we give different eigenelements. Finally theisact

5 is devoted to the study of the large population. We proveéhiiherem 1.5, and a central limit theorem for asymmetric
cell division which implies the theorem 1.6. The last setidevoted to several open problem around our model.

2. NOTATION AND PRELIMINARIES RESULTS

When the weight of the first cell isy € E, we use the Ulam-Harris-Neveu notation [4] to describe thgytation. We
denote by the first cell and byX? its weight o(g = xg). Then, every cell is indexed by a label= (uq, ..., uy,) in
the set:

u=Jmym
m=0

with the convention{N*)? = (). The cell indexed by: is the daughter of the cell indexed Ky, ..., u,,—1) and the
mother of the cell indexed byv = (uq, ..., um,v). v is betweenl and the number of offspring. We introduce the
following measure to represent the population at time

o __
Zio =3 bxp
ueVy

whereV; is the set of cell alive at timé. We denote byV, = cardV;) the number of individualsZ® = (Z;°);>¢
is a cad-lag measure-valued Markov procesB@, M(E)). D(Ry, M(E)) is the space of cad-lag functions with
values inM(E), which is the set of finite measures éh If there will be no ambiguity we shall not&.
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Example 2.1(Branching diffusion) If X is a real diffusion, its generator is defined, for all smoottoegh functiony,
by

/ 02($) ”
(11) Af(z) = b(2)f (z) + ——f"(z)

where we assume thaaindo are such that there exists a unique process with this geoesatd £/ = R or R?, . In this
case, we can describe the population with a Poisson poinsorefL7]. This S.D.E. is defined, for afl: (¢, x) — fi(x)
in C, %, by

280 =20t + [ [ (Af(@) + 0. fufo)Zu(dn)ds + / S VEo(X2)0, (X )

u€Vs

t k
+/ / Liuev, i<r(x® )} (Z fs(Fj(k)(X:_ﬁ)) —fs(X;f_)) p(ds, du, dl, dk, df)
0 JUxXR4LxN*x[0,1] j=1

where(B"),cy is a family of independent standard Brownian motions attk, du, dl, dk, d9) a Poisson point mea-
sure onRy x U x Ry x N* x [0, 1] of intensityp(ds, du, dl, dk,df) = ds n(du) dl dp, df independent from the
Brownian Motion. We have denoted hidu) the counting measure @ andds dl df are Lebesgue measures.

A necessary and sufficient condition for the existence offwacess is there is no explosion, inde€d < +oo a.s..
This hypothesis is always assumed. For instance, we camastatr is bounded byr. In this case, a coupling
argumentimplie®€[N,] < E[No] e*~D 7T forallt < T.

In the next sections, the notatid), means a constant which only depend:tand the notatiom(1 + =) means for
J 1+ 2P p(dz).

2.1. Infinitesimal generator and martingale properties. Denoted by(A, D(A)) the generator oKX and L the gen-
erator ofZ. Let. A be a Markov generator, we define the associated "carré dughgmarator by

12 Pa(0) = 3 (A(6 X ) ~ BAd — GA)
whereg, 1, ¢ x ¢ € D(A).

Lemma 2.2(Semi-martingale Decompositian) et ¢ be a bounded function belong to the domair.ofThen there is
a square-integrable and cadlag martingalé such that:

t
Vit >0, My = o(Zt) — p(Zo) — / Lo(Zs) ds a.s.
0
and if furthermorep? € D(L), we get:

(M), = /0 2T (6, 6)(Zs)ds

So, for allp € D(A) andt > 0,
Zi(p) = Zo(p) + Mi(p) + Vi(p)
where

Vi) = /0 Ap(a) + [E r( /0 1]@* (iw Ff"’(:vﬁ))) — () pi(w) 0 Z,(de) ds

Jj=1

= /Ot Zs(Ap) ds

and if p? € D(A), the bracket of\/; () equal to

/Ot 275 (2T a(p, #)) / /0 >

keN*

& 2
(Z p(F}" (2,0)) - wm) pi() d Z,(dz)ds

Jj=1

Proof. For the first part, it is an application of Dynkin and It6 fortas, see [21, lemma 3.68] for instance. For the
second part a computation gives the generatdf dfat is applied i, andz‘f, where:

ip i p(p) = /sa dp andi?, : p— (u(p))”.
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So

i) = [ (o) +1(o / > Zw (F (2,0)) — o)pi(x) O u(de)
LiZ (1) = p(Ap®) + 2u(p)p(Ap) — 2u(p x Ap)

k k ?
A / ZQWP)X(Z@(ka)(wﬁ))—w(w)>+<Z<P(Fj(k)(%9))—<ﬁ(x)) Pi() B ju(d)

0 ken+

We define the mean measurgfor all smooth enough functiop, by z(¢) = E(Z(¢)) = E [3_ v, ©(X)].

Corollary 2.3 (Evolution equation for the mean measurtf) D,(A) = {f € D(A) |Vz € E, | Af(z)| < 1}isa
determining class, fop € D(A), we get

zt(v) = 2zo(p) +/0 zs(Agp) / Z Z/ F(k) (x,0) ) df pi(z) — p(z) zs(dx) ds

k>1j=1

and it is the unique solution of this integro-differentiglation for a fixed initial condition.

Proof. We have just to prove the uniqueness. Consider two probabikasure valued processgs);>o and(v¢):>o
solution of this P.D.E. with same starting distributiofn = . Consider the following norm defined by

[m1—ma| = sup [mi(p) —ma(p)]
pEDL(A)

Then we consider one functignin D(A) such thatAyp| < 1, we have,
k

//Asﬁ o) || e 3 0P (@,0)) | — o@) | (1s — v) (do)
j=1

k>1
t
<Coi / l1ts — vallds.
0

Taking the supremum and using the Gronwall lemma we fill dedbat :

le(p) —vi(p)| =

VE =0, [l — vl =0
and, asD,(A) is a determining class, uniqueness holds. O
Example 2.4(Branching diffusion) We return at the example 2.1, in this case the generator i€ rexplicit. We give

it for the function defined by, : © — F([ ¢ du) = F(u(p)), with F € CZ(R,R) andp € CZ(E,R).

LF,(p) =u(Ap)F' (u(p)) + (o) F" (u())

/ /0 Z F (u +Zso (F(k) z,0) ) (1;)) — F(u(p)) pr(x) do p(dr).

kEN j=1

3. LONG TIME’S BEHAVIOUR

We recall that

)

Ap(z) = Ap [ZZ/ (FM (2,0)) df pr(z) — p(x)

k>0 7=1

and in all this section, we assurdehave as eigenelemer(tg, \,) such thatdV’ = ),V andV positive.
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3.1. Eigenelements and auxiliary process (Proof of theorem 1.3Before the proof of theorem 1.3, we show that

Ziy(V) = > uev, V(X{) have the same partthat, = 3 . 1 for constant-.

Proposition 3.1 (Martingale properties)Under the assumptions of theorem 1.3, the prog¢essV )e=*ot),~, is a
martingale thus it converges to a random variablealmost surely.

Proof. First, by corollary 2.3 we have:

and thene, (V) = zpe*ot. Then, denoteF; = 0{Z, | s < t}. The Markov properties, applies ¢ gives
E[Zi1s(V)|Fs] = E[Zt(V”ZO = Zs]

whereZ is distributed asZ. ThenE[Z,, .(V)|F,] = Z.(V)e ! and thus
E[Zi1s(V)e | F ] = Z,(V)etos

proof of theorem 1.3Lety, : f — 2, (f x V)e 2V (x) 1. We get, for alt > 0,
On(f) = 2 (A V) €™ Vo)™ = hoe™" V(o) Ll(f V)
= e Mt V(zg)7t [zt ([l(f V)) — 2t (f X /IV)}

and thus,

" V() V(z )) () [ZkGN Z] 1[0 F(k) (« H)f( ] (x,@)) 40 pr() — f(x)]| z(dw).

ertat t = Bf(x A
7i(f) /E Vo) 2O T iy e S5y J VED (2,0)) do pi(x)

Finally, 0,v:(f) = v(Gf). Now, by Dynkin formula, the law of the auxiliary procegs — E[f(Y})]) verifies the
same equation. The uniqueness, proved at corollary 2.8s gfixe result. O

Remark 3.2 (Schrédinger operator ard-transform) In introduction, we said thatl is not a Markov generator. We
can rewrite, for allp smooth enough,

Ap=Gp—r(m—1)p
whereG is the Markov generator defined at (5) anin — 1) is a potential. A is called a Schrodinger operator,
and its study is connected to the Feynman-Kac formula. Tieikey point of our weighted many-to-one formula is a
h—transform (Girsanov type transformation) of the FeynmaatKemigroup as ifi36]. This transformation is usual
for the superprocess¢$6].

Remark 3.3 (Malthus parameter)Since, Thomas Malthus (1766-1834) were introduced thelsimmdel to describe
the population:

9N, = birth — death= bN, — dN; = \gN; —> N, = eot,
in biology and genetic population study, is sometimes called the Malthus parameter.

Example 3.4(Galton-Watson tree)lf » andp are constant})” = 1 is an eigenvector for the eigenvaldg = r(m —1).
So,Z,(V) = N, and the population grows with an exponential speed. Thesltas already know fofV;. It is a
continuous branching proce§3, 4].

3.2. Many-to-one formulas. In order to compute our limit theorem, we need to control #msd moment. As in [4],
we begin by describe the population over whole the tree. Téeegive a many-to-one formula for forks. Lgtbe the
random set according to represent cells having lived attaioenoment. It is defined by

T={uel|3t>0,X"eV}.

The propositions 3.5 and 3.6, that follow, are respectitiedygeneralisation of [4, proposition 3.5] and [4, progdosit
3.9].
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Proposition 3.5 (Many-to-one formula over the whole treeYnder the assumptions of theorem 1.3, for any non-
negative measurable functigh: £ x [0,4+00) — R we get,

S 7 (X 6(@)1 -/ g [ f(Yars) ;&ﬂ ot ds

ueT

E

Proof. First we have, for alt. € U,

£ [1{“€T}f (Xé‘(u)faﬁ(u))} —E

Blu)
1{u€7’}/( : f(X;‘,s)T(Xé‘)%}

because

+oo T - “
= 1y, ,S)r sr e Jaqu M T
E |1{uer) XU, s)r(X2)ds r(XE)e Jae XD g
0

E f
a(u)

B(u)
1er) / FXE, $)r(X)ds

(u)

- —+oo +oo - “
=E |1iuen /( ) / r(X*)e” o rXidt g, f(Xg,s)r(Xg)ds]
i +

o0

=E l{ueT} / e f;(u) T(X?)dtf(ng S)T(X:)dS]
i ()

=E [1(ueryf (X5 - B@)]
thus,

B [tuer (X 8] = B[ [ tpuena s e

and then,

E ds

Sf (XZJ(U),B(U))] = /0 g lz FIXY s)r(XY)

ueT u€ Vs

| S

_ /Om V(2o) E [f(Ys, 5);((};1))} eMosds,

If f hasthe formf(z, s) = g(x, s)V(z) then we have:

E

30 (¥g-0500) (Xg(u)_)] -/ B (V) X BIZ(V)) ds.

This equality means that adding the contributions overtadlindividuals corresponds to integrating the contributio
of the auxiliary process over the average number of livirdjviicluals at times. Let (P;):>o be the semigroup of the
auxiliary process,

P f(x) = E[f(Ye) | Yo = ]

Proposition 3.6 (Many-to-one formula for forks) Under the assumptions of theorem 1.3, for all non-negative a
measurable functioif, g we get

B { 3 VDOV | = V) [[B | RV A1) g s

where.J; is defined by
1
)@ = [ 3 mlae (FOw0) u (FO@0) d
a#b k>max(a,b)

Jo represent the starting distributions of the offspring pitlat random.
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Proof. Letu,v € V; such that # v, there existw, i, ©) € U* anda, b € N*, a # b such thatu = wai andv = wb?.
The cellw is often called the most recent common ancestor. We get,

E{ZfWMWMWW)

u,vE Vi, u#v

=33 Y ELpuevy SOV (X)L pevig(XPV (X7)]

weU a#b u,0eU

whereu = wau andv = wad . We recall thatF; = o{Z, | s < t} and, by the conditional independence between
descendants, we get,

E[szmwmww>

u,ve Vs, u#v

Yy

wel a#b

E [Z Liueviy f (X V(X)) | Faw)

aueU

E lz 1{vevt}g(Xf)V(Xf)|fﬁ<w>H

veu

Therefore, ag(w) is a stopping time, using the strong Markov property andriaal .3, we get,

E[ZfWMMWWW)

u,vE Vi, u#v

= Z ZE {]—{wa,wbET,tZB(w)}Ptfﬁ(w)f(Xg)((Zu))V(Xg)((zu))Ptfﬁ(w)g(XZiu(IL;))V(Xéu(lzi;))e2/\o(t_6(w))}
wel a#b

=K [Z 1)y J2(V P puw) [+ V P () 9) (X () - ) em"(t_ﬂ(w))]
weT

t
:eQA“tV(xo)/ E |:J2(thsf, VP_s9)(Ys) ] e0%(s.
0

O

3.3. Limit theorem (proof of theorem 1.4). In this section, we give the main limit theorem which impliks theorem
1.4.

Theorem 3.7 (General Condition for the convergence of the empirical sne®) We assume that the hypothesis of
theorem 1.3 are verified. Lgtbe a real measurable function defined Brand . a probability measure such that there
exists a probability measure, and two constantt < Ay andC' > 0 such that

(13) 7(|f]) < +o0 and Vert_ljgrnooPtf(x):ﬂ(f)
(14) u(V) < +o0, uP(f2 x V) < Ce®t and P, (JQ(VPt,Sf, VP f) %) < Cet.

If 29 = X2 ~ 1, we have

t~>+oo Zqu =W xm(f)

where the convergence holds in probablllty. If furthermB{(eV) is bounded intd.? then the convergence holdsis.
Note that the constants andnay depend orf andp! Note also that\; is not supposed to be the first eigenvalue.

Proof. Asin [4, theorem 4.2], we first prove the convergenceffsuch thatr(f) = 0. We haveE[Z, (V)] = u(V)erot,
then,

K Zf (XMHV (X ) ] =E[Z:(f x V)?e 2 u(V) %] = A, + B

uGVt
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where

Ay = e (V)P lZ fQ(X#)VQ(X?)] = e M u(V)TIE [fA(Y)V (V)]
ueVs
and

Bi—e (V) E | AV FVX)
u, eV, u#v

= M(V)_l/0 E [JQ(VPt—sf7 VP—sf)(Ys)

From (14), we havém;_, ., A; = 0, and since

Rl )@ = [ Y @ (FOw0) v (RO w0) .

a#b k>max(a,b)

} e A% ds

from (13) and asr(f) = 0, we get, foralls > 0 andx € E,
tilgloo J2(VPtfsf7 VPtfsf)(x) = 0.
And thus, by (14) and dominated convergence, we olitaipn , . -, B; = 0. Now for a generaf, we have
Zi(JV)e o = Wa(f) = Z ((f = w(D)V) e + 7 (f) (Ze(V)e ™ — W)

Then, thanks to the first part of the proof, the first term ofghm, in the right hand side, converges to @i The
second term converges to 0 in probability thanks proposiid. O

It is enough to considey = f x V to deduce theorem 1.4.

4. EXAMPLES

We give two examples. The first one describes the cell mitesi®oundedr and affiner. In the second one, we
illustrate the fact that we can use different eigenelemEnis example can model a parasite infection.

4.1. Size-structured population (equal mitosis) : Inhomogenews rate of division (proof of theorem 1.1). As say

in introduction, the cell size grows linearly and dividewitwo parts. Formally, with the notation of the example 2.1,
E=R,0=0,b=1, po=1 andF?(z,0) = F\”(x,0) = /2.

First prove that our process is well defined:

Lemma 4.1(Non explosion) Letp > 1. If forall z € R%, r(z) < Co(1 + 2P), andz(1 + 2P) < +o0, then our
process is defined for atl> 0. Moreover

E| sup Z,(1+42P)| < zo(1+ zP)eCT

s€[0,T]

Proof. As in the example 2.1, we can write
t
200)=20(5)+ [ [ £ Zuldo) ds
0 JE
t
oy Lev, iz p FOXID) 4 F((— )XI) — F(XIL) plds, du, di, o)
0 UXR+X[O,1]
Using the same argument to [17, theorem 3.1], we introdyce inf{ ¢ > 0 | Z;(1 + zP) > n } and,

tATh
sup  Zy(142P) < Zp(1 4+ aP) —|—/ Z(pxP~)ds
w€[0,tATy] 0

tATH
+ / / Lucv,_szrixe (L4 (07 + (1= 0) — 1)(X2)?) p(ds, du, dl, do)
0 UxRy x[0,1] :

tATh
< Zo(l—l—acp)—i—/ px sup  Zu(l4 2P)ds.
0 u€E|

0,5ATy]

t
+// Liuev._i<r(xw )y pds, du,dl,do)
0 JUXR4Lx[0,1]
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Then,
ot

Szo(1+:rp)+/

0

E| sup Z,(1+zP) ds.

wE[0,tAT,] w€[0,5ATy]

Cp.co E [ sup  Z,(1+aP)

So, by the Gronwall lemma,

E| sup Z(1+2P)| < z(1 +aP)e" < z(1 + aP)e T,

SE0,tAT,]

We deduce that,, tends a.s. to infinity, and our process is well defined. O

In order to have the many-to-one formula, we give a conditiorihe existence of eigenelement extracted to [35] (see
also [13]).

Theorem 4.2(Sufficient condition for the existence of eigenelemengssumedr, 7 such that:
Ve >0, 0<r<r(x)<fT
Then there is a unique eigeneleméky, V') and we have:
r<X<T
T <V(z)<C(1 —l—xk)
whereC, c are two positive constants ardr > 7

c

So, we get a many-to-one formula with an auxiliary proceseggted by

(15) 61(a) = 1) + (@) T (Faf2) = f(2).

But, even if this theorem gives us a many-to-one formula, eedra smootherto have a convergence:

Theorem 4.3 (Sufficient condition for the existence of smooth eigenadata) Under the same assumption and if
furthermorer(x) is constant equal at., for a = large enough then

(142" <V(z) <O+ 2"

whereC, ¢ are two constant and* = Af%

Proof of theorem 1.1Under the assumptions of theorem 1.1 and theoremV4(3/2)/V (z) is bounded. Thus, the
auxiliary process is ergodic and admits a unique invariawt bs can be checked using a suitable Foster-Lyapunov
function [31] (for instance}/ (z) = 1 + ). Finally, we use theorem 1.4 to conclude. The explicit folanis an
application of the theorem of [33]. O

We can see that the assumptions of theorem 4.3 are strongpandcessary. Because-{fc) = ax + b (with a,b > 0

- /52 _ . . .
anda or b positive) thenl/ (z) = x% + 1is an eigenvector and\/ﬁ the eigenvalue. Thus we deduce,

Proposition 4.4(Convergence of the empirical measure whén) = ax + b). For r(z) = az + b (witha,b > 0 and
a or b positive) there exists a measuresuch that

. 1 w
Jim ezvg(Xt)—/gdﬂ

where the convergence holds in probability and for any eardgus functiory on E such thatvz € E, [g(z)] <
C(1+ x).

It is a pity not to manage to obtaifi(x) = z, because in this case the invariant measure of the auxlisrgess
possesses an explicit form [19]. So, we also obtain

"1
lim N, e Mot = W/ — dr

gV

t——+o0

and)\y = is the Malthus parameter (see remark 3.3).

Nz
Remark 4.5 (Value ofr for the Escherichia coli cell).)We can find some estimate of the division rate in the liteeatur
An inverse problem was developed and applied with expetahdata in [15](see alsd24]). It is also explain why
our model is realistic for the Escherichia coli cell. Morecently,[14] gives a nonparametric estimation of the division
rate.
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4.2. Size-structured population (equal mitosis) : Homogeneousate of division (proof of theorem 1.2). Whenr

is constant, the process is easier to be studied and we casdime result about the auxiliary process in [9, 26, 33].
It is the most homogeneous possible caseandp constant andX is linear. Furthermore, the generator conserves
the polynomial function. So, we can calculate the momemnspgsition 4.6). This knowledge gives us the Laplace
transformation of the equilibrium, and by inversion, thenfiala (3). Now, we give the moments, the proof of theorem
1.2 and some remarks about this result. Let Y | x; be a deterministic measure, we denotesythe process,
distributed asZ starting atu, indeed:

zm L zn: Z%
i=1

whereZ*: are i.i.d. and distributed &8 starting with one point with size;.

Proposition 4.6 (Moments of the empirical measurdjor all m € N, and for allt > 0, we have,

“+o0
Bz =B | 2 x| = [ e T +nv§j §j I 7 ~0t | p(dr)

ueVl j=k.j#i

whered; = 2r (1 —27%). In particular,

E[Z!'(x)] =E | Y X{| = e”/ﬁo L (1 —~ :c) e p(de)

T
ueV} 0

and

E(Zf(®)] =E | Y (X}')’

ueVy

ooy -2 2 4 2z 22
_ ot = 2 _“ i —3rt/2 ([ _* &% < dz).
¢ /0 3r2+ { <r2+r>+e 3r2 3r+2 pldz)
4 n
— 3::; (ert 3+ 26—7'15/2) <§ xz) (_ _ —7t/2) + 6—7't/2 2 l’?
i=1

Proof. Itis an application of the moment estimate of the homoges@&@P windows size process [26, Theorem 8] and
theorem 1.3. O

proof of theorem 1.2We have to prove

>0, W) (L(28),£(2))) <o —yl.
We recall again, the Wasserstein distance is defined by

Wit (m1,ms) = (inf Eldp (X, Y)])"/?

where the infimum runs over all coupléX,Y’) such thatX ~ m; andY ~ m (see for instance [37, 40]). Since
this process is homogeneous, we can see it as a processdrimleadree [4]. For our coupling, we take two processes
indexed by the same tree. Indeed, like the time of branchingad depend of the position, we can take the same for
our two processes. L&t = (J,n{1,2}" be the set according to represent cells having lived at aicemoment.
Let (dy)ucy @ family of i.i.d. exponential with meai/r, which will model the lifetimes. We buil&* and Z¥ by
recurrence.Vt ¢ [0,dy), X? = x +t (resp. Y? = y +t), a(u) = 0. Then for allu € T, for all k € {1,2},
a(uk) = a(u) + d, and

Vu e T,Vk € {1,...,v.}, Vt € [a(uk), a(uk) + du), X1* = Xg(uk) +t — afuk)

2
(resp.Y;* =Y 4y /2 +t —a(uk)). Finally, V; = {u € T | a(u) < t < a(u) + d,} and

ZP = 6xp and Z) = Y by

ueVy ueVy
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We observe that, for all cell, the trajectories ok * andY™ are parallels. When a branching occgy$, ., | X' — Y|
is constant. Hence, we easily prove

YoIXE =Y = —yl.

ueVy

But, If my = 1370 /6, andmo = L 37 6, are two discrete measures, where N* andz;, y; € F, we have
the following matching representation [40]:

thp) (m17m2 P = 7'1€n£ ﬁ Z dF :rla y‘r(z

wheresS,, denote the symmetric group. Thus,
wi(zg,28) < e -y
and the inequalities follow. O
Remark 4.7 (Convergence to equilibrium)Jsually, for the real Markov processes, if we have a bound of
W(L(X[Xo ~ p), L(X¢|Xo ~ 1)),
it is enough to take the invariant probability measure foto obtain a speed of convergence toward the equilibrium.

But here, it is not possible because the equilibrium is notra® But, we can try to estimate the distance betwgén

and Z™, such that
1 n
= — Z Oy, —> T.
n =1

By the branching properties, we get, ,

n

zr LN 7

=1
whereZ;’* are independent and distributed &sstarting atd,,,. Thus,

zy oz Crment L% _
L < emrm=1)t 2 NG a)
Wi (e o) < W 2

Now, we want to take the infimum and obtain a result such that,
(1) Ztl Ztﬂn < —7-(m—1)tl - (1) z ZTi
wid, (e () £ (atemr) ) < 2 Wi, (£, £AZ7)

n
< efr(mfl)tl § |$ . 5E1|
n
=1

< 6_7'(m_1)tW|,| (6z; 7Tn)-

But, these inequalities are false. It seems to be imposwihlse the inequalities of theorem 1.2 to obtain a bound to
the equilibrium. One explication is that this problem is g&mto the following: LetX, Y, Z three random variables
such thatX andY are independent. Is there a constansuch that,

X+Y WI(L(X),L(Z))+W(LY),L(Z))
w (e(X2Y) o) < : :

But it is enough to consideX, Y, Z are three Bernoulli variables with same parameter to se¢itia not possible. We
can only find

whereZ"* and Z;7 are independent for all # j. This inequalities suggests that we must consider the wiggnt
coupling, but it is not satisfactory too (see propositio8 ktter).

Remark 4.8(Generalisation of theorem 1.2)n the proof of theorem 1.2, we only need that, forralb,  andy,

Z|F (Xp.0) — EM (v, 0)] < |2~y
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where X, Y are generated byl and start respectively at, y andT" is exponentially distributed. For instance we can
considerX is a continuous lévy process and a sub-critical fragmeotati

k
Vo € B, Vk e N*Vj <k, F{"(2,0) = 0%z, Y0 <1 andV¥j e {1,...,k}, 6% €0,1].

J=1

Proposition 4.9(Independent coupling)Letyy = >, z; v = Y .", y; be two discrete measures a@d# and Z* be
two independent processes starting:andv. We get,

v 2 2

@ (2 Z¢ 2t Py—
(16) vt >0, E [WH (Nt#, Ny < A2 + O(te™).
Proof. By matching and Cauchy-Schwarz formulas, we get,

v 2 r v v 2

E [W(Q) <Z_t# Z_t)] —E|w® (Nt x 7 Ni x 7 )]
AN NY | NENE T NPT

r 2

1 u 'U2
(17) <E WZ > IXE -

ueVy veVy}H

1
SEw] x E Z Z X -

ueVy veVvy}

where,
Z#: Z (ngb and Z;j: Z (Sytv.

ueV} veVy

2
1 1 1 1 1
Ny Ny Ny Ny nxm | Ng
whereV, is the classical Yule process startingdt = 1. Then, sinceV; is is geometric with parameter” [4], we
get

Then,

1 2ﬁ2 —2rt
Vt>0, E [ } L ¢

N} N} T nm (1 —ert)2"

In the other hand, we have, by proposition 4.6,

E|Y > IXr-yP

ueVy veVvy

s | Y oo | e | D 02| - | X ve|E | D x
ueVy veVyY veVy ueVyr

2mn 4.,  4mn .,

=—020e _——_—

16 2
! ! mne”/Q _ 2nm

r r r2 r2

—I—%(mu(m) +nv(x)) (2@7"5 — %e‘”m + 2) + (mp (22) +nwv (2%)) e72 = 2p(z)v().
Thus, we deduce (16). O

The coupling choice does not seem to be responsible of th@ptimality (the limit is deterministic). The error ressilt
maybe from the matching choice (17). But it is the only onehstiat we can estimate the distance. In spite of
everything, we have

Proposition 4.10(Wasserstein convergencéynder the assumptions of theorem 1.2, we have

lim W(l)

t——+o0 I]

Zi \ . "
(E,w) = 0 in probability.
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Proof. Asz — 1 + z is a Lyapounov function for the auxiliary process, we have
Z . .
lim —(f) = =n(f) in probability

for all function f such thatf(z) < C(1 + z). The convergence also holds in distribution. By the Skodttheorem,
in an other probability space, we have,

for all bounded function and fof (z) = x. This convergence is equivalently to a Wasserstein coeveg Thus, by a
classical argument of discreteness (Varadarajan theges), twe get,
lim W

y(Ze ) _
Am W (Nt,ﬂ)—Oa.S.

Hence, in our probability space we dah;_, 1 W|§|1) (Z:/N¢,7) = 0 in distribution. And like the convergence is
deterministic, we get the result. O

4.3. Explicit eigenelements for a parasite infection model.In theorem 1.3, we did not required thaf was the first
eigenvalue. So, it is possible to have different eigenefgs@nd auxiliary processes. Consider the following exampl
where some eigenelements are explicit. :

(18) Vo >0, Af(z) = axf'(z) + b(z) f"(v)

whereb is a smooth enough function arnda non-negative number. We also consider thatjfo£ & and for all
measurable and non-negatife

(19) E[f(F\")(z,0))] = E[f(6%x)]
where
.
(20) > ©f=1and©}c0,1] as..
j=1

This process can model physical or biological polymersatt also models cell division with parasite infection [5]. We
easily finda is an eigenvalue and (x) = x is its eigenvector. So, for all measurable and non-neghtivetion f,

E [z XPF(XE) | = E[f(Yy)]e o

ueVi

whereY is a Markov process, generated by,

Gy 1) = (0o + 2" ) 1'0) + o)) 4 () ((Z e ZE[@?f(@?zﬂ) - f<x>) .

keEN j=1

Whenr is affine, we obtain a second formula. Assumés constant and(z) = cx +d, withc¢ > 0 andd(m —1) > a
(ord > 0 andc = 0), thenV;(z) = %x + 1 is an eigenvector associated to the eigenvalue= d(m — 1)
(= A1 > Ao = a). Thus, for all measurable and positive function,

E [Z f(X#)] e LR

ueVy

c(m—1)

wherer = Tn—T—a andU is generated, for alf € D(A) and for allz > 0, by
ok ok
GUf(l’) — (ax + f_l;(‘i);) f/(l’) + b(x)f”(x) + T(zfi_(;-i‘g ’I’I’L) (E[Zk>l pk(xz_:-+]ni+ 1)f( jw)] - f(l’)) .

So, if we start with one cell infected hyparasite therd(m — 1) is the Malthus parameter (see remark 3.3):

Proposition 4.11(Properties of the number of individual alive)nder (18-20) and if-(z) = cx + d, with¢ > 0 and
d(m —1) > a (ord > 0andc = 0). N, verifies,

E[Nt] _ ed(m—l)t + 120 (ed(m—l)t - eat)'
And (Nze~4m=1t), o and (NV; /E[N¢]):>0 converge a.s..
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Proof. First, a same computation of lemma 4.1 gives that the prasegsll defined and that the weighted many-to-one

formula holds. So, as we get:
= (Z 1+7‘le> - T (Z Xt“>

ueVy ueVy
the proposition follows. O

Consider the same parameter of [5], thal(is) = o2z andps = 1. X; = Z;(V) is the total number of parasite. Itis a
martingale, so we easily obtafi| X;] = e9'E[X,] and X;e~9¢ converge a.s.. But since his brackepig’ (1 — e~9%),
we have a convergence a.s and.th This result is already know, because in this c43g,);> is a Feller diffusion.

5. MACROSCOPIC INTERPRETATION

To prove theorem 1.5, we need to use different topology6f¥). We note(M(E), d, ) (resp.(M(E),d,,)) when it
is embedded with the vague (resp. weak) topology. Thesddgigs will be understood in the following sense:

lim_du(Xn, Xoo) =0 4= Vf €Cy, Tim_E[f(X,] = E[f(Xu0)]

n—-+o0o
where(C is the set of continuous function which vanishes to zero airtfinity. Cj, is the set of bounded continuous
function. LetD([0,T], E) andC([0,T], E) be respectively the set of cad-lag function embedded withStkohorod
topology and the set of continuous function embedded wetuthiform topology [7].

5.1. Law of large number (proof of theorem 1.5). In this section, we consider a sequet®’ distributed asZ and
the following scaling:X ™) = 1 Z("). We describe the behaviour of this renormalized processwlgoes to infinity.

Heuristically, to understand the behaviour of our proceksmwwe start with a large population distributed by a de-

terministic measur&,, we can approximat&y by the interesting sequence defined)ﬁéf) = % > i Ov,., Where
(Y% )r>1 is a sentence i.i.d. distributed BYp. Thus, we get,

1 d
xn — —z0) & VAL
. Z
whereZtY’“ are i.i.d. distributed a&, with Z, = dy, . So lety a bounded function, the law of large number gives:
: 1 Xk _ Y1
vt >0, nh_?;o n kz—o Zi*(p)=E [Zt (‘P)} :
So by corollary 2.3 , it implies thaX () converges to the solution of the following integro-diffetial equation:

) pela /Zw (E(™) (2,0))d0 — () s (d) ds.

k>0
In fact, this convergence is better. It is a processes cgewnee. There is that the theorem 1.5 said.

(21) pe(e) = po(p) + / s (Ap) /

Lemma 5.1(Semi-martingale decompositionfor all » € D(A?%) andt > 0,
X (0) = X§(9) + M () + Vi ()
with
Vt(") / /Aga +r(x / ZZ(Q F(k) (,0)) — o(x)pp d6 XM (dx) ds
keN j=1

anth(”)(ap) is a square-integrable and cadlag martingale with bracket

t k E
% / 2X (M (Ag?) — 2X [ (ip x Agp) + / /OZ (Zw(F;’%,e»w(x)) pi(x) d0 X" (dz) ds

keN* \ j—1
Proof. Itis an application of the lemma 2.2 because the generat&8®f, denoted byi.(™), verifies:

LW Fy(n) = E[Fp(X™)XS = pl,_o = BE[F (20| 28 = npl|,_y = LE,ju(npr)
whereF, (1) = F(u(y)). O
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Lemma 5.2. Under the assumptions of theorem 135" is tight for the vague topology.

Proof. For this proof, we are inspired by [17]. According to [38Jistenough to show that, for any continuous bounded
function f, the sequence of laws of (")(f) is tight in D([0, T],R). To prove this, we use the Aldous-Rebolledo
criterion. We have the following two points to be verified: rral function f € S, whereS is dense inCy and
contained the functiom — 1,

(1) for all non-negative number (Xt(”)(f)) . is tight.
(2) foralln € N, ande, n > 0, there exists$ such that for each stopping timés bounded by,

limsup sup P([VE™, . (f) = V&P ()] = n) < e.
n—-+oo 0<u<d

limsup sup P((M™(f))s,4u = (M (f))s,| 2 ) <e
n—+o0o 0<u<d

The first point explain a pointwise tightness and the secaidtpcalled the Aldous condition, gives a "stochastic
continuity”. It look like the Arzela-Ascoli theorem. For pproblem we can také = D(A?). The first point gives,

(n
< Il BING™) Crie
- nk

SinceE[NO(”)]/n converges , it is bounded, and for a lafgewe have the tightness. Lét> 0 andS, < T, <
(Sp +9) < T, we get

E[Vi () = Ve XM(Af) 1 (FP(,0)) ~ f(@)p(x) db X" (da) ds
-z | [ s [ o [ S5 (1000) s

< Cror (1AF oo + 1 Flloc] X (T = Sn)

<Criry 0

In the other hand,

E[(M ™ ())z, — (M"(f))s,]]

_lg /Tﬂ 2X (M (Af?) — 2X ™ (f x Af) +/ r(z) /1 3 zk: (f (F.(k) (z, 9)) - f(x))ka o X (dz) ds
n Sn E 0 keNj=1 !
1
Sﬁ X CF,E,T,f X (Tn — Sn)
§077E7T7f5
n.

Then, for a sufficiently smald the second point is verified and we conclude t('nm<"))n>1 is uniformly tight in

D([0, T, M(E)) for the vague topology. O
Proof of theorem 1.5First, by the Doob’s inequality, we get,
Crr
sl [S“p ‘M(")(sﬂ)t” < 2sup E[(M ™) (¢9))7] < —2E
@ t<T @ n

where the supremum is taken over all the functioa D(A?) such that|¢||. < 1. Hence,

(22) lim supE {Sup ‘M(n)(@)t” =0.

n—-+oo @ t<T
But,
M () = X[ () = X5 ()

//Acp tr(z /ZZ‘P F(k)xﬂ) o(z) pu(z) db X\ (dz) ds.

keN j=1
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So, we have to prove that the limit éf\/[t(n)(ga)) N is also
n>0

t k
me—me—AX&Mﬂ+éﬂﬂ(EJMﬂm@ﬁDm@ﬂw—M@)4&M@%

Since this equation has a unique solution, itis enough tegattmat the convergence &f(“~) isin ([0, T, (M(E), d.,)),
for each convergent subsequeriag),cn-. If E is compact, the vague topology and the weak topology coimeidd
we have the result. For the cage) of the assumptions, we can use the Méléard-Roelly critd@8h Let (uy,), a
subsequence such th@at (=), converges in distribution t& in D([0, 7], (M(E),d,)). We have to prove thak

is in C([0,T], (M(E),w)) and X (™) (1) converges taX (1). To prove it, we use the following lemma, which is an
analogous of [29, lemma 3.3] (see also [23]):

Lemma 5.3(Commutation of limits) Under the same assumptions of theorem 1.5,
lim limsup E {sup Xt(")(wk)} =0
k—+00 n—s+oco t<T
where() >0 are defined at theorem 1.5.
This lemma explain that we can commute the limit, The progfdstponed after. Hence, a same computation to [29]
give us the convergence ([0, 7], (M (E),w)) to our process. Thus, each subsequence converges to th@aqua

(21). There is a unique solution, and our sequence convardeqo, 7’|, (M(E),w)) to z (defined at the corollary
2.3) the unique solution about the equation (21).

But the lemma 5.3 is so strong, we can give another arguméhiut to use the Méléard-Roelly criterion [28]. As in
[29], we can prove thaX is continuous, fronf0, T'] to (M(E), d,, ), because

sup sup  |X\(f) - XS] <
t20 f,||flleo <1

Let G be a Lipschitz function od@'([0, T], (M(E), d.)), we get,

3| =

E[G(X")] - G(X)| <E

sup dy, (Xt(u"') , Xt)
te[0,7)

<E [ sup dy (Xt(un)aXt(un)( X (1 - djk)))}
te[0,T]

+E

sup dy, (Xt("")(- X (T —bg)), Xe(- x (1 — W)))}

te[0,T)

+ sup dy (Xe(- x (1 —1x)), X¢).
te[0,T]

According the lemma 5.3, we obtain that
lim limsup E | sup dy (ng,xtw(. x (1 — W))) ~0
k=400 n—+too t€[0,T

and
lim  sup dy(Xe(- x (1= ¢%)), Xy) =0.

k—4o00 te[0,T]
Then, we havel, (Xt(“"')(. (1= ), Xe- x (1 — wk))) =d, (Xt(“"')(. (1= ), Xel- x (1 — wk))). Thus,

lim limsup E
k—+00 n—+toco

sup d,, (Xt(“”')(~ x (1= 1)), X (- x (1 = wk)))] =0
t€[0,7
by contuinity ofv — v(1 — ¢3,) in D(M(E), d,). And finally,

lim G (X(“")) = G(X).

n—-+o0o
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proof of lemma 5.3we denote by:"* = ]E(Xt(”)(wk)), and we get:

ppt = E[Xén)(¢k)] Jr/ot [/ Ay (2 (Z Zpk / i (F 0)) — Yr(z )) XS(")(dx)] ds

k>1j=1

t
<uyt+ C/ p Rt R ds
0

and by Gronwall's lemma, iteration, monotonicity and theibdedness O%E[SuptST NM:
k k !
pi < Crlpg™ + / pt " ds)

C +Cl nk 1 / / n,k— 2duds

k—1

. c (c
SE Mo’ 01( ;')-1-02 2')
1=0

n,|k/2 i (ClT)l (ClT)k
MOL/JCH@CT-FCB, Z i + 5 x i
1>|k/2]

whereC', Cy andCjy are three constants. Thus,

lim limsup "% = 0.
k—+00 n—+4oo

Then, the following expression concludes the proof,

t

B sup X001 < i+ [t tas 4B fsup (37w
t<T 0 t<T
O
Example 5.4 (Asymmetric mitosis) Let F\? (z,0) = G~(0)z and F\*(z,0) = (1 — G~1(0))z. WhereG is
the cumulative distribution function of the random fractim [0, 1] associated with the branching event. It verifies
G(z) =1 - G(1 — z). The equation (8) can be written by
on(t, x) + Opn(t, x) + r(x) n(t,x) = QE[ r(z/O)n(t,z/0)]

wheren(t, .) is the density of,. Especially, we deduce that the following P.D.E. gets a vasktion:

+oo
on(t,x) + Opn(t,x) + r(z) n(t,x) = / bz, y)n(t,y)dy

whereb verify the following properties:

(23) b(z,y) > 0,b(x,y) =0 fory < x
24 +OO =2
(24) / ()
+oo
(25) ; =yr(y)
(26) b(z,y) = by — z,y).

This equation was studied [B4]. b(z,y) = %T(y)g(%), whereg is the density of7. b has this form is equivalently to
verify the following points (23 - 26).
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5.2. Central Limit Theorem for size-structured population (pro of of theorem 1.6). Our aim in this section is to
describe the limit of the fluctuation process. It is defined by

vt € [0,T],¥n € N*, n{™ = n(X™ - X,).

For a better understanding, we only give the convergenckeaxample of the size-structured population (asymmetric
mitosis, see example 5.4). The result of this section ardyegeneralisable for splitted diffusion, but we do not want
to weigh down the hypotheses and the notations.

Theorem 5.5(Central limit theorem for asymmetric size-structured glagon). Let7 > 0. Assummé") converges
and

E {sup/ 1 —|—xX(()")(dac)] < 400.
B

n>1

Then the sequendg™),,>, converges iD([0, 7], C~2) to the unique solution of the evolution equation: for all
fec®o,

@) nlf) = m(f) + / /0+°Of'<x>+r<x> ( / f(qx)+f((1—q)x)G(dq)—f(:v)) na(dz) ds + JI(f)

whereM (f) is a martingale and a Gaussian process with bracket:

m=[ [ e v [ - seype) X s
AndC??9 is the set of functio’?, such thatf, f’, "/ vanish to zero wheun vanishes to infinityC —2° is its dual space.
By lemma 5.1, we have the following representation:
vi>0, 5" =0 + v+
with

“+o0o 1
woeanc, i =[ [ ¢@+rw @) ([ elam) + o1 - )60  pla) ) 2l () ds
0
anth(") is a martingale with bracket:

+oo 1
(28) I (o / / / (p(gz) — p(2))2G(dg) X (d) ds.

The set of signed measure is not metrizable, so we can not taproof of theorem 1.5. As in [27, 39], we consider
n(™ like an operator in a Sobolev space, and use the Hilbertiapgpties of this space to have the tightness (see for
instance [30] for tightness condition on Hilbert spacest s explain the Sobolev space that we will use. et 0,

j € N, andW?7* be the closure of the set of functigit to [0, +oc) into R with compact support with the following

norm:
2

J oo (k)
Jsp 2 [ (z)
¥F Wi, 11, =Y | (pr) da
k=0"0
W3P is an Hilbert space and we consid&r—? the dual space. L&t??, the space of functiofi, C7, such that:

(k)
Vk <4, lim [(z) =0
z—+oo 1 4 P

and we embed it by the following norm:

. f()
7,P .
vfec a||f||0w—§:sup1+zp

Thus,C’? is a Banach space and we denotedy’* its dual space. These spaces verify the following contisuou
injection [27, 1]:
(29) CPP C WHPTL and WP c ¢IP,
Or equivalently, iff is smooth enough,
|fllwsrsr < Clifllcse and || fllesr < Cllfllwra:

The first embedding/inequality prove that the tightnesd/in?*! implies the tighness i6’/:?. The second is useful for
some upper bound:
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Lemma 5.6. If (ex),>1 is a basis o1, we get:

Zek <o +2).

k>1
Proof. Letd, : f — f(z) be an operator oW >1. We have, for allf € W21,
0 fl < (A +x)[fllcor < CA+ )| fllwrr < C(A+ )| fllw2r
But, by Parseval identity we get,
182 1F—20 = Y ex(@)?

E>1
It ends the proof. O

- 7 (") (n) (n) — (M -
We introduce the trac{((M >>t)t20 of ( )tz defined such tha(HM 220 — (M >>t)t is a local
martingale. Then since
2 r(n
W—2.1 = Z Mt( )(ek)

k>1

H Mt(")

where(ey)x>1 is a basis of/>1, and by (28), we get,
+oo 1
=3 [ [ 2rw) [ entan) — ente)*G0an) X (a) ds
k>1

Now, we first prove the tightness 6§(™),,~; then we prove theorem 5.5
Lemma5.7. (n™),>1 is tightinD([0, 7], W~=21)
Proof. By [22, theorem 2.2.2] and [22, theorem 2.3.2] (see alsolgiima C]), it is enough to prove

1HE [SUpsgt HWSH%VJJ} < +00

(2) Vn € N, Ve, p > 0, 30 such that for each stopping tim&s bounded byl

>n) <e
n—+00 0<u<s w21

sy swp  ([(()) = () [ n) <o

These two points are the Aldous-Rebolledo criterion. Thet finint gives a pointwise tightness and the second point,
the Aldous condition, gives a " stochastic continuity ". Huoe first point, we get,

Z M (e / 2r/ QZek qz +22@k G(dq) X ™ (dz) ds

k>1 k>1 k>1

< Cr Xén)(l + )

limsup sup P (Hvs(zz-u - VS(:)

n

then, by the assumptions of theorem 5.5, we have the bourdsdnhus since,

~(n 2 ~ (n 2
[ = 5 ()
’ E>1
we have by Doob inequality,
E | sup HM(" <C.
te(0,t] Ww=21
Then )
T T B 0
Ww-—2.1 Ww-—2.1 Ww-—2.1 w-—2.1 w-—2.1
And
~ 2
‘ Vt(n) < C/ sup (") ds.
w-—2.1 w<s w-—2.1
So by Gronwall lemma we obtain
2
E Sl <C
|:ig€ Ms w-21| —
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Then for the second point, we have

B[V, - i |<E C/Sﬁu sup [[n]|” 1
nr mollwemal s, s<rllC llwe2a
< Cu.
So, by Markov-Chebyshev inequality, we get the Aldous ctimli A same proof gives(M (™)) also verify the Aldous
condition. Thus(n(™),>, is tight. O

Proof of theorem 5.5Let M a continuous Gaussian process with quadratic variatiorengior everyf € €20 (c

W21y andt € [0, 7] by:
t +oo 1
S [ [ ww [ () - @26t x. ),

k>1
Since we have,
~ C
Ve Co?’, sup M™ HI< et
t€[0,T] | 9l Vn

and(M™) converge in law tqA7;), we obtain, by [21, theorem 3.11 p.473], the convergendd 69 () to M (f).

By lemma 5.7 and (29) , the sequeneg™),,>; is also tight inC~2°. Letn be an accumulation point. Since the
martingale parf\/ is almost surely continuous,is almost surely continuous. Henegsolves (27). Using Gronwall’s
inequality, we obtain that this equation admits(i[0, 7'], C~%°) a unique solution for a given Gaussian white noise
M. We deduce the announced result. O

6. OPEN PROBLEMS

When the motion between the branching times is deterministdeedA is a vector fields, the auxiliary process is a
piecewise deterministic Markov process (PDMP). Thesegs®ees were introduced in the literature by Davis [10] as a
general class of non diffusion stochastic models. Somegpti@s of the PDMPs are given in [11]. But, there is a lot of
question about this process.

Speed of convergence for piecewise deterministic Markoegsses:

It is sometimes easier to have a speed of convergence fomtbedeed chain than for the continuous process (the
embedded chain is the continuous process indexed at thetjomp, see [9]). We have some link about the invari-
ant measure of the process and its embedded chain in [11}t Wwould be interesting to find a link between their
long time behaviour. We can also research a criterion, lieeBakry-Emery criterion, to have a quantitative rate of
decay for the entropy. We can find a first approach in [8]. Itge &nteresting to improve theorem 1.2 or proposition 4.9.

Regularity of the stationary distribution:

Some criterion for ergodicity are knew. A natural questi®thie regularity of the invariant distribution (supportnee
sity,...). For instance, is there Hérmander’s conditiortzh® moment, there is some properties of PDMP semi-group
in [18].

Other functional of the empirical measure:
this paper gives some result about the convergence of theieahpneasure) _, .y, dx;, but it do not capture other
symmetric functional of the population, like the bigger cglthe more infected cell:

Xu
glea;ff( i)

or the following functional:
t B(u)At
| S seenas=3 [ e ds
0 u€Vy ueT a(u)At
Interesting result for the maximum for branching Browniaotion are developed in [2].

Statistic:
A natural application of our limit theorem is the parametstireation. Working in the Kolmogorov equation and the
macroscopic process, [14] gives a non parametric estimafio.
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Eigenproblem:

The existence of eigenelement is fundamental to have ouy4ttaane formula. As say in introduction, [13, 32] give
some condition to have it. The problem is that, in these gjtlee eigenvector are not lower bounded. Hence, it will
be interesting to find a theorem like the theorem 4.3.
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