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LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSE S

BERTRAND CLOEZ

ABSTRACT. We consider a particles system, where, the particles nmependently according to a Markov process and
branching event occurs at an inhomogeneous time. The bifsfocations and their number may depend on the position of
the mother. Our setting capture, for instance, the prosaasexed by Galton-Watson tree. We first determine the agytrop
behaviour of the empirical measure. The proof is based oxpession of the empirical measure using an auxiliary mece
This latter is not distributed as a one cell lineage, theeeh&@sed phenomenon. Our model is a microscopic descripfian
random (discrete) population of individuals. We then ab&iarge population approximation as weak solution of a grew
fragmentation equation. We illustrate our result with twamples. The first one is a size-structured population metieth
describes the mitosis and the second one can model a panéesdion.
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1. INTRODUCTION AND STATEMENT OF RESULT

This work is devoted to a continuous time model for dividiefi€already studied in [2, 4, 5, 7, 29]. This model comes
from biology and physic, we can interpret it as the size daal polymers. In [5], itis proved that can represent the
growth of some biological content of the cell (nutrimentargsites...). With biological reference, it is also expéai

why the division time must depend of the motion. A long timé&ddour for a similar discrete model is developed in
[18]. The proof is based on a many-to-one formula and an i@nyiprocess. In [24], we get a law of large number for
long time for a model with a continuum population. The praolbased on a spectral analysis and an auxiliary process.

Let us begin by describe our model. LBtbe a Polish space. We start with one cell that have a weigld E. For
each cellu, its weightX* evolves as a cadlag strong Markov process), >, until it dies , an event such that

B(u)
/ r(X¥) ds ~ Exp(1)
a(u)
wherea(u), 5(u) are respectively the birth date and the death date of theucell is a non-negative, measurable
and locally bounded function. The cellis then replaced by a random numbi€rof offsprings, that follows a law
(pk(XE(u)_))ke{l,...,E}v on{l,...,k}, which depends of the mother’s weight. The states of thepoffg are given
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by (F\")(X4,,_©))1<j<x, where® is a uniform variable orf0, 1], and, (F{") ;<. xerv a family of measurable
functions. The new born branches evolve then independéotly each other. Letn = ), ., kp;, be the mean of
news offspring, we always assume> 1 (supercrical case). B

Before giving the main and general result, let us give an g@teamThis models a size-structured population which
represents the cell mitosis. It is described as followss a deterministic and linear function and, when a cell dies,
divides in two equal parts. Formally,

1) E=1[0,400), Vf € C*, Af = f' and p, = 1.

) Vo e E, V0 € [0,1], F{?(z,0) = F{? (2,0) = g

In this case, one cell lineage is generated by:

Vel Ve >0, Gf = f'(z) + r(z) [f (g) - f(x)} .

This process have some application in computer sciencesdmetimes called the TCP (Transmission Control Proto-
col) process. The emergence of TCP has spurred an enormaoustaf research, we refer to [11, 23, 28, 37, 44] for
some result about approximation, long time behaviour or erestimates. Our main result about this model is :

Theorem 1.1(Convergence of the empirical measure for a mitosis mad&ksume (1-2). If there existsr, such that
0 < r <r <7andr(x) is constant equal to for a large enough, then there exists a probability measursuch that

. 1 w
tggooﬁtuez;g(&)—/gdﬂ

where the convergence holds in probability and for any cargus and bounded functign In particular for a constant
rate r, m has Lebesgue density:

—+o0 n

27’ 2 _ontl, .

3) e Z<H—1_2k>e .
n:l( ) n=0 \k=1

The explicit formula (3) is not new [45, 46], but here, we haveonvergence, in probability, of the empirical measure
instead a convergence for the mean measure . We give an araksplt for- affine (see proposition 4.4).

When the rate is constant, the process is simpler to study. For instanee&an calculate the moment (see proposition
4.6). We also obtain a speed of convergenceZoe= ), .y, dx», the measure which describes the population. Let us
explain how we estimate the distance between two randomureess , M>. We embed the space of random measure
with the Wasserstein distance [49, 54], defined by

WP (L(My), £(Mz)) = (inf E[d(My, Ma)?)/”
where the infimum runs over all couplék/y, M>) such thatM; ~ L(M;) andMs ~ L(M>). dis a distance on the

measure and(-) stands for the law of the random variable. We tdke ngll) = W), is the Wasserstein distance on
(E,]|-|). And we have:

Theorem 1.2(Quantitative bounds)Under the same assumptions of theorem 1.1 andsitonstant, we get, for every

t>0,
(1) Zt Z N WP p—
W (£<Nt>7£(Nt)>_|x e

Wi (L (E[Zjit]) £ (E[Z](yft]» <lz—yle ™

whereZ* (resp.ZY) is the empirical measure starting with one cell that hawewreightz (resp.y) in [0, +00) .

The proofis based on coupling and matching arguments. €higtrdoes not give a boundwv(‘}‘)_‘ (L(ZF/E[Ny)), L (7))
or W‘E;‘)_‘ (L(ZF/Ny), L (), wherer is the limit measure of the theorem 1.1 (see remark 4.7).

To obtain a limit theorem, we follow the approach of [4]. listpaper, the cell’s death ratds constant and the law of
offspring(px)x>1 do not depend to the mother. A many-to-one formula, whiclkddike the Wald formula, is proved:

>R

u€Vy

1
E[N:]

(4) E = E[f(V2)].
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WhereV; denote the set of the cell alive at time N, = cardV;) andY is an auxiliary process with infinitesimal
generator

(5) Vf e D(A), Vo € E, Gf(z) = Af(x —i—rmzkpk/ ( ZfF(k)mH)) fx )) do

k>1

where(A4, D(A)) is the generator oK. This process evolves &8, until it jumps, at an exponential time with mean
1/rm. We observe thatis not the jump rate of the auxiliary process. There is a bigsenomenon, already described
in [4, 29] and their references. We can interpret it by the flaat the faster the cells divide, the more descendants they
have. That is why a uniformly chosen individual has an acegdel rate of division. It is like the bus paradox already
observed for the Poisson process. A possible generalisafti@!) is a Feynman-Kac interpretation as in [17, 29]:

> A
ueVy
whereY is an auxiliary process starting @a§ and generated by (5). An other formula with Poisson measugée/éen

in [5] to prove criterion for extinction. However, it is diffiult to exploit these formulas. In this paper, we follow an
alternative approach, which is inspired by [36, 45, 46]. Ha expression (4)Y” can be understood as a uniformly
chosen individual. The problem is,ifis not constant, a uniformly chosen individual is not a Markoocess. Our
solution is to choose this individual, with an appropriateight which gives a Markov process. This weight is the
eigenvector of the following operator which is not a Markavgenerator,

Af(z) = Af(z [(ZZ/ F(F® (2,6)) d6 pi(a ))f(w)]-

k>0 j=1

=E [f(yt)efé r<Y5><m<YS>,1)dS}

Under some assumptions, which are given thereafter, wethaviellowing many-to-one formula:

E|> XV

ueVi

(6) = E[f(V2)]

E[Zuev, VI(Xy)
whereY is an auxiliary Markov process, startingm generated by
Cken Ljor Jo VI @ 9))f( ) (w.0)) db p(x) f(@]
ZkGN Z] 1fo j (z,0)) db pi(z)
A(f x V)(x) = f(x)AV(z) _ 204(f,V

B = =
J) V@) V@)
andl 4 is the “carré du champs”operator associated {@ee (12)) and

lzz/ (w.0)) d8 (o)

keN j=1

) Gf(x) = Bf(z) + Az)

where

)(@) L Af()

r(z)

Let us further agree to cafl a determining class if two probability measur@s) are identical whenever they agree on
£.

Theorem 1.3(Weighted many-to-one formula)f

forallt >0, N; < +oc a.s.

o A have eigenelement¥’, \,) with a positivel”

e (G generate a non explosive strong Markov process

Dy(G) ={f € D(A) |Vx € E, | Gf(x)| < 1} is a determining class.
then (6) holds for any non negative and measurable fungtion

This formula seems to be complicated, but for the mitosisehitdeduces to:

¥f € v 20,01 = ) +r@ D 1 () - 1]

We also observe a biased phenomenon. But contrary to [4jrR8Eneral, the bias is present in the motion and the
branching mechanism. itis, to our knowledge, a novelty. @feinterpret the bias in the division part as follow: When
a cell dies, we have more chance to choose the daughter thmatrésappropriate for (the bigger or the smaller for
example). For the bias in the motion, we can observe thatig a vector field Af(z) = a(z).Vf(x), (ie. X is
deterministic) then3 = A. But if A is the generator of a diffusior is also the generator of a diffusion but with



LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSE 4

biased drift. One interpretation is that we have more chsmchoose the cell with smaller or bigger noise. Notice also
that we do not assume tha is the first eigenvalue. So, it is possible to have some auyifprocesses. We can find
some result about existence of eigenelements in [19, 43frei references. A first application of this formula isttha
if Y is ergodic, with invariant measure we obtain

= /f dm

Theorem 1.4(Convergence of the empirical measure for the long tinrfeysume the hypothesis of theorem 1.3 End
is ergodic with invariant measure. Consider a real functiog and assume that:

e There exist&” > 0, such that for alk: € E, g(x) < CV (z).
e There existsy < \g, such tha€[V?(Y;)] < Ce®* and

/' S Y n@VED (@ o)V (ED (w,0)

a,beEN*,a#b k>max(a,b)

S E[Zuev VXp) [Zqu

ueVy

for all bounded functiorf. We improve this result:

< Ce“t.

Then we get,
3 /\ot u g
Jim e > gxp=w / dr
ueVy
V(X})] and the convergence holds in probability. If furthermdél/ (v;)] <

whereW = lim;_, 1 o e_’\otE[Zuevt
Ce“ and there exists > 0 such thatvz € £,V (z) > ¢, then,
: 1 w_ [ 9 1. .
Jim > g(xp) = / v dw//v dr in probability

ueVy

Forr constant, we have = 1 is an eigenvector and this theorem generalises [4, theorEn 1

In the other hand, our model is a microscopic interpretatiba population is discrete. And, we are also interested
by the behaviour of our process in a large population. Moeeigely, we take a sequen#é™ distributed asz, the

empirical measure, such that the starting distribuﬂé’?‘? grows to infinity withn. Consider the following renormalised
processX (") = Z(™ /n, and we get:

Theorem 1.5(Law of large number for the large populatioretT” > 0, assume is bounded and one of the following
hypothesis:
(i) Eis compact
(i) £ CR, |Fj(k) (x,0)| < |x|, and for allk € N*, there exists);, : E — R such that:
Vo € E, 1[k§+oo ( ) < "/)k( ) <1 [k—1;+00[ ( )and307 A, < Cpp—r

So, IfX(") converges in distribution to a deterministic measiigin M (E) (embedded with the weak topology), then
X ™ converges in distribution i ([0, 7], M(FE)) to a deterministic measut¥, such that, for allf € D(A),

8) /f ) X, (dz) = /f ) Xo(dz) + //Af dz)ds

whereD([0, T], M(E)) is the space of cad-lag functions embedded with the Skormipadbgy[8, 33]

The second assumption is verified by any operator upper leslibg a differential operator [34, 40]. We can observe
that the equation (8) is the Fokker-Planck (or Kolmogoray)ation. ThusX is equal to the mean measure &f
(e.9.f — E[[, f(z) Z:(dx)]). This average phenomenon is predicable for two same rea3de first is that after a
branching event, each cell evolves independently from e#lvér, there is not interaction or mutation. The second is
the linearity of the operatad. From theorem 1.3, one can see that, in large populatiorertipral measure (not the
mean measure!) behaves as the auxiliary process. The prbased on the Aldous-Rebolledo criterion [33, 51] and it
is inspired by [25, 40, 52]. In these papers, there are otlogleds of structured populations.

In the mitosis case, the equation, (8) can be written by:

9) on(t, x) + Opn(t, z) + r(z)n(t,x) = 4r(2z)n(t, 2x)
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This equation was studied in [36, 45, 46]. In these papeesctimstant case and the non constant case are separated.
For a constant, the authors prove the following exponential decay

In(t, )e ™ — N|p <e "C,

where N is the density of the stationary distribution. There impléeconvergence in total variation. In contrast, we
also obtain the convergence to an equilibrium state foriteestructured population, and we have an exponentialdeca
in Wasserstein distance (see theorem 1.2). It is showedtlsatate of convergence is optimal in [36]. For the non
constant case, we can also find an exponential decay,

[(n(t,.)e 2t — N)V||11 < e C,

proved by a perturbation method (s explicit). This expression can be understood as a totétian decay for one

cell lineage. Itis not easy to find a total variation bound bymling method. When is affine, we can find Wasserstein
bound in [11], for one cell lineage. In contrast, withoutspef convergence, we find a convergence in the case where
r is affine (which means non bounded). Furthermore, for thidehave estimate the fluctuation between the empirical
measure and its approximation. It is defined by,

vt >0, " = va(X" - X,)

Theorem 1.6(Central limit Theorem for size-structured populatiohpt7 > 0. Assume (1-2); is bounded an@l;(()")
converges and
+oo
E [sup/ 1+ Xo(n)(dx)} < 400.
n>1.J0
Then the sequendg™),,>; converges iD([0, 7], C~2) to the unique solution of the following evolution equation:
Forall f € C%9,

@ [ @t = [ e [ [ 7w (25 (5) - 50) i) ds+an()

0
whereM (f) is a martingale and a Gaussian process with bracket:

- t pFoo T 2
M(f) :// 2r(z) (f (=) — f(x)) Xs(dz) ds.
W= || 2@ (1(3) - 1@) Xl
AndC??9 is the set of functio'?, such thatf, f/, "/ vanish to zero wheu vanishes to infinityC —2° is its dual space.

Strucure of the paper: In the next section, we introduce some notations and givgénerator of the measure-valued
process. In section 3, we focus our interest in the long tivile.prove the theorem 1.3, others many-to-one formulas
and we deduce a general limit theorem. Theorem 1.4 is a caaseq of Theorem 3.7 which gives similar result. Then
we give two instructive examples in section 4. The first ongcdbes the cell mitosis, the proofs of theorem 1.1 and
theorem 1.2 are in this section. The second example caniblesell division with parasite infection. In this example,
we give different eigenelements. Finally the section 5 iotted to the study of the large population. We prove the
theorem 1.5, and a central limit theorem for asymmetric digision which implies the theorem 1.6. The last section
is devoted to several open problem around our model.

2. NOTATION AND PRELIMINARIES RESULTS

When we start with one individual with a weighy € E, we use the Ulam-Harris-Neveu notation [4, 16] to describe
the population. We denote Ifithe first cell. X? is its weight. Then every cell is indexed by a labek (u1, ..., )
in the set:

m=0

with the convention{N*)? = (). The cell indexed by: is the daughter of the cell indexed Ky, ..., u,,—1) and the
mother of the cell indexed byv = (u1, ..., um,v). v is betweenl and the number of offspring. We introduce the
following measure to represent the population at ttme

o __
Z50 = Gy
ueVy

We get that the process™ = (Z/°),> is a cad-lag measure-valued Markov procesB@ ., M(E)), the space of
cad-lag functions with values iM(E), the set of finite measures div And, if there will be no ambiguity we shall
noteZ.
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Example 2.1(Branching diffusion) If X is a real diffusion, its generator is defined, for all smoottoegh functiony,
by

! 02(.T) 1"
(11) Af(z) = b2)f'(2) + ——f"(2)

where we assume thatindo are such that there exists a unique process with this geaefsg¢e for instance th0,
theorem 3.2 p.168§Jand £ = R or R* . In this case, we can describe the population with a Poissmintpneasure

[25, 50] This S.D.E. is defined, for afl : (t,2) — fi(z) in C,%, by

280 =20 + [ [ (Af(@) + 0. fufo)Zu(dn)ds + / S VBo(X )0, fo(X ) B

u€eVy

j=1

t k
[ Luev, ier(re ) (Z FES (X, 6)) fs(XE)) p(ds, du, dl, dk, do)
0 JUxXR4LxN*x[0,1]

where(B“),¢ is a family of independent standard Brownian motions atits, du, dl, dk, df) a Poisson point mea-
sure onRy x U x Ry x N* x [0, 1] of intensityp(ds, du, dl, dk, df) = ds n(du) dl dp, df independent from the
Brownian Motion. We have denotedhidu) the counting measure @ andds dl df are Lebesgue measures.

A necessary and sufficient condition for the existence offwacess is there is no explosion, inde€d < +oo a.s..
This hypothesis is always assumed. For instance, we camasthatr is bounded byr. In this case, a coupling
argumentimplie®[N;] < E[N,] ek=D 7 T,

In the next sections, the notatid). means a constant which only depend:tand the notatiom(1 + =) means for
J 1+ aPp(dz).

2.1. Infinitesimal generator and martingale properties. Denoted by(A, D(A)) the generator oKX and L the gen-
erator of Z. For ¢, be two bounded functions belong to the domain of a generétsuch thatp x « belong it too,
we recall that the associated "carré du champ" operatoffiisedeby:

12 Pa(0) = 3 (A(6 X ) ~ S — GA)

Lemma 2.2(Semi-martingale Decompositian).et ¢ be a bounded function belong to the domair.ofThen there is
a square-integrable and cadlag martingalé such that:

Vit >0, My = o(Zt) — p(Zo) — /t Lo(Zs) ds a.s.
0

and if furthermorep? be belong to the domain df too, we get:

(M), = /0 2T (6, 6)(Ze)ds

So, for allp € D(A) andt > 0,
Zi(p) = Zo(p) + Me(p) + Vi(p)
where

Vi) = /0 Ap(x) + [E r( /0 1]@* (Zs& Ff")(:vﬁ))) — () pi(w) 0 Z,(de) ds

and if p? € D(A), the bracket of\/;() equal to

/Ot 27, (20 4(,¢)) / /0 >

keN*

K 2
(Z p(FM (x,0)) - so(fc)) pi(x) dO Z,(d)ds

j=1

Proof. For the first part, it is an application of Dynkin and 1t6 forlas, see [32, lemma 3.68] for instance. For the
second part a computation gives the generatdf dfat is applied i, andz‘fo where:

ip > p(p) = /sa dp andi?, - p— (u(p))”.
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So

i) = [ Apta) + 1(a /ZZMWM ()i (x) O u(d)

keN* j=1

LiZ (1) = p(Ap®) + 2u(p)p(Ap) — 2u(p x Ap)

k k ?
A / > 2ulp) x (Z o5 (@,6) —90(1‘)) + (Z o5 (@,6) —w(x)) Pi() B ju(d)

0 ken+

We define the mean measurgfor all smooth enough functiop, by 2(¢) = E(Z(¢)) = E[}_, ¢y, (X))

Corollary 2.3 (Evolution equation for the mean measurtf) D,(A) = {f € D(A) |Vz € E, | Af(z)| < 1}isa
determining class, fop € D(A), we get

o) =20+ [ =l49)+ [ 1o zz/ ) (2,0)) 0 pi(e) — p(a) 2s(dz) ds

k>1j=1

and it is the unique solution of this integro-differentiglation for a fixed initial condition.

Proof. We have just to prove the uniqueness. Consider two probabikasure$;:;); and(v;); solution of this P.D.E.
with same starting distributiony = . We consider the following norm defined by

[m1—ma| = sup |mi(p) —ma(p)|
»EDL(A)

Then we consider one functignin D(A) such thatAyp| < 1, we have,
t k
| [ avt@) 1@ [E [Z pr(a) Yoo @»] - w(@] (s = ) (do)

t
Cri / s — velds
0

Taking the supremum and using the Gronwall lemma we fill dedbat :

le(p) — ve(p)| =

Vi >0, [lue— vl =0
and, asD,(A) is a determining class, uniqueness holds. O

Example 2.4(Branching diffusion) We return at the example 2.1, in this case the generator ig mxplicit. We give it
for the function defined by, : 1 — F([ ¢ du) = F(u(yp)), with F € CZ(R,R) andy € CZ(E, R) (which is known
to be convergence determinifitg]).

LF, (1) =u(Ap)F' (u(p)) + (o) F" (u())

+ [ [ S (u )+ e (FP.0) - <x>) — F(u(¢)) pr(x) dO ().

Jj=1

3. LONG TIME'S BEHAVIOUR

We recall that

)

Ap(z) = Ap {ZZ/ (FM (,0)) df pr(z) — p(x)

k>0 j=1

and in all this section, we assurdehave as eigenelemer(tg, \,) such thatdV’ = ),V andV positive.



LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSE 8

3.1. Eigenelements and auxiliary process (Proof of theorem 1.3Before the proof of theorem 1.3, we show that

Ziy(V) = > uev, V(X{) have the same partthat, = 3 . 1 for constant-.

Proposition 3.1 (Martingale properties)Under the assumptions of theorem 1.3, the pro¢és$l )e—*o!),> is a
martingale thus it converges to a random variablealmost surely.

Proof. First, by corollary 2.3 we have:

and therne, (V) = 2o(V)e*ot. Then, denotér; = o{Z, | s < t}. The Markov properties, applies dfy gives
E[Ziys(V)IFs] = E[Z:(V)| Zo = Z]

whereZ is distributed asZ. ThenE[Z,, ,(V)|F,] = Z,(V)e*! and thus
ElZs(V)e )| F] = Z,(V)eo

O
proof of theorem 1.3Lety; : f — z:(f x V)e 2V (x9)~t. We get, for allt > 0,
On(f) = 2(A(f V))e ™V (o)™ = 2(f VIdoe !V (o)™ = e V(@) 7! [2(A(f V) = z(f x AV)]
and thus,
V@ g V@ [ Sken S S VIEY @ 0 (P @ o) doprte) T
at%(f)/EV(l’O) T+ 7 M) Seen Sy [V E (2,0)) dB pi(x) ()] lde).

Finally, 0:v:(f) = 7:(Gf). Now, by Dynkin formula, the law of the auxiliary process — E[f(Y})]) verifies the
same equation. The uniqueness, proved at corollary 2.8s giie result. O

Remark 3.2 (Schrodinger operator aridtransform) In introduction, we said thatl is not a Markov generator. We
can rewrite, for allp smooth enough,

Ap =Go+r(m—1)p

whereG is the Markov generator defined at (5) angdn — 1) is a potential.A is called a Schrédinger operator, and its
study is connected to the Feynman-Kac fornf@lg. Thus, the key point of our weighted many-to-one formula’is a
transform (Girsanov type transformation) of the FeynmaacKemigroup as if26, 48] ( here,Ve~*! is a space-time
harmonic function).

Remark 3.3 (Malthus parameter)Since, Thomas Malthus (1766-1834) were introduced thelesimpodel to describe
the population:
Oy N; = birth — death= bN; — dN;, = \oN; = N; = ™’
in biology and genetic population studyy is sometimes called the Malthus parameter.
Example 3.4(Galton-Watson tree)lf » andp are constant)” = 1 is an eigenvector for the eigenvaldg = r(m —1).

So,Z:(V) = N, and the population grows exponentially. This result ieatly know forN;. It is a continuous
branching procesg3, 4].

3.2. Many-to-one formulas. In order to compute our limit theorem, we need to control #mad moment. As in [4],
we begin by describe the population over whole the tree. Thegive a many-to-one formula for forks. L&tbe the
random set according to represent cells having lived attaicemoment. It is defined by

T=A{uel|3t>0X'eV}

In the following, the propositions 3.5 and 3.6 are respetyithe generalisation of [4, proposition 3.5] and [4, prsipo
tion 3.9].
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Proposition 3.5 (Many-to-one formula over the whole treeYnder the assumptions of theorem 1.3, for any non-
negative measurable functig‘h- E x [0,400) — R we get,

B |57 (X 8w) | = Ve [ B[00 75 s

LueT

Proof. First we have, for alt. € U,

E|1per /aii?)f(X;‘,s)r(X:)ds] =E [Lery/ (X Bw)]

because
B(u) +o00 X)dt
E l{uET}/() f( X s)r(XH)ds| =E l{ueT}/O /( )f )r(XH)ds r(XY)e ~Jay r(XHdt g
—+oo +oo
=E|luen) / / #)e” Ja TN g p(X 2, s)r(X2)ds
=E 1{um / i )dtf(X;is)r(X?)dS]
thus,
+oo
E[Ljueryf (X B))| = E [ / 1{uevs}f<xs>r<xz>ds}
and then,

Zf(Xff(u)’ﬁ(“))] :/OW]E

ueT

5 f(X:,sw(X:)] ds
. u€Vs
= [ Ve [f(Ys, )

0

T((}}//i))} oS s

<

If f hasthe formf(z, s) = g(x, s)V (), then we have:

E [;g (X5 Bw) V (Xg(u)_)] = /O TRl (V)] * E(Z,(V)] ds.

This equality means that adding the contributions overtadlindividuals corresponds to integrating the contributio
of the auxiliary process over the average number of livirdjviicluals at times. Let (P;):>o be the semigroup of the
auxiliary process,

P f(x) = E[f(Ye) | Yo = ]

Proposition 3.6 (Many-to-one formula for forks) Under the assumptions of theorem 1.3, for all non-negative a
measurable functioif, g we get

E{ S VXXV (XD)

u,vEVy, u#v

= 32’\°tV($0)/0 E [JQ(VPt_Sf, VPi_s9)(Ys) ‘T/((};‘:))} e 0% ds

1

where.J; is defined by
/ S Y m@ e (FP@0) e (F9w0) do
a#b k>max(a,b)

Jo represent the starting distributions of the offspring pitlat random.
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Proof. Letu,v € V; such that # v, there existw, i, ©) € U* anda, b € N*, a # b such thatu = wai andv = wb?.
w is the most recent common ancestor. Thus,

E| Y FXHVX)gXNVX)

u,vE Vi, u#v
=3 > > E L wancvit f(XP V(X)L fwaseviy 9(X )V (X247)]

weld atb a,5eU

We recall thatF; = o{Z, | s < t} and, by the conditional independence between descendantgt,

E| Y FHVEIXNDVXY)

u,vE Vi, u#v
=D D EE D Lwaaevip S XHV(X)| Faw) | E [Z 1{wavev,} 9(X¢)V (Xf)|f5(w)H
weU a#b aeU veuU

Therefore, agi(w) is a stopping time, using the strong Markov property andrieal .3, we get,

E| Y SEOVEIXNDVXY)

u,vE€ Vi, u#v

= Z ZE [1{wa,wbeT, 12w} Prep(u) F (X5 )V (XEG) Prepu) 9(XE(m )V (X500 e 2o (t=h(w))
wel a#b

=E Z L)} 2(VPi—pw) fo V P w) 9) (X5 - ) €2A°(t5(w))]

LweT

:62’\°tV(xo)/0 E [JQ(VPtSf, VPi_s9)(Ys) ;((};Z))] e~ (s,

3.3. Limit theorem (proof of theorem 1.4). Here we give the main limit theorem which implies the theofiesh

Theorem 3.7 (General Condition for the convergence of the empirical snes) We assume that the hypothesis of
theorem 1.3 are verified. Lgtbe a real measurable function defined Brand . a probability measure such that there
exists a probability measure, and two constants < Ao andC' > 0 such that

(13) 7(|f]) < +o0 and VertiigrnooPtf(x):ﬂ(f)
(14) u(V) < +o0, uP(f2 x V) < Ce®t and P, (JQ(VPt,Sf, VP f) %) < Cet.

If 20 = X? ~ p, then we have

S e gf (X1 =W xn(f)

where the convergence holds in probability. If furthermsgé}’) is bounded intd.? then the convergence holdsis.

Notice that the constants andnay be depend ofiand:! Notice also that\, is not supposed to be the first eigenvalue.

Proof. As in [4, theorem 4.2], we first prove the convergenceffsuch thatr(f) = 0. We haveE[Z; (V)] = u(V)e,
then,

K Zf (XMHV (X ) ] =E[Z:(f x V)?e 2 u(V) %] = A, + B

uGVt
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where

Ay = e (V)P lZ fQ(X#)VQ(X?)] = e M u(V)TIE [fA(Y)V (V)]
ueVs
and

Bi—e (V) E | AV FVX)
u, eV, u#v

= M(V)_l/0 E [JQ(VPt—sf7 VP—sf)(Ys)

From (14), we havém;_, ., A; = 0 and, since

Rl )@ = [ Y @ (FOw0) v (RO w0) .

a#b k>max(a,b)

} e A% ds

from (13) and asr(f) = 0, we get, foralls > 0 andx € E,
tilgloo J2(VPtfsf7 VPtfsf)(x) = 0.
And thus, by (14) and dominated convergence, we olitaipn , . -, B; = 0. Now for a generaf, we have
Zi(JV)e o = Wa(f) = Z ((f = w(D)V) e + 7 (f) (Ze(V)e ™ — W)

Then, thanks to the first part of the proof, the first term ofghm, in the right hand side, converges to @i The
second term converges to 0 in probability thanks proposiid. O

It is enough to considey = f x V to deduce theorem 1.4.

4. EXAMPLES

Here, we give two examples. The first one describes the cadkisifor a very smooth and an affine-. In the second
one, we illustrate the fact that we can use different eiggmeht. This example can model a parasite infection.

4.1. Size-structured population (equal mitosis) : Inhomogenews rate of division (proof of theorem 1.1). As say
in introduction, the cell size grows linearly and dividewitwo parts. Formally, with the notation of the example 2.1,

E=R,0=0,b=1, po=1 andF?(z,0) = F\?(x,0) = z/2.
First prove that our process is well defined:

Lemma 4.1(Non explosion) Letp > 1. If forall z € R%, r(z) < Co(1 + 2P), andz(1 + 2P) < +oo0, then our
process is well defined for all> 0. Moreover

E| sup Z,(1+42P)| < zo(1+ zP)eCT

s€[0,T]

Proof. As in the example 2.1, we can write
t
200)=20(5)+ [ [ £ Zuldo) ds
0 JE

t
oy Lwev, azr(xe n FOXI0) + F((L— )XI) — F(XI) plds, du, di, o)
0 UXR+X[O,1]
Using the same argument to [25, theorem 3.1], we introdyce inf{ ¢ > 0 | Z;(1 + zP) > n } and,

tATh
sup  Zy(142P) < Zp(1 4+ aP) —|—/ Z(pxP~1)ds
w€[0,tATy] 0

tATH
s L duevn s (1 67+ (1 6 = VX)) p(ds,du, L db)
0 UxRy x[0,1] :

tATh
< Zo(l—l—acp)—i—/ px sup  Zyu(l4 aP)ds.
0 u€E|

0,5ATy]

t
+// Liuev._i<r(xw )y p(ds, du,dl,d0)
0 JUXR4Lx[0,1]
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Then,
ot

Szo(1+:rp)+/

0

E| sup Z,(1+zP) ds.

wE[0,tAT,] w€[0,5ATy]

Cp.co E [ sup  Z,(1+aP)

So, by the Gronwall lemma,

E| sup Z(1+2P)| < z(1 +aP)e" < z(1 + aP)e T,

SE0,tAT,]

We deduce that,, tends a.s. to infinity, and our process is well defined. O

In order to have the many-to-one formula, we give a conditiorihe existence of eigenelement extracted to [46] (see
[45], for an asymmetric division cell, and [19], for a nondar motion between the division).

Theorem 4.2(Sufficient condition for the existence of eigenelemengssumedr, 7 such that:
Ve>0,0<r<r(z)<T
Then there is a unique eigeneleméky, V') and we have:
r<X<T

<V(z) <O(1+2")

C
1+ ak
whereC, c are two positive constants artd A\min > Amax

So, we get a many-to-one formula with an auxiliary proceseggted by

(as) 61(a) = 1) + (@) 202 (Faf2) = f(2).

But, even if this theorem gives us a many-to-one formula, @&dra smootherto have a convergence:

Theorem 4.3 (Sufficient condition for the existence of smooth eigenadata) Under the same assumption and if
furthermorer(x) is constant equal at., for a = large enough then

c(1+2%) <V(z) <C@l+aF)

whereC, ¢ are two constant and* = Af%

Proof of theorem 1.1Under the assumptions of theorem 1.1 and theoremV4(3/2)/V (z) is bounded. Thus, the
auxiliary process is ergodic and admits a unique invariawt bs can be checked using a suitable Foster-Lyapunov
function [13, 42] (for instancel () = 1 + ). Finally, we use theorem 1.4 to conclude. The explicit folaris an
application of the theorem of [44]. O

We can see that the assumptions of theorem 4.3 are strongpandcessary. Because-{fc) = ax + b (with a,b > 0

. /H2 _ . . .
anda or b positive) thenl/ (z) = x% + 1is an eigenvector and\/ﬁ the eigenvalue. Thus we deduce,

Proposition 4.4(Convergence of the empirical measure whén) = ax + b). For r(x) = x there exists a measure

such that ) i
tilglooﬁt ;Q(Xt)/gdﬂ

where the convergence holds in probability and for any comus functiory on E such thatve € E, |g(z)| <
C(1+ x).

It is a pity not to manage to obtaifi(z) = z, because in this case the invariant measure of the auxjiegess
possesses an explicit form [28]. So, we also obtain

1
lim Ny e ot = W/ —dr
t— 400 B VvV

and)\y = is the Malthus parameter (see remark 3.3).

W=
Remark 4.5(Value ofr for the Escherichia coli cell)We can find some estimate of the division rate in the liteeafar
the macroscopic model). An inverse problem is developgPind7] In[21], this method is applied with experimental
data extracted tg35]. It is also explain why our model is realistic for the Esclobia coli cell. More recently[20]
gives a nonparametric estimation of the division rate.
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4.2. Size-structured population (equal mitosis) : Homogeneousate of division (proof of theorem 1.2). Whenr
is constant, the process is easier to be studied and we casofiné result about the auxiliary process in [11, 37, 44].
It is the most homogeneous possible caseandp constant andX is linear. Furthermore, the generator conserves
the polynomial function. So, we can calculate the momemnspgsition 4.6). This knowledge gives us the Laplace
transformation of the equilibrium, and by inversion, thenfiala (3). Now, we give the moments, the proof of theorem
1.2 and some remarks about this result. Let Y | x; be a deterministic measure, we denotesythe process,
distributed asZ starting atu, indeed:

n

zr LN g
=1

whereZ*: are i.i.d. and distributed &8 starting with one point with size;.

Proposition 4.6 (Moments of the empirical measurdjor all m € N, and for allt > 0, we have,

+oo
Bz =E| 0| = [ g m'z; Zk, [T 5o )| wiaw)

uev) j=k.j#i

wheref; = 2r (1 —27%). In particular,

and

E(Z{(a®)]=e"E | Y (X))

%

ooy -2 2 4 2r a2
Tt —3rt/2
= — +2 — +— | + — + — || p(dx).
¢ /0 3r2 { <r2 r> ¢ <3r2 3r 2)] (dz)

_An ooy —rt/2 - 4 4 —rt/2 —rt/2 - 2
_3?(6 -3+ 2e )—|— izzlxi ;_3_7"6 +e sz

i=1
Proof. Itis an application of the moment estimate of the homoges@&@P windows size process [37, Theorem 8] and
theorem 1.3. O

proof of theorem 1.2We have to prove
V>0, W) (L(Z0),£(2))) <o —yl.

We recall again, the Wasserstein distance between two lawandms, with finite mean on a metric spa¢g, dr), is
defined by

W (my,ma) = (inf E[dr(X,Y)?])"/?
where the infimum runs over all coupling &f ~ m; andY ~ my (see for instance [49, 54]). Let us explain how
we build our coupling. Since this process is homogeneougamesee it as a process indexed by a tree [4]. For our
coupling, we take two process indexed by the same tree. br atbrd, like the time of branching do not depend of the
position, we can take the same for our two processes.7Let |, .n{1,2}" be the set according to represent cells
having lived at a certain moment. Léi, ).y, @ family of i. i d. exponential with mean/r, which will model the
lifetimes. We buildZ* and Z¥ by recurrenceYt € [0,dy), X? =z +t (resp.Y,? = y + ), a(u) = 0. Then for all
we T,foralk e {1,2}, a(uk) = a(u) + d, and

Vu e T,Vk € {1,...,v.}, Vt € [a(uk), a(uk) + dui), X1* = Xg(uk) +t — afuk)

2
(resp.Yy"* =Y 4y /2 + 1t — a(uk)). Finally,V; = {u € T | a(u) <t < a(u) +d,} and

Zp = 6xp and Z) = Y by

ueVy ueVy
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Then, we see that the trajectories are parallels betwedmrainehing events. At this timg,
Hence, we easily prove

wey, | Xi—Y;"|is constant.

DX =Y = e —yl.

ueVy

But, If my = 1370 /6, andmy = L 37 6, are two discrete measures, where N* andz;, y; € F, we have
the following matching representation [54]:

thp) (m17m2 P = 7'1€n£ ﬁ Z dF :rla y‘r(z

wheresS,, denote the symmetric group. Thus,
wi(zg,28) < e -y
and the others inequalities follow. O
Remark 4.7 (Convergence to equilibrium)Jsually, for the real Markov processes, if we have a bound of
W(L(X[Xo ~ p), L(X¢|Xo ~ 1)),

it is enough to take the invariant probability measure foto obtain a speed of convergence toward the equilibrium.
But here, it is not possible because the equilibrium is notfra®mass. But, we can try to estimate the distance between
Z* andZ™, such that
1 n
= — Z Oy, —> T.
n -
1=1

By the branching properties, we get, ,

n

zr LN 7

=1
whereZ;’* are independent and distributed &sstarting atd,,,. Thus,

ZI ern _.( —1)t1 n -
< r(m - ‘ VA ZJ/Z
W< BV E[N:n])—e w2 Wi 20)

Now, we want to take the infimum and obtain a result such that,
(1) Ztl Ztﬂn < —7-(m—1)tl - (1) z ZTi
wid, (e () £ (atemr) ) < 2 Wi, (£, £AZ7)

n
< efr(mfl)tl § |$ . 5E1|
n
=1

< 6_7'(m_1)tW|,| (6z; 7Tn)

But, these inequalities are false. It seems to be impostihiee the inequalities, of theorem 1.2, to obtain a bound to
the equilibrium. One explication is that this problem is #&mto the following: LetX, Y, Z three random variables
such thatX andY are independent. Is there a constansuch that,

X+Y WI(L(X),L(Z))+W(LY),L(Z))
w (e(55Y) o) <o : |

But it is enough to consideX, Y, Z are three Bernoulli variables with same parameter to se¢itia not possible. We
can only find

whereZ"* and Z;7 are independent for all # j. This inequalities suggests that we must consider the wiggnt
coupling, but it is not satisfactory too (see propositio8 ktter).

Remark 4.8(Generalisation of theorem 1.2)n the proof of theorem 1.2, we only need that, forralb,  andy,

Z|F (Xp.0) — EM (v, 0)] < |2~y
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where X, Y are generated byl and start respectively at, y andT" is exponentially distributed. For instance we can
considerX is a continuous lévy process and a sub-critical fragmeotati

k
Vo€ B, Vk e N*Vj <k, F{"(2,0) = 0%z, Y 0F <1 andvj e {1,....k}, 0 €0,1].

j=1

Proposition 4.9(Independent coupling)Lety = >, x; v = Y_.", y; be two discrete measures a@d# and Z* be
two independent processes starting:andv. We get,

H v 2 2
@ (4 % 2t 2 —rt
(16) vt >0, E [WH <—N#, _Nt”)] < A=) +O(te™™).
Proof. By matching and Cauchy-Schwarz formulas, we get,
v 2 r v v 2
E W(g) Z# Zt _E W(g) Nt ><Z£L NtMXZt
NNy )L L NENE T NY N
~ 2

1 u 'U2
(17) <E WZ Z|Xt_yt|

ueVy 'UEVt“

SEW] x E Z Z ReE Al

ueVy UthM

Z'= Y oxp and Z{ = > byp.

uevtu ’UGV;”

1 1 1 1 1177
E|lwrop| =E |~z |E|~| = E|—
N} N{ N{ NY nxm Ny

whereV, is the classical Yule process startingdt = 1. Then, sinceV, is is geometric with parameter” [4], we
get

where,

Then,

1 2t2 —2rt
vt >0, E [ } . ¢

NYNF| ™ nm (1—e—t)2°
In the other hand, we have, by proposition 4.6,

NI I Ay

ueVY veV}

=E[NYIE | > (X/)?| +EINFIE | Y- (V)| —2E| D Y| E| D> X¢

uthm uthy ’UEVVty uevtm
8 4 4
_ 37:271 <62rt — 3¢t 4 267"15/2) + (mu(x) + nl/(:L')) <;ert _ §€Tt/2) + (mu (xQ) + nv (;p2)) ert/2

2 (Bt = P+ = D (ona(a) + (o) + V(o)

72mn62” - 4dmn .,

16 2
16mn .. 20m

r2 r2 3r2 r2
+%(m,u(a:) +nv(x)) (2@7"5 — ge_"t/Q + 2) + (mp (2?) +nw (2%)) e7"2 = 2pu(z)v ().
Thus, we deduce (16). O

The coupling choice does not seem to be responsible of th@ptimality (the limit is deterministic). The error ressilt
maybe from the matching choice (17). But it is the only onehstiat we can estimate the distance. In spite of
everything, we have

Proposition 4.10(Wasserstein convergencé)nder the assumptions of theorem 1.2, we have

lim W(l)

t——+o0 I]

Zi \ . "
(E,w) = 0 in probability.
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Proof. Asz — 1 + z is a Lyapounov function for the auxiliary process, we have
. 7 . .
lim —(f) = =(f) in probability

for all function f such thatf(x) < C(1 + z). The convergence also holds in distribution. By the Pro&fdheorem,
in an other probability space, we have,

for all bounded function and fof (z) = «. This convergence is equivalently to a Wasserstein coever Thus, by a
classical argument of discreteness (Varadarajan thegea), twe get,

: W (Ze \ _
tilglooVVH (Nt,ﬂ>0a.s.

Hence, in our probability space we déh;_, W|(~|1) (Z;/N¢,7) = 0 in distribution. And like the convergence is
deterministic, we get the result. O

4.3. Explicit eigenelements for a parasite infection model.In theorem 1.3, we did not required thaf was the first
eigenvalue. So, it is possible to have different eigenefgmand auxiliary processes. Consider the following exampl
where some eigenelements are explicit. :

(18) Vo >0, Af(z) = axf'(z) + b(x) f" ()
with b smooth enough. We also consider thatfot k& and for all measurable and non-negative
(19) E[f(F{" (2,0))] = E[f(6}z)]
where
k
(20) > ©f=1and©}c0,1] as..
j=1

This process can model physical or biological polymersatt also models cell division with parasite infection [5]. We
easily finda is an eigenvalue and (x) = x is its eigenvector. So, for all measurable and non-neghtivetion f,

E [Z XPF(XE)| = E[f(Y)]e™ xo

ueVi

whereY is a Markov process, generated by,

k
Gy fz) = (ax n 2b(36)) F(z) + bx) f"(z) + r(z) ((Z pr(x) ZE[@?f(@fx)]) — f(x)) .

X -
keN j=1

Whenr is affine, we obtain a second formula. Assumés constant and(z) = cz +d, withe > 0andd(m —1) > a
(ord > 0 andc = 0). So,Vi(z) = %z + 1is an eigenvector associated to the eigenvalue= d(m — 1)
(= A1 > X\p = a). Thus, for all measurable and positive function,

u —dt __ f(Ut)
E Lez;tf(Xt )1 e =F {m] (too + 1)

c(m—1)

WhereT = m

andU is generated, for alf € D(A) and for allz > 0, by

r(z)(rx +m) <E[Zk21 pk(x)(T@ﬁx + 1)f(@§$)] B f(x)) .

Tr+1 T+ M

2b(z)T
Tr+1

G 1) = (a4 220 110) + 0(0) o) +

So, if we start with one cell infected hy, parasite the@(m — 1) is the Malthus parameter (see remark 3.3):

Proposition 4.11(Properties of the number of individual aliveYnder (18-20) and if*(x) = cz + d, with¢ > 0 and
d(m —1) > a (ord > 0andc = 0). N, verifies,

E[Nt] — ed(m—l)t + TZo (ed(m—l)t _ eu,t)-

And (N;e~4m=1t), .o and (N; /E[N¢]):>0 converge a.s..
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Proof. First, a same computation of lemma 4.1 gives that the prasegsll defined and that the weighted many-to-one

formula holds. So, as we get:
Ny = (Z 1+7‘le> -7 (Z Xg)

ueVy ueVy
the proposition follows. O

Consider the same parameter of [5], thali(is) = 0%z andp, = 1. X; = Z,(V) is the total number of parasite. Itis a
martingale, so we easily obtalfi X;] = ¢*'E[X] and X;e~*' converge a.s.. But since his brackepig’ (1 — e =),
we have a convergence a.s and.th This result is already know, because in this c43g,);> is a Feller diffusion.

5. MACROSCOPIC INTERPRETATION

To prove theorem 1.5, we need to use different topology6f¥). We note(M(E), d,) (resp.(M(E),d,,)) when it
is embedded with the vague (resp. weak) topology. Thesddgigs will be understood in the following sense:

lim _dy(X, Xoc) =0 4= ¥/ €Cp, lim E[f(X,)] = B[f(Xo0)

n—+oo
lim dy (X, Xoo) =0 = ¥f € Gy, lim_E[f(X,)] = E[f(Xo0)
where() is the set of continuous function that vanishes to zero airtfigity and C;, the set of bounded continuous

function. We also will us@®([0, T, E) andC([0, T'], E) be respectively the set of cad-lag function embedded weh th
Skorohod topology and the set of continuous function emedddth the uniform topology [8].

5.1. Law of large number (proof of theorem 1.5 ). In this section, we consider a sequerit) distributed asZ,

starting at some measure of probabilify/”’, and the following scalingX ™ = L7z We describe the behavior of
this renormalized process whergo to infinity.

Heuristically, to understand the behaviour of our proceBemwe start with a large population distributed by a de-

terministic measurey, we can approximaté&’y by the interesting sequence defined)éé/l) = %ZZZO dy, where
(Yx)r>1 is asequence i.i.d. distributed B§p. Thus, we get,

1 a1
xn — Zgz0) £ = Yi
; > 2
k=0
whereZ* are i.i.d. distributed a&, with Z, = dy,. S0, lety a bounded function, the law of large number gives:
: 1 & X Y]
> _ k — 1
V>0, lim ~ ZO: Z5(p) =E[ 20 (9)]

So by corollary 2.3, it implies thaX (™) converges to the solution of the following integro-diffetial equation:

) oz /Z%ﬁ )6 — () ps(dz) ds

t
(21) 1 (@) = po(p) + / ps(Ap) + /
k>0
In fact, this convergence is better. It is a processes cgewnee. There is that the theorem 1.5 said.
Lemma 5.1(Semi-martingale decompositianfor all ¢ € D(A?) andt > 0,
X (p) = X3(9) + M () + Vi ()
with
k
v / / Agla) +1() [ 3050 FP@.0) - plalp 49 X ) ds
0 kenj=1

anth(”)(ap) is a square-integrable and cadlag martingale with bracket

t k ?
% / 2X (M (Ag?) — 2X [ (ip x Agp) + / /OZ (Zw(F}’”(ac,o))so(x)) pi(x) dO X" (dz) ds

kEN* \ j=1
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Proof. Itis an application of the lemma 2.2 because the generat&®f, denoted byi.(™), verifies:

L Fy (1) = OE[Fp (X ) X5 = il _y = OE[F (2| 25" = npl|,_y = LEpu(np1)
whereF, (1) = F(u(y)). O
Lemma 5.2. Under the assumptions of theorem 135 is tight for the vague topology.

Proof. For this proof, we are inspired by [25]. According to [51]isttnough to show that, for any continuous bounded
function f, the sequence of laws of () (f) is tight in D([0, T],R). To prove this, we use the Aldous-Rebolledo
criterion. LetS be a dense subset 6f, that contained the function — 1. We have the following two points to be
verified: For all functionf € S,
1) forallt > 0, (X§">( f)) _ istight.
n>0
(2) foralln € N, ande,n > 0, there exist® such that for each stopping tim&s bounded byr’,
limsup sup IP’(|VS W) — Vsn)( Hl=>n <e.

n—+o0o 0<u<

limsup sup P<|<M<"><f>>sn+u — (MM (f)s,| =n) <e.

n—+oo 0<u<
The first point explain a pointwise tlghtness and the secaidtpcalled the Aldous condition, gives a "stochastic
continuity”. It look like the Arzela-Ascoli theorem. For pproblem we can také = D(A?). The first point gives,

1]l BLX™ (1))
k
B EINM] Cr i
nk '

SinceE[N, (")]/n converges , it is bounded, and for a larfgewe have the tightness. Lét> 0 andS, < T, <
(Sn +96) < T, we get

P(X™ ()] > k) <

E[[Va7(f) - Ve (f) = E {

/sn XA+ / / sz ~ f@)pe 40 X{V(dz) ds

keN j=1

< CrrrllAflloo + 1 Flloc] X (T = Sn)
Criry O

IN

In the other hand,

E[(M™(f))z, — (M (f))s,]]

= / " aX(Af) ~ 2X( X 4D +/ r() / 1 Zfﬁ(f(F?’“ (2,0)) — F(2))?pr, d0 X (dz) ds
n Sy E 0 keNj=1 ’
1

SE X CF,E,T,f X (Tn — Sh)

SCF,E,T,f(S

n.
Then, for a sufficiently smald the second point is verified and we conclude t(1Xt<"))n>1 is uniformly tight in

D([0, T, M(E)) for the vague topology. O
Proof of theorem 1.5First, by the Doob’s inequality, we get,
Cr i
sl [S“p W%)ﬂ < 2sup E[(M ™) (¢9))7] < —2E
@ t<T @ n

where the supremum is taken over all the functioa D(A?) such that|y||. < 1. Hence,
(22) lim supE {Sup ‘M(n)(@)t” =0.

n—-+4o0o @ t<T
But,

M () = X (o) - / / Ap(z) +r(z / ZZ@ ~ o(@)pi d6 XM (dr) ds.
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So, we have to prove that the limit QMt(n)(go)) is also
t k
Xile) = %ole) - [ Xu(ap)+ [ 2@ (Z e(F}") (2.0)) pi(x) d w(x)-) X (de) ds

Since this equation has a unique solution, it is enough teeatteat the convergence &f(“») isinD([0, T], (M(E), d.,)),
for each convergent subsequelfeg),cn-. If £ is compact, the vague topology and the weak topology coéeidd
we have the result. For the ca§e) of the assumptions, we can use the Méléard-Roelly critdB6h Let (u,), a
subsequence such th@ (“~)),, converges in distribution t& in D([0, 7], (M(E),d,)). We have to prove thaX is

in C([0,T], (M(E),w)) andX (1) converges toX (1). To prove it, as in [34, 40], we can use the following lemma:

Lemma 5.3(Analogous of the lemma 3.3 of [40]Under the same assumptions of theorem 1.5,

lim limsup E {sup Xt(n)(wk)} =0

k—+00 n—s+oco t<T
where(v ) >0 are defined at theorem 1.5.

This lemma explain that we can commute the limit, The progidstponed after. Hence, a same computation to [40]
give us the convergence ([0, T'], (M (E), w)) to our process. Thus, each subsequence converges to th@aqua
(21). There is a unique solution, and our sequence convardeq0, 7’|, (M(E),w)) to z (defined at the corollary
2.3) the unique solution about the equation (21).

But the lemma 5.3 is so strong, we can give another arguméhiut to use the Méléard-Roelly criterion [39]. As in
[40], we can prove thaX is continuous, fronj0, 7] to (M(E), d.,), because

3| =

sup sup X\ (f) - X{(f)] <
t20 f,||flleo <1

Then, letG be a Lipschitz function od'([0, 7], (M(E), d.,)), we get,

[E[GX")] - G(X)| <E

sup dy (Xt(u"') , Xt)
te[0,7)

<E l sup_d, (X", X" (x (1 - ww)]
te[0,T]

+E
te[0,T

+ sup dy (Xe(o x (1 =), X¢).
t€[0,T]

sup dy (Xt(“")(. 5 (1 — b)), Xe(. % (1 — zpk)))]

According the lemma 5.3, we obtain that

lim limsup E | sup do, (Xt(“"),Xt(“")(. (1 —wk))) ~0
k=400 n—+oo te[0,T]

and

lim limsup sup dw(Xe(. % (1 —1%)), X¢) = 0.
k—=+o0 n—s+too tel0,T]

Then, we havel,, (X" (. x (1 — ¥r)), Xe (. x (1= 13))) = do (X (x (1= 1)), Xo(. x (1 — ¥p))). Thus,

lim limsup E

k=400 n—s+oo t€[0,7]

sup di (X1 (03 (1= ), Xoo % (1 — wk>>>] =0

by contuinity ofv — v(1 — ¢) INnD(M(E),d,)). O
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proof of lemma 5.3we denote by:"* = ]E(Xt(”)(wk)), and we get:

k= E[Xén)(¢k)] +/0 [/ Ay (2 (Z Zpk / i (F 0)) — Yr(z )) X§")(dx)] ds

k>1 =1

t
< pg™ + C/ p 4 R ds
0

and by Gronwall's lemma, iteration, monotonicity and theibdedness of E[sup, . N;']:

t
"< Or(pg” +/ et ds)
0

n,|k/2] C\T (C1T)! (CT)*
I Cie™'" 4+ (s Z i + Cs A
1>|k/2]
where(C, Cy andCjy are three constants. Thus,

n,k
lim limsup p;"" = 0.
k—+400 n—4o00

Then, the following expression concludes the proof,

t
B sup X0l <5+ 0 [t tas 4B fsup 0 ().
t<T 0 t<T
0
Example 5.4 (Asymmetric mitosis) Let F\?) (z,0) = G~(0)z and F\*(z,0) = (1 — G~1(0))z. WhereG is

the cumulative distribution function of the random fractim [0, 1] associated with the branching event. It verifies
G(z) =1-G(1 — ). If n(t,.) is the density of;, then it is a weak solution solution of the following P.D.E. :

1
on(t, x) + Opn(t, z) + r(x) n(t,x) = QE[ér(x/G)n(t, x/0)].
Especially, we deduce that the following P.D.E. gets a weakisn:
+oo
on(t,x) + Opn(t,x) + r(x) n(t,x) = / bz, y)n(t,y)dy

whereb verify the following properties:

(23) b(z,y) > 0,b(x,y) =0 fory < x
+oo

(24) ; =2r(y)
+oo

2 =

(25) /0 yr(y)

(26) b(z,y) = b(y — z,y).

This equation was studied [45]. b(z,y) = %T(y)g(%), whereg is the density ofs. b has this form is equivalently at
verify the following points (23 - 26).
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5.2. Central Limit Theorem for size-structured population (pro of of theorem 1.6). Our aim in this section is to
describe the limit of the fluctuation process defined by:

vt € [0,T],¥n € N*, n{™ = n(X™ - X,).

For a better understanding, we only give the convergenckeaxample of the size-structured population (asymmetric
mitosis). The result of this section are easily generalestdy splitted diffusion, but we do not want to weigh down the
hypotheses and the notations.

Theorem 5.5(Central limit theorem for asymmetric size-structured glagon). Let7 > 0. Assummé") converges
and

E {sup/ 1 —|—xX(()")(dac)] < 400.
B

n>1

Then the sequendg™),,>, converges iD([0, 7], C~2) to the unique solution of the evolution equation: for all
fec®o,

@) nlf) = m(f) + / /0+°Of'<x>+r<x> ( / f(qx)+f((1—q)x)G(dq)—f(:v)) na(dz) ds + JI(f)

whereM (f) is a martingale and a Gaussian process with bracket:

m=[ [ e v [ - seype) X s
AndC??9 is the set of functio’?, such thatf, f’, "/ vanish to zero wheun vanishes to infinityC —2° is its dual space.
By lemma 5.1, we have the following representation:
v >0, g™ = nl™ 4 70 4 e

where
+oo 1
Vo € CynCL, V(e / / )( / w(qx)+<ﬁ((1q)$)0(dQ)<ﬁ($)) 0 (dz) ds

anth(") is a martingale with bracket:

+oo 1
(28) I (o / / / (p(gz) — p(2))2G(dg) X (d) ds.

The set of signed measure is not metrizable, so we can not tmaproof of theorem 1.5. As in [38, 52], we consider
n(™ like an operator in a Sobolev space, and use the Hilbertiapgsties of this space to have tightness (see for
instance [41] for tightness condition on Hilbert spacest s explain the Sobolev space that we will use. et 0,

j € N, andW?7? be the closure of the set of functigit to [0, +oc) into R with compact support with the following

norm:
2

J oo (k)
Jsp 2 [ (z)
9F Wi, 11, =Y | (pr) da
k=0"0
W3P is an Hilbert space and we consid&r—? the dual space. L&t??, the space of functiofi, C7, such that:

(k)
Vk <4, lim [(z) =0
z—+oo 1 4 P

and we embed it by the following norm:

. f()
7,P .
vfec a||f||0w—§:sup1+zp

Thus,C’? is a Banach space and we denotedy’* its dual space. These spaces verify the following contisuou
injection [38, 1]:
(29) CPP C WHPTL and WP c ¢IP,
Or equivalently, iff is smooth enough,
Iflwsser < Cllfllse and [|fllss < Cllf lwssro:

The first embedding/inequality prove that the tightnesg/in?+! implies the tightness i6’:?. The second is useful
for some upper bound:
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Lemma 5.6. If (ex),>1 is a basis o1, we get:
> e(@)? <C(1+2).
E>1
Proof. Let DY : f + f(x) and D} : f + f’(z) be an operator oW’ >1. We have, for allf € W21,
D2 fI < A+ a)[[fleos < CA+)||flwra < CA+a)| fllwen
But, by Parseval identity we get,

1Dy 20 = Y enl).

E>1
It ends the proof. O

We introduce the trac{((l\l(”)»t)
martingale. Then since

r(n) ; ()2 VD) ;
=0 of (Mt )tzo defined such tha(HMt I3y —20 — (M >>t)t is a local

[y —en = 3 M ()
k>1
where(ey),>1 is a basis of#/21, and by (28), we get,
- t —+00 1
@)=Y [ [ o) [ (entan) - en(o)Gld) X (da) ds.
k>170 Jo 0
Now, we first prove the tightness 6§(™),,>; then we prove theorem 5.5.
Lemma5.7. (n™),>1 is tight inD([0, T], W ~21).
Proof. By [33, theorem 2.2.2] and [33, theorem 2.3.2] (see alsolE88ma C]), it is enough to prove

(1) E [Supsgt HU?H%V%,J < +o00.
(2) Vn € N, Ve, p > 0, 36 such that for each stopping timés bounded by,

limsup sup P (”VSEZZru — VS(vZ)HW—Q,l > 77) <e
n—+4o0o 0<u<d

imsup sup P ((((ir)) = (1))
n—+o00 0<u<s Sn+u S.
These two points are the Aldous-Rebolledo criterion. Ferfitst point, we get,

SO () < / o / 23" e gr) +2 3 ed(z) Gldg) X (dx) ds

k>1 k>1 k>1

<cr xMa+a)

n

Zn)éa-

then, by the assumptions of theorem 5.5, we have the bourdsdnhus since,
132 [y = (V™ (e))”
E>1

we have by Doob inequality,

E sup HMt(n)“%/szl < C.
te0,t]
Then
51220 < SN2 —2a + IV e + 1|2 man < O+ [V |2
And

t
7y ae <€ [ sup e,
0 w<s
So by Gronwall lemma we obtain

E {Sup Ins")ll?/vzwl} <C
s<t
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Then for the second point, we have
)y S
n n n)|2
BV~ Vi 2] < B0 [ sup
n ‘57

< Cu.

So, by Markov-Chebyshev inequality, we get the Aldous ctimli A same proof gives(M (™)) also verify the Aldous
condition. Thus(n(™),,> is tight. O

Proof of theorem 5.5Let M a continuous Gaussian process with quadratic variatiorengior everyf e €20 (c
W21y andt € [0, 7] by:

Z/Ot /0+°° 2r(x)/01(f(qw) — f(2))*G(dg)X;(dz).

k>1
Since we have,

- C
VfeC?® sup |[M™(f)] < =L
te[o,T]| ( Vn

and(M™) converge in law tqA7;), we obtain, by [32, theorem 3.11 p.473], the convergendd 69 () to M (f).

By lemma 5.7 and (29) , the sequeneg™),>; is also tight inC~2°. Letn be an accumulation point. Since the
martingale part\/, 7 is almost surely continuous. Hence,solves (27). Using Gronwall’s inequality, we obtain
that this equation admits i6'([0, 7], C~2°) a unique solution for a given Gaussian white nalge We deduce the
announced result. O

6. OPEN PROBLEMS

In the literature, the auxiliary process is sometimes dadie hybrid process [6]. When the motion between the branch-
ing times is deterministic, indeedlis a vector fields, the auxiliary process is a piecewise detastic Markov process
(PDMP). These processes were introduced in the literatufgavis [14] as a general class of non diffusion stochastic
models. Some properties of the PDMPs are given in [15, 311, tBare is a lot of question about this process.

Speed of convergence for piecewise deterministic Markov pcesses:

In [11], we see that it is sometimes easier to have a speedwkogence for the embedded chain than for the contin-
uous process (the embedded chain is the continuous prockssed at the jump times). We have some link about the
invariant measure of the process and its embedded chai,i§l, but it would be interesting to find a link between
their long time behaviour. We can also research a critelikmthe Bakry-Emery criterion, to have a quantitative rafte
decay for the entropy. We can find a first approach in [9, 10%. dtso interesting to improve theorem 1.2 or proposition
4.9.

Regularity of the stationary distribution:

In [13], we can find some criterion for ergodicity. A naturalestion is the regularity of the invariant distribution
(support, density,...). For instance, is there Hormasd=rhdition? At the moment, there is some properties of PDMP
semi-group in [27, 53].

Other functional of the empirical measure:
this paper gives some result about the convergence of th&ieatpneasure)

dxu, but it do not capture other

ueVy
symmetric functional of the population, like the bigger cglthe more infected cell:
Xu
max f(X;"),
or the following functional:
t B(u)At
| S semas= [ e ds
0 wev, weT a(u)At

Interesting result for the maximum for branching Browniaotion are developed in [2].

Statistic:
A natural application of our limit theorem is the parametstireation. Working in the Kolmogorov equation and the
macroscopic process, [20] gives a non parametric estimafio.
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Eigenproblem:

The existence of eigenelement is fundamental to have ouy4ttaaone formula. As say in introduction, [19, 43] give
some condition to have it. The problem is that, in these gjtlee eigenvector are not lower bounded. Hence, it will
be interesting to find a theorem like the theorem 4.3.

Acknowledgment: | would like to express my gratitude to my Ph.D. supervisalD{Chafai for his encouragement,
and essential help on the form and the content of this papésoithank, Viet Chi Tran for pointing out some references
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MEV team and the LAMA team for their welcome.

REFERENCES

[1] R. A. Adams.Sobolev space#\cademic Press [A subsidiary of Harcourt Brace Jovanouvraiblishers], New York-London, 1975. Pure and
Applied Mathematics, Vol. 65.
[2] E. Aidékon, J. Berestycki, E. Brunet, and Z. Shi. The lshang brownian motion seen from its tip. april 2011.
[3] K. B. Athreya and P. E. NeyBranching processe®over Publications Inc., Mineola, NY, 2004. Reprint of th@&72 original [Springer, New
York; MR0373040].
[4] V. Bansaye, J.-F. Delmas, L. Marsalle, and V. Tran. Lithitorems for markov processes indexed by continuous tirtengaatson trees.
Annals of Applied Probability2011.
[5] V. Bansaye and V. Tran. Branching feller diffusion follaivision with parasite infectionALEA 2011.
[6] J. Bect.Processus de Markov diffusifs par morceaux : outils analygs et numérique®hD thesis, Universités Paris-sud XI, 2007.
[7] J. Bertoin. On small masses in self-similar fragmetagi Stochastic Process. Appl09(1):13-22, 2004.
[8] P. Billingsley. Convergence of probability measur&iley Series in Probability and Statistics: ProbabilitydaStatistics. John Wiley & Sons
Inc., New York, second edition, 1999. A Wiley-Interscierigeblication.
[9] P. Caputo, P. Dai Pra, and G. Posta. Convex entropy deieathe Bochner-Bakry-Emery approadhnn. Inst. Henri Poincaré Probab. Stat.
45(3):734-753, 2009.
[10] D. Chafai and A. Joulin. Intertwining and commutatiorelations for birth-death processes. preprint hal-0058456r
arXiv:1011.2331 [math.PR], 2010.
[11] D. Chafai, F. Malrieu, and K. Paroux. On the long timedebr of the TCP window size procesStochastic Processes and their Applications
(120):1518-1534, 2010.
[12] O. L. V. Costa. Stationary distributions for piecewideterministic Markov processes.Appl. Probah.27(1):60-73, 1990.
[13] O. L. V. Costa and F. Dufour. Stability and ergodicitymécewise deterministic Markov process88AM J. Control Optim.47(2):1053-1077,
2008.
[14] M. H. A. Davis. Piecewise-deterministic Markov proses: a general class of nondiffusion stochastic modelRoy. Statist. Soc. Ser, B
46(3):353-388, 1984. With discussion.
[15] M. H. A. Davis.Markov models and optimizatipmolume 49 ofMonographs on Statistics and Applied Probabili8@hapman & Hall, London,
1993.
[16] D. A. Dawson. Measure-valued Markov processeddnle d’Eté de Probabilités de Saint-Flour XXI—199a@lume 1541 of ecture Notes in
Math., pages 1-260. Springer, Berlin, 1993.
[17] P. Del Moral.Feynman-Kac formulaeProbability and its Applications (New York). Springer\&g, New York, 2004. Genealogical and inter-
acting particle systems with applications.
[18] J.-F. Delmas and L. Marsalle. Detection of cellularmapgin a Galton-Watson procesStochastic Process. Appl20(12):2495-2519, 2010.
[19] M. Doumic and P. Gabriel. Eigenelements of a generategggion-fragmentation modé¥lath. Models Methods Appl. Sc2010.
[20] M. Doumic, M. Hoffmann, P. Reynaud-Bouret, and V. Rieod. Nonparametric estimation of the division rate of @szructured population.
March 2011.
[21] M. Doumic, P. Maia, and J. Zubelli. On the calibrationaofize-structured population model from experimental.dtéa Biotheoretica2010.
DOI: 10.1007/s10441-010-9114-9.
[22] M. Doumic, B. Perthame, and J. P. Zubelli. Numericaliioh of an inverse problem in size-structured populatipnasnics.Inverse Problems
25(4):045008, 25, 2009.
[23] V. Dumas, F. Guillemin, and P. Robert. A Markovian arsidyof additive-increase multiplicative-decrease athams. Adv. in Appl. Probab.
34(1):85-111, 2002.
[24] J. Englander and A. Winter. Law of large numbers for aslaf superdiffusionsAnn. Inst. H. Poincaré Probab. Statis#2(2):171-185, 2006.
[25] N. Fournier and S. Méléard. A microscopic probabidisdiescription of a locally regulated population and maarpgcapproximationsAnn.
Appl. Probab, 14(4):1880-1919, 2004.
[26] G. L.Gong, M. P. Qian, and Z. X. Zhao. Killed diffusionsdatheir conditioningProbab. Theory Related Field80(1):151-167, 1988.
[27] D. Goreac. Viability, invariance and reachability fasntrolled piecewise deterministic markov processescit®a to gene networks. October
2010.
[28] F. Guillemin, P. Robert, and B. Zwart. AIMD algorithmadexponential functionalgAnn. Appl. Probah.14(1):90-117, 2004.
[29] S. C. Harris and D. Williams. Large deviations and nrayéles for a typed branching diffusion Astérisque(236):133—-154, 1996. Hommage
a P. A. Meyer et J. Neveu.
[30] N.Ikeda and S. Watanab8tochastic differential equations and diffusion procesgelume 24 ofNorth-Holland Mathematical LibraryNorth-
Holland Publishing Co., Amsterdam, second edition, 1989.
[31] M. JacobsenPoint process theory and applicatiarBrobability and its Applications. Birkhauser Boston |ri&oston, MA, 2006. Marked point
and piecewise deterministic processes.
[32] J. Jacod and A. N. Shiryaevimit theorems for stochastic processeslume 288 ofGrundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical ScienceSpringer-Verlag, Berlin, second edition, 2003.



LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSE 25

[33] A. Joffe and M. Métivier. Weak convergence of sequerafesemimartingales with applications to multitype bramchprocesse#dv. in Appl.
Probab, 18(1):20-65, 1986.

[34] B. Jourdain, S. Méléard, and W. A. Woyczynski. Lévy fligin evolutionary ecology. 2011.

[35] H. E. Kubitschek. Growth during the bacterial cell @,cAnalysis of cell size distributiorBiophysical Journgl1969.

[36] P. Laurencot and B. Perthame. Exponential decay forgtio/th-fragmentation/cell-division equatio@ommun. Math. S¢i.7(2):503-510,
2009.

[37] A. H. Ldpker and J. S. H. van Leeuwaarden. Transient nrasef the TCP window size process.Appl. Probah.45(1):163-175, 2008.

[38] S. Méléard. Convergence of the fluctuations for intengcdiffusions with jumps associated with Boltzmann egpreg. Stochastics Stochastics
Rep, 63(3-4):195-225, 1998.

[39] S. Méléard and S. Roelly. Sur les convergences étraiteague de processus a valeurs mes@eR. Acad. Sci. Paris Sér. | Maft817(8):785—
788, 1993.

[40] S. Méléard and V. Tran. Slow and fast scales for supegs® limits of age-structured populations. 2010.

[41] M. Métivier. Convergence faible et principe d'invamze pour des martingales a valeurs dans des espaces devSAbolelnst. H. Poincaré
Probab. Statist.20(4):329-348, 1984.

[42] S. P. Meyn and R. L. Tweedie. Stability of Markovian peeses. Ill. Foster-Lyapunov criteria for continuous-tiprecessesAdv. in Appl.
Probab, 25(3):518-548, 1993.

[43] P. Michel. Existence of a solution to the cell divisiogenproblemMath. Models Methods Appl. ScL6(7, suppl.):1125-1153, 2006.

[44] T. Ott, J. Kemperman, and M. Mathis. The stationary bévaof ideal tcp congestion avoidance. unpublished manpisavailable at
http://www.teunisott.com/, 1996.

[45] B. PerthameTransport equations in biologyrontiers in Mathematics. Birkhauser Verlag, Basel, 2007

[46] B. Perthame and L. Ryzhik. Exponential decay for thgiinantation or cell-division equatiod. Differential Equations210(1):155-177, 2005.

[47] B. Perthame and J. P. Zubelli. On the inverse problenafsize-structured population modkiverse Problems23(3):1037-1052, 2007.

[48] R. G. Pinsky.Positive harmonic functions and diffusiomolume 45 ofCambridge Studies in Advanced MathematiCambridge University
Press, Cambridge, 1995.

[49] S. T. RachevProbability metrics and the stability of stochastic modéidley Series in Probability and Mathematical Statistidspplied
Probability and Statistics. John Wiley & Sons Ltd., Chidbes1991.

[50] P. Robert.Stochastic networks and queueslume 52 ofApplications of Mathematics (New Yorl§pringer-Verlag, Berlin, french edition,
2003. Stochastic Modelling and Applied Probability.

[51] S. Roelly-Coppoletta. A criterion of convergence ofasere-valued processes: application to measure branptoogssesStochastics17(1-
2):43-65, 1986.

[52] V. Tran.Modeles particulaires stochastiques pour des problemégailition adaptative et pour I'approximation de solutictatistiquesPhD
thesis, Universités Paris X - Nanterre, 2006. availablettm/ftel.archives-ouvertes.fr/tel-00125100.

[53] M. Tyran-Kamiska. Substochastic semigroups and densities of pieceletseministic Markov processes. Math. Anal. Appl.357(2):385—
402, 2009.

[54] C. Villani. Topics in optimal transportatiognvolume 58 ofGraduate Studies in Mathematicd&merican Mathematical Society, Providence, R,
2003.



