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LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSE S

BERTRAND CLOEZ

ABSTRACT. We consider a particles system, where, the particles move independently according to a Markov process and
branching event occurs at an inhomogeneous time. The offspring locations and their number may depend on the position of
the mother. Our setting capture, for instance, the processes indexed by Galton-Watson tree. We first determine the asymptotic
behaviour of the empirical measure. The proof is based on an expression of the empirical measure using an auxiliary process.
This latter is not distributed as a one cell lineage, there isa biased phenomenon. Our model is a microscopic descriptionof a
random (discrete) population of individuals. We then obtain a large population approximation as weak solution of a growth-
fragmentation equation. We illustrate our result with two examples. The first one is a size-structured population modelwhich
describes the mitosis and the second one can model a parasiteinfection.
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1. INTRODUCTION AND STATEMENT OF RESULT

This work is devoted to a continuous time model for dividing cells already studied in [2, 4, 5, 7, 29]. This model comes
from biology and physic, we can interpret it as the size of cells or polymers. In [5], it is proved thatX can represent the
growth of some biological content of the cell (nutriments, parasites...). With biological reference, it is also explained
why the division time must depend of the motion. A long time behaviour for a similar discrete model is developed in
[18]. The proof is based on a many-to-one formula and an auxiliary process. In [24], we get a law of large number for
long time for a model with a continuum population. The proof is based on a spectral analysis and an auxiliary process.

Let us begin by describe our model. LetE be a Polish space. We start with one cell that have a weightx0 ∈ E. For
each cellu, its weightXu evolves as a càdlàg strong Markov process(Xt)t≥0, until it dies , an event such that

∫ β(u)

α(u)

r(Xu
s ) ds ∼ Exp(1)

whereα(u), β(u) are respectively the birth date and the death date of the cellu. r is a non-negative, measurable
and locally bounded function. The cellu is then replaced by a random numberK of offsprings, that follows a law
(pk(X

u
β(u)−))k∈{1,...,k̄}, on {1, . . . , k̄}, which depends of the mother’s weight. The states of the offspring are given
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by (F
(K)
j (Xu

β(u)−,Θ))1≤j≤K , whereΘ is a uniform variable on[0, 1], and,(F (k)
j )j≤k,k∈N a family of measurable

functions. The new born branches evolve then independentlyfrom each other. Letm =
∑

k≥1 kpk be the mean of
news offspring, we always assumem > 1 (supercrical case).

Before giving the main and general result, let us give an example. This models a size-structured population which
represents the cell mitosis. It is described as follows:X is a deterministic and linear function and, when a cell dies,it
divides in two equal parts. Formally,

(1) E = [0,+∞), ∀f ∈ C1, Af = f ′ and p2 = 1.

(2) ∀x ∈ E, ∀θ ∈ [0, 1], F
(2)
1 (x, θ) = F

(2)
2 (x, θ) =

x

2
.

In this case, one cell lineage is generated by:

∀f ∈ C1, ∀x ≥ 0, Gf = f ′(x) + r(x)
[

f
(x

2

)

− f(x)
]

.

This process have some application in computer science, it is sometimes called the TCP (Transmission Control Proto-
col) process. The emergence of TCP has spurred an enormous amount of research, we refer to [11, 23, 28, 37, 44] for
some result about approximation, long time behaviour or moments estimates. Our main result about this model is :

Theorem 1.1(Convergence of the empirical measure for a mitosis model ). Assume (1-2). If there existsr, r̄, such that
0 < r ≤ r ≤ r̄ andr(x) is constant equal tōr for a large enoughx, then there exists a probability measureπ such that

lim
t→+∞

1

Nt

∑

u∈Vt

g(Xu
t ) =

∫

g dπ

where the convergence holds in probability and for any continuous and bounded functiong. In particular for a constant
rate r, π has Lebesgue density:

(3) x 7→ 2r
∏+∞

n=1(1− 2−n)

+∞
∑

n=0

(

n
∏

k=1

2

1− 2k

)

e−2n+1rx.

The explicit formula (3) is not new [45, 46], but here, we havea convergence, in probability, of the empirical measure
instead a convergence for the mean measure . We give an analogue result forr affine (see proposition 4.4).

When the rater is constant, the process is simpler to study. For instance, we can calculate the moment (see proposition
4.6). We also obtain a speed of convergence forZt =

∑

u∈Vt
δXu

t
, the measure which describes the population. Let us

explain how we estimate the distance between two random measureM1,M2. We embed the space of random measure
with the Wasserstein distance [49, 54], defined by

W
(p)
d (L(M1),L(M2)) = (inf E[d(M1,M2)

p])1/p

where the infimum runs over all couples(M1,M2) such thatM1 ∼ L(M1) andM2 ∼ L(M2). d is a distance on the

measure andL(·) stands for the law of the random variable. We taked = W
(1)
|·| = W|·| is the Wasserstein distance on

(E, | · |). And we have:

Theorem 1.2(Quantitative bounds). Under the same assumptions of theorem 1.1 and ifr is constant, we get, for every
t ≥ 0,

W
(1)
W|·|

(

L
(

Zx
t

Nt

)

,L
(

Zy
t

Nt

))

≤ |x− y|e−rt

W
(1)
W|·|

(

L
(

Zx
t

E[Nt]

)

,L
(

Zy
t

E[Nt]

))

≤ |x− y|e−rt

whereZx (resp.Zy) is the empirical measure starting with one cell that have the weightx (resp.y) in [0,+∞) .

The proof is based on coupling and matching arguments. This result does not give a bound ofW (1)
W|·|

(L (Zx
t /E[Nt]) ,L (π))

orW (1)
W|·|

(L (Zx
t /Nt) ,L (π)), whereπ is the limit measure of the theorem 1.1 (see remark 4.7).

To obtain a limit theorem, we follow the approach of [4]. In this paper, the cell’s death rater is constant and the law of
offspring(pk)k≥1 do not depend to the mother. A many-to-one formula, which looks like the Wald formula, is proved:

(4)
1

E[Nt]
E

[

∑

u∈Vt

f(Xu
t )

]

= E[f(Yt)].
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WhereVt denote the set of the cell alive at timet, Nt = card(Vt) andY is an auxiliary process with infinitesimal
generator

(5) ∀f ∈ D(A), ∀x ∈ E, Gf(x) = Af(x) + rm
∑

k≥1

kpk
m

∫ 1

0





1

k

k
∑

j=1

f(F
(k)
j (x, θ)) − f(x)



 dθ

where(A,D(A)) is the generator ofX . This process evolves asX , until it jumps, at an exponential time with mean
1/rm. We observe thatr is not the jump rate of the auxiliary process. There is a biased phenomenon, already described
in [4, 29] and their references. We can interpret it by the fact that the faster the cells divide, the more descendants they
have. That is why a uniformly chosen individual has an accelerated rate of division. It is like the bus paradox already
observed for the Poisson process. A possible generalisation of (4) is a Feynman-Kac interpretation as in [17, 29]:

E

[

∑

u∈Vt

f(Xu
t )

]

= E

[

f(Yt)e
∫

t

0
r(Ys)(m(Ys)−1)ds

]

whereY is an auxiliary process starting atx0 and generated by (5). An other formula with Poisson measure is given
in [5] to prove criterion for extinction. However, it is difficult to exploit these formulas. In this paper, we follow an
alternative approach, which is inspired by [36, 45, 46]. In the expression (4),Y can be understood as a uniformly
chosen individual. The problem is, ifr is not constant, a uniformly chosen individual is not a Markov process. Our
solution is to choose this individual, with an appropriate weight which gives a Markov process. This weight is the
eigenvector of the following operator which is not a Markovian generator,

Ãf(x) = Af(x) + r(x)









∑

k≥0

k
∑

j=1

∫ 1

0

f(F
(k)
j (x, θ)) dθ pk(x)



 − f(x)



 .

Under some assumptions, which are given thereafter, we havethe following many-to-one formula:

(6)
1

E[
∑

u∈Vt
V (Xu

t )]
E

[

∑

u∈Vt

f(Xu
t )V (Xu

t )

]

= E[f(Yt)]

whereY is an auxiliary Markov process, starting atx0, generated by

(7) Gf(x) = Bf(x) + Λ(x)

[

∑

k∈N

∑k
j=1

∫ 1

0
V (F

(k)
j (x, θ))f(F

(k)
j (x, θ)) dθ pk(x)

∑

k∈N

∑k
j=1

∫ 1

0
V (F

(k)
j (x, θ)) dθ pk(x)

− f(x)

]

where

Bf(x) =
A(f × V )(x)− f(x)AV (x)

V (x)
=

2ΓA(f, V )(x)

V (x)
+Af(x)

andΓA is the “carré du champs”operator associated toA (see (12)) and

Λ(x) =





∑

k∈N

k
∑

j=1

∫ 1

0

V (F
(k)
j (x, θ)) dθ pk(x)



 × r(x)

V (x)
.

Let us further agree to callE a determining class if two probability measuresP,Q are identical whenever they agree on
E .

Theorem 1.3(Weighted many-to-one formula). If

• for all t ≥ 0, Nt < +∞ a.s.
• Ã have eigenelements(V, λ0) with a positiveV
• G generate a non explosive strong Markov process
• Db(G) = {f ∈ D(A) | ∀x ∈ E, | Gf(x)| ≤ 1} is a determining class.

then (6) holds for any non negative and measurable functionf .

This formula seems to be complicated, but for the mitosis model it reduces to:

∀f ∈ C1, ∀x ≥ 0, Gf = f ′(x) + r(x)
2V (x/2)

V (x)

[

f
(x

2

)

− f(x)
]

.

We also observe a biased phenomenon. But contrary to [4, 29],in general, the bias is present in the motion and the
branching mechanism. it is, to our knowledge, a novelty. We can interpret the bias in the division part as follow: When
a cell dies, we have more chance to choose the daughter that ismore appropriate forr (the bigger or the smaller for
example). For the bias in the motion, we can observe that ifA is a vector field,Af(x) = α(x).∇f(x), (i.e. X is
deterministic) thenB = A. But if A is the generator of a diffusion,B is also the generator of a diffusion but with
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biased drift. One interpretation is that we have more chanceto choose the cell with smaller or bigger noise. Notice also
that we do not assume thatλ0 is the first eigenvalue. So, it is possible to have some auxiliary processes. We can find
some result about existence of eigenelements in [19, 43] andtheirs references. A first application of this formula is that
if Y is ergodic, with invariant measureπ, we obtain

lim
t→+∞

1

E[
∑

u∈Vt
V (Xu

t )]
E

[

∑

u∈Vt

f(Xu
t )V (Xu

t )

]

=

∫

f dπ

for all bounded functionf . We improve this result:

Theorem 1.4(Convergence of the empirical measure for the long time). Assume the hypothesis of theorem 1.3 andY
is ergodic with invariant measureπ. Consider a real functiong and assume that:

• There existsC > 0, such that for allx ∈ E, g(x) ≤ CV (x).
• There existsα < λ0, such thatE[V 2(Yt)] ≤ Ceαt and

E





r(Ys)

V (Ys)

∫ 1

0

∑

a,b∈N∗,a 6=b

∑

k≥max(a,b)

pk(x)V (F (k)
a (x, θ))V (F

(k)
b (x, θ))



 ≤ Ceαt.

Then we get,

lim
t→+∞

e−λ0t
∑

u∈Vt

g(Xu
t ) =W

∫

g

V
dπ

whereW = limt→+∞ e−λ0tE[
∑

u∈Vt
V (Xu

t )] and the convergence holds in probability. If furthermore,E[V (Yt)] ≤
Ceαt and there existsc > 0 such that∀x ∈ E, V (x) ≥ c, then,

lim
t→+∞

1

Nt

∑

u∈Vt

g(Xu
t ) =

∫

g

V
dπ/

∫

1

V
dπ in probability

Forr constant, we haveV ≡ 1 is an eigenvector and this theorem generalises [4, theorem 1.1].

In the other hand, our model is a microscopic interpretation, the population is discrete. And, we are also interested
by the behaviour of our process in a large population. More precisely, we take a sequenceZ(n) distributed asZ, the
empirical measure, such that the starting distributionZ

(n)
0 grows to infinity withn. Consider the following renormalised

processX(n) = Z(n)/n, and we get:

Theorem 1.5(Law of large number for the large population). LetT > 0, assumer is bounded and one of the following
hypothesis:

(i) E is compact
(ii) E ⊂ R, |F (k)

j (x, θ)| ≤ |x|, and for allk ∈ N
∗, there existsψk : E → R such that:

∀x ∈ E, 1[k;+∞[(x) ≤ ψk(x) ≤ 1[k−1;+∞[(x) and∃C, Aψk ≤ Cψk−1

So, IfX(n)
0 converges in distribution to a deterministic measureX0 in M(E) (embedded with the weak topology), then

X(n) converges in distribution inD([0, T ],M(E)) to a deterministic measureX , such that, for allf ∈ D(A),

(8)
∫

E

f(x) Xt(dx) =

∫

E

f(x) X0(dx) +

∫ t

0

∫

E

Ãf(x) Xs(dx)ds

whereD([0, T ],M(E)) is the space of càd-làg functions embedded with the Skorohodtopology[8, 33]

The second assumption is verified by any operator upper bounded by a differential operator [34, 40]. We can observe
that the equation (8) is the Fokker-Planck (or Kolmogorov) equation. ThusX is equal to the mean measure ofZ
(e.g. f 7→ E[

∫

E
f(x) Zt(dx)]). This average phenomenon is predicable for two same reasons. The first is that after a

branching event, each cell evolves independently from eachother, there is not interaction or mutation. The second is
the linearity of the operator̃A. From theorem 1.3, one can see that, in large population, theempiral measure (not the
mean measure!) behaves as the auxiliary process. The proof is based on the Aldous-Rebolledo criterion [33, 51] and it
is inspired by [25, 40, 52]. In these papers, there are other models of structured populations.

In the mitosis case, the equation, (8) can be written by:

(9) ∂tn(t, x) + ∂xn(t, x) + r(x)n(t, x) = 4r(2x)n(t, 2x)
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This equation was studied in [36, 45, 46]. In these papers, the constant case and the non constant case are separated.
For a constantr, the authors prove the following exponential decay

‖n(t, .)e−rt −N‖L1 ≤ e−rtC,

whereN is the density of the stationary distribution. There implies a convergence in total variation. In contrast, we
also obtain the convergence to an equilibrium state for the size-structured population, and we have an exponential decay
in Wasserstein distance (see theorem 1.2). It is showed thatthis rate of convergence is optimal in [36]. For the non
constant case, we can also find an exponential decay,

‖(n(t, .)e−λ0t −N)V ‖L1 ≤ e−αtC,

proved by a perturbation method (α is explicit). This expression can be understood as a total variation decay for one
cell lineage. It is not easy to find a total variation bound by coupling method. Whenr is affine, we can find Wasserstein
bound in [11], for one cell lineage. In contrast, without speed of convergence, we find a convergence in the case where
r is affine (which means non bounded). Furthermore, for this model, we estimate the fluctuation between the empirical
measure and its approximation. It is defined by,

∀t ≥ 0, η
(n)
t =

√
n(X

(n)
t −Xt)

Theorem 1.6(Central limit Theorem for size-structured population). LetT > 0. Assume (1-2),r is bounded andη(n)0

converges and

E

[

sup
n≥1

∫ +∞

0

1 + x X
(n)
0 (dx)

]

< +∞.

Then the sequence(η(n))n≥1 converges inD([0, T ], C−2,0) to the unique solution of the following evolution equation:
For all f ∈ C2,0,

(10)
∫ +∞

0

f(x) ηt(dx) =

∫ +∞

0

f(x) η0(dx) +

∫ t

0

∫ +∞

0

f ′(x) + r(x)
(

2f
(x

2

)

− f(x)
)

ηs(dx) ds+ M̃(f)

whereM̃(f) is a martingale and a Gaussian process with bracket:

〈M̃(f)〉t =
∫ t

0

∫ +∞

0

2r(x)
(

f
(x

2

)

− f(x)
)2

Xs(dx) ds.

AndC2,0 is the set of functionC2, such thatf, f ′, f ′′ vanish to zero whenx vanishes to infinity.C−2,0 is its dual space.

Strucure of the paper: In the next section, we introduce some notations and give thegenerator of the measure-valued
process. In section 3, we focus our interest in the long time.We prove the theorem 1.3, others many-to-one formulas
and we deduce a general limit theorem. Theorem 1.4 is a consequence of Theorem 3.7 which gives similar result. Then
we give two instructive examples in section 4. The first one describes the cell mitosis, the proofs of theorem 1.1 and
theorem 1.2 are in this section. The second example can describe cell division with parasite infection. In this example,
we give different eigenelements. Finally the section 5 is devoted to the study of the large population. We prove the
theorem 1.5, and a central limit theorem for asymmetric celldivision which implies the theorem 1.6. The last section
is devoted to several open problem around our model.

2. NOTATION AND PRELIMINARIES RESULTS

When we start with one individual with a weightx0 ∈ E, we use the Ulam-Harris-Neveu notation [4, 16] to describe
the population. We denote by∅ the first cell.X∅ is its weight. Then every cell is indexed by a labelu = (u1, ..., um)
in the set:

U =

∞
⋃

m=0

(N∗)m

with the convention(N∗)0 = ∅. The cell indexed byu is the daughter of the cell indexed by(u1, ..., um−1) and the
mother of the cell indexed byuv = (u1, ..., um, v). v is between1 and the number of offspring. We introduce the
following measure to represent the population at timet:

Zx0
t =

∑

u∈Vt

δXu
t
.

We get that the processZx0 = (Zx0
t )t≥0 is a càd-làg measure-valued Markov process ofD(R+,M(E)), the space of

càd-làg functions with values inM(E), the set of finite measures onE. And, if there will be no ambiguity we shall
noteZ.
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Example 2.1(Branching diffusion). If X is a real diffusion, its generator is defined, for all smooth enough functionf ,
by

(11) Af(x) = b(x)f ′(x) +
σ2(x)

2
f ′′(x)

where we assume thatb andσ are such that there exists a unique process with this generator (see for instance the[30,
theorem 3.2 p.168]) andE = R or R∗

+. In this case, we can describe the population with a Poisson point measure
[25, 50]. This S.D.E. is defined, for allf : (t, x) 7→ ft(x) in C1,2

b , by

Zt(ft) =Z0(f0) +

∫ t

0

∫

E

(Afs(x) + ∂sfs(x)Zs(dx)ds +

∫ t

0

∑

u∈Vs

√
2σ(Xu

s )∂xfs(X
u
s )dB

u
s

+

∫ t

0

∫

U×R+×N∗×[0,1]

1{u∈Vs−,l≤r(Xu
s−)}





k
∑

j=1

fs(F
(k)
j (Xu

s−, θ))− fs(X
u
s−)



 ρ(ds, du, dl, dk, dθ)

where(Bu)u∈U is a family of independent standard Brownian motions andρ(ds, du, dl, dk, dθ) a Poisson point mea-
sure onR+ × U × R+ × N

∗ × [0, 1] of intensityρ̄(ds, du, dl, dk, dθ) = ds n(du) dl dpk dθ independent from the
Brownian Motion. We have denoted byn(du) the counting measure onU andds dl dθ are Lebesgue measures.

A necessary and sufficient condition for the existence of ourprocess is there is no explosion, indeedNt < +∞ a.s..
This hypothesis is always assumed. For instance, we can assume thatr is bounded bȳr. In this case, a coupling
argument impliesE[Nt] ≤ E[N0] e(k̄−1) r̄ T .

In the next sections, the notationCx means a constant which only depend tox, and the notationµ(1 + xp) means for
∫

1 + xpµ(dx).

2.1. Infinitesimal generator and martingale properties. Denoted by(A,D(A)) the generator ofX andL the gen-
erator ofZ. Forφ, ψ be two bounded functions belong to the domain of a generatorA such thatφ × ψ belong it too,
we recall that the associated "carré du champ" operator is defined by:

(12) ΓA(φ, ψ) =
1

2
(A(φ× ψ)− ψAφ− φAψ).

Lemma 2.2(Semi-martingale Decomposition). Letφ be a bounded function belong to the domain ofL. Then there is
a square-integrable and cádlág martingaleM such that:

∀t ≥ 0, Mt = φ(Zt)− φ(Z0)−
∫ t

0

Lφ(Zs) ds a.s.

and if furthermoreφ2 be belong to the domain ofL too, we get:

〈M〉t =
∫ t

0

2Γ(φ, φ)(Zs)ds.

So, for allϕ ∈ D(A) andt ≥ 0,
Zt(ϕ) = Z0(ϕ) +Mt(ϕ) + Vt(ϕ)

where

Vt(ϕ) =

∫ t

0

Aϕ(x) +

∫

E

r(x)

∫ 1

0

∑

k∈N∗





k
∑

j=1

ϕ
(

F
(k)
j (x, θ)

)



− ϕ(x) pk(x) dθ Zs(dx) ds

=

∫ t

0

Zs(Ãϕ) ds

and ifϕ2 ∈ D(A), the bracket ofMt(ϕ) equal to

∫ t

0

2Zs (2ΓA(ϕ, ϕ)) +

∫

E

r(x)

∫ 1

0

∑

k∈N∗





k
∑

j=1

ϕ(F
(k)
j (x, θ))− ϕ(x)





2

pk(x) dθ Zs(dx)ds

Proof. For the first part, it is an application of Dynkin and Itô formulas, see [32, lemma 3.68] for instance. For the
second part a computation gives the generator ofZ that is applied iniϕ andi2ϕ where:

iϕ : µ 7→ µ(ϕ) =

∫

ϕ dµ andi2ϕ : µ 7→ (µ(ϕ))2.
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So

Liϕ(µ) =

∫

E

Aϕ(x) + r(x)

∫ 1

0

∑

k∈N∗

k
∑

j=1

ϕ(F
(k)
j (x, θ)) − ϕ(x)pk(x) dθ µ(dx)

Li2ϕ(µ) = µ(Aϕ2) + 2µ(ϕ)µ(Aϕ) − 2µ(ϕ×Aϕ)

+

∫

E

r(x)

∫ 1

0

∑

k∈N∗

2µ(ϕ)×





k
∑

j=1

ϕ(F
(k)
j (x, θ)) − ϕ(x)



 +





k
∑

j=1

ϕ(F
(k)
j (x, θ)) − ϕ(x)





2

pk(x) dθ µ(dx)

�

We define the mean measurez, for all smooth enough functionϕ, by z(ϕ) = E(Z(ϕ)) = E[
∑

u∈Vt
ϕ(Xu

t )].

Corollary 2.3 (Evolution equation for the mean measure). If Db(Ã) = {f ∈ D(A) | ∀x ∈ E, | Ãf(x)| ≤ 1} is a
determining class, forϕ ∈ D(A), we get

zt(ϕ) = z0(ϕ) +

∫ t

0

zs(Aϕ) +

∫

E

r(x)
∑

k≥1

k
∑

j=1

∫ 1

0

ϕ
(

F
(k)
j (x, θ)

)

dθ pk(x) − ϕ(x) zs(dx) ds

and it is the unique solution of this integro-differential equation for a fixed initial condition.

Proof. We have just to prove the uniqueness. Consider two probability measures(µt)t and(νt)t solution of this P.D.E.
with same starting distributionµ0 = ν0. We consider the following norm defined by

‖m1 −m2‖ = sup
ϕ∈Db(Ã)

|m1(ϕ)−m2(ϕ)|

Then we consider one functionϕ in D(A) such that|Ãϕ| < 1, we have,

|µt(ϕ)− νt(ϕ)| =

∣

∣

∣

∣

∣

∣

∫ t

0

∫

E

Aϕ(x) + r(x)



E





∑

k≥1

pk(x)

k
∑

j=1

ϕ(F
(k)
j (x,Θ))



 − ϕ(x)



 (µs − νs)(dx)

∣

∣

∣

∣

∣

∣

≤ Cr̄,k̄

∫ t

0

‖µs − νs‖ds

Taking the supremum and using the Gronwall lemma we fill deduce that :

∀t ≥ 0, ‖µt − νt‖ = 0

and, asDb(Ã) is a determining class, uniqueness holds. �

Example 2.4(Branching diffusion). We return at the example 2.1, in this case the generator is more explicit. We give it
for the function defined byFϕ : µ→ F (

∫

ϕ dµ) = F (µ(ϕ)), withF ∈ C2
b (R,R) andϕ ∈ C2

b (E,R) (which is known
to be convergence determining[16]).

LFϕ(µ) =µ(Aϕ)F
′(µ(ϕ)) + µ(σϕ′2)F ′′(µ(ϕ))

+

∫

E

r(x)

∫ 1

0

∑

k∈N

F



µ(ϕ) +

k
∑

j=1

ϕ
(

F
(k)
j (x, θ)

)

− ϕ(x)



 − F (µ(ϕ)) pk(x) dθ µ(dx).

3. LONG TIME’ S BEHAVIOUR

We recall that

Ãϕ(x) = Aϕ(x) + r(x)





∑

k≥0

k
∑

j=1

∫ 1

0

ϕ(F
(k)
j (x, θ)) dθ pk(x)− ϕ(x)



 ,

and in all this section, we assumẽA have as eigenelements(V, λ0) such thatÃV = λ0V andV positive.
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3.1. Eigenelements and auxiliary process (Proof of theorem 1.3). Before the proof of theorem 1.3, we show that
Zt(V ) =

∑

u∈Vt
V (Xu

t ) have the same part thatNt =
∑

u∈Vt
1 for constantr.

Proposition 3.1 (Martingale properties). Under the assumptions of theorem 1.3, the process(Zt(V )e−λ0t)t≥0 is a
martingale thus it converges to a random variableW almost surely.

Proof. First, by corollary 2.3 we have:

zt(V ) = z0(V ) +

∫ t

0

zs(ÃV )ds

= z0(V ) + λ0

∫ t

0

zs(V )ds

and thenzt(V ) = z0(V )eλ0t. Then, denoteFt = σ{Zs | s ≤ t}. The Markov properties, applies onZ, gives

E[Zt+s(V )|Fs] = E[Z̃t(V )|Z̃0 = Zs]

whereZ̃ is distributed asZ. ThenE[Zt+s(V )|Fs] = Zs(V )eλ0t and thus

E[Zt+s(V )e−λ0(t+s)|Fs] = Zs(V )eλ0s

�

proof of theorem 1.3.Let γt : f 7→ zt(f × V )e−λ0tV (x0)
−1. We get, for allt ≥ 0,

∂tγt(f) = zt(Ã(f V ))e−λ0tV (x0)
−1 − zt(f V )λ0e

−λ0tV (x0)
−1 = e−λ0tV (x)−1

[

zt(Ã(f V ))− zt(f × ÃV )
]

and thus,

eλ0t∂tγt(f) =

∫

E

V (x)

V (x0)
Bf(x) +

V (x)

V (x0)
Λ(x)

[

∑

k∈N

∑k
j=1

∫ 1

0 V (F
(k)
j (x, θ)f(F

(k)
j (x, θ)) dθ pk(x)

∑

k∈N

∑k
j=1

∫ 1

0
V (F

(k)
j (x, θ)) dθ pk(x)

− f(x)

]

zt(dx).

Finally, ∂tγt(f) = γt(Gf). Now, by Dynkin formula, the law of the auxiliary process(f 7→ E[f(Yt)]) verifies the
same equation. The uniqueness, proved at corollary 2.3, gives the result. �

Remark 3.2 (Schrödinger operator andh-transform). In introduction, we said that̃A is not a Markov generator. We
can rewrite, for allϕ smooth enough,

Ãϕ = Gϕ+ r(m − 1)ϕ

whereG is the Markov generator defined at (5) andr(m− 1) is a potential.Ã is called a Schrödinger operator, and its
study is connected to the Feynman-Kac formula[17]. Thus, the key point of our weighted many-to-one formula is ah-
transform (Girsanov type transformation) of the Feynman-Kac semigroup as in[26, 48] ( here,V e−λ0t is a space-time
harmonic function).

Remark 3.3(Malthus parameter). Since, Thomas Malthus (1766-1834) were introduced the simpler model to describe
the population:

∂tNt = birth − death= bNt − dNt = λ0Nt =⇒ Nt = eλ0t,

in biology and genetic population study,λ0 is sometimes called the Malthus parameter.

Example 3.4(Galton-Watson tree). If r andp are constant,V ≡ 1 is an eigenvector for the eigenvalueλ0 = r(m−1).
So,Zt(V ) = Nt, and the population grows exponentially. This result is already know forNt. It is a continuous
branching process[3, 4].

3.2. Many-to-one formulas. In order to compute our limit theorem, we need to control the second moment. As in [4],
we begin by describe the population over whole the tree. Thenwe give a many-to-one formula for forks. LetT be the
random set according to represent cells having lived at a certain moment. It is defined by

T = {u ∈ U | ∃t > 0, Xu
t ∈ Vt}.

In the following, the propositions 3.5 and 3.6 are respectively the generalisation of [4, proposition 3.5] and [4, proposi-
tion 3.9].
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Proposition 3.5 (Many-to-one formula over the whole tree). Under the assumptions of theorem 1.3, for any non-
negative measurable functionf : E × [0,+∞) → R we get,

E

[

∑

u∈T
f
(

Xu
β(u)−, β(u)

)

]

= V (x0)

∫ +∞

0

E

[

f(Ys, s)
r(Ys)

V (Ys)

]

eλ0sds

Proof. First we have, for allu ∈ U ,

E

[

1{u∈T }

∫ β(u)

α(u)

f(Xu
s , s)r(X

u
s )ds

]

= E

[

1{u∈T }f
(

Xu
β(u)−, β(u)

)]

because

E

[

1{u∈T }

∫ β(u)

α(u)

f(Xu
s , s)r(X

u
s )ds

]

= E

[

1{u∈T }

∫ +∞

0

∫ τ

α(u)

f(Xu
s , s)r(X

u
s )ds r(X

u
τ )e

−
∫

τ

α(u)
r(Xu

t )dt
dτ

]

= E

[

1{u∈T }

∫ +∞

α(u)

∫ +∞

s

r(Xu
τ )e

−
∫

τ

α(u)
r(Xu

t )dt dτ f(Xu
s , s)r(X

u
s )ds

]

= E

[

1{u∈T }

∫ +∞

α(u)

e−
∫

s

α(u)
r(Xu

t )dtf(Xu
s , s)r(X

u
s )ds

]

= E

[

1{u∈T }f
(

Xu
β(u)−, β(u)

)]

thus,

E

[

1{u∈T }f
(

Xu
β(u)−, β(u)

)]

= E

[∫ +∞

0

1{u∈Vs}f(X
u
s )r(X

u
s )ds

]

and then,

E

[

∑

u∈T
f
(

Xu
β(u)−, β(u)

)

]

=

∫ +∞

0

E

[

∑

u∈Vs

f(Xu
s , s)r(X

u
s )

]

ds

=

∫ +∞

0

V (x0)E

[

f(Ys, s)
r(Ys)

V (Ys)

]

eλ0sds.

�

If f has the formf(x, s) = g(x, s)V (x), then we have:

E

[

∑

u∈T
g
(

Xu
β(u)−, β(u)

)

V
(

Xu
β(u)−

)

]

=

∫ +∞

0

E [g(Ys, s)r(Ys)]× E [Zs(V )] ds.

This equality means that adding the contributions over all the individuals corresponds to integrating the contribution
of the auxiliary process over the average number of living individuals at times. Let (Pt)t≥0 be the semigroup of the
auxiliary process,

Ptf(x) = E[f(Yt) | Y0 = x]

Proposition 3.6 (Many-to-one formula for forks). Under the assumptions of theorem 1.3, for all non-negative and
measurable functionf, g we get

E





∑

u,v∈Vt,u6=v

f(Xu
t )V (Xu

t )g(X
v
t )V (Xv

t )



 = e2λ0tV (x0)

∫ t

0

E

[

J2(V Pt−sf, V Pt−sg)(Ys)
r(Ys)

V (Ys)

]

e−λ0sds

= E[Zt(V )]2
∫ t

0

1

E[Zs(V )]
E

[

J2(V Pt−sf, V Pt−sg)(Ys)
r(Ys)

V (Ys)

]

ds

whereJ2 is defined by

J2(ϕ, ψ)(x) =

∫ 1

0

∑

a 6=b

∑

k≥max(a,b)

pk(x) ϕ
(

F (k)
a (x, θ)

)

ψ
(

F (k)
a (x, θ)

)

dθ

J2 represent the starting distributions of the offspring picked at random.
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Proof. Letu, v ∈ Vt such thatu 6= v, there exist(w, ũ, ṽ) ∈ U3 anda, b ∈ N
∗, a 6= b such thatu = waũ andv = wbṽ.

w is the most recent common ancestor. Thus,

E





∑

u,v∈Vt,u6=v

f(Xu
t )V (Xu

t )g(X
v
t )V (Xv

t )





=
∑

w∈U

∑

a 6=b

∑

ũ,ṽ∈U
E
[

1{waũ∈Vt}f(X
waũ
t )V (Xwaũ

t )1{waṽ∈Vt}g(X
waṽ
t )V (Xwaṽ

t )
]

We recall thatFt = σ{Zs | s ≤ t} and, by the conditional independence between descendants,we get,

E





∑

u,v∈Vt,u6=v

f(Xu
t )V (Xu

t )g(X
v
t )V (Xv

t )





=
∑

w∈U

∑

a 6=b

E

[

E

[

∑

ũ∈U
1{waũ∈Vt}f(X

u
t )V (Xu

t )|Fβ(w)

]

E

[

∑

ṽ∈U
1{waṽ∈Vt}g(X

v
t )V (Xv

t )|Fβ(w)

]]

Therefore, asβ(w) is a stopping time, using the strong Markov property and theorem 1.3, we get,

E





∑

u,v∈Vt,u6=v

f(Xu
t )V (Xu

t )g(X
v
t )V (Xv

t )





=
∑

w∈U

∑

a 6=b

E

[

1{wa,wb∈T , t≥β(w)}Pt−β(w)f(X
wa
β(w))V (Xwa

β(w)) Pt−β(w)g(X
wb
β(w))V (Xwb

β(w))e
2λ0(t−β(w))

]

=E

[

∑

w∈T
1{t≥β(w)}J2(V Pt−β(w)f, V Pt−β(w)g)(X

w
β(w)−) e

2λ0(t−β(w))

]

=e2λ0tV (x0)

∫ t

0

E

[

J2(V Pt−sf, V Pt−sg)(Ys)
r(Ys)

V (Ys)

]

e−λ0sds.

�

3.3. Limit theorem (proof of theorem 1.4). Here we give the main limit theorem which implies the theorem1.4.

Theorem 3.7(General Condition for the convergence of the empirical measure). We assume that the hypothesis of
theorem 1.3 are verified. Letf be a real measurable function defined onE andµ a probability measure such that there
exists a probability measureπ, and two constantsα < λ0 andC > 0 such that

(13) π(|f |) < +∞ and ∀x ∈ E lim
t→+∞

Ptf(x) = π(f)

(14) µ(V ) < +∞, µPt(f
2 × V ) ≤ Ceαt and µPs

(

J2(V Pt−sf, V Pt−sf)
r

V

)

≤ Ceαt.

If x0 = X∅
0 ∼ µ, then we have

lim
t→+∞

1

E[Zt(V )]

∑

u∈Vt

f(Xu
t )V (Xu

t ) =W × π(f)

where the convergence holds in probability. If furthermoreZt(V ) is bounded intoL2 then the convergence holds inL2.

Notice that the constants andπ may be depend onf andµ! Notice also thatλ0 is not supposed to be the first eigenvalue.

Proof. As in [4, theorem 4.2], we first prove the convergence forf such thatπ(f) = 0. We haveE[Zt(V )] = µ(V )eλt,
then,

E





(

1

E[Zt(V )]

∑

u∈Vt

f(Xu
t )V (Xu

t )

)2


 = E
[

Zt(f × V )2e−2λ0tµ(V )−2
]

= At +Bt
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where

At = e−2λ0tµ(V )−2
E

[

∑

u∈Vt

f2(Xu
t )V

2(Xu
t )

]

= e−λ0tµ(V )−1
E
[

f2(Yt)V (Yt)
]

and

Bt = e−2λ0tµ(V )−2
E





∑

u,v∈Vt, u6=v

f(Xu
t )V (Xu

t )f(X
v
t )V (Xv

t )





= µ(V )−1

∫ t

0

E

[

J2(V Pt−sf, V Pt−sf)(Ys)
r(Ys)

V (Ys)

]

e−λ0sds

From (14), we havelimt→+∞ At = 0 and, since

J2(ϕ, ψ)(x) =

∫ 1

0

∑

a 6=b

∑

k≥max(a,b)

pk(x)ϕ
(

F (k)
a (x, θ)

)

ψ
(

F (k)
a (x, θ)

)

dθ,

from (13) and asπ(f) = 0, we get, for alls ≥ 0 andx ∈ E,

lim
t→+∞

J2(V Pt−sf, V Pt−sf)(x) = 0.

And thus, by (14) and dominated convergence, we obtainlimt→+∞Bt = 0. Now for a generalf , we have

Zt(fV )e−λ0t −Wπ(f) = Zt ((f − π(f))V ) e−λ0t + π(f)
(

Zt(V )e−λ0 −W
)

Then, thanks to the first part of the proof, the first term of thesum, in the right hand side, converges to 0 inL2. The
second term converges to 0 in probability thanks proposition 3.1. �

It is enough to considerg = f × V to deduce theorem 1.4.

4. EXAMPLES

Here, we give two examples. The first one describes the cell mitosis for a very smoothr and an affiner. In the second
one, we illustrate the fact that we can use different eigenelement. This example can model a parasite infection.

4.1. Size-structured population (equal mitosis) : Inhomogeneous rate of division (proof of theorem 1.1).As say
in introduction, the cell size grows linearly and divides into two parts. Formally, with the notation of the example 2.1,

E = R
∗
+, σ = 0, b = 1, p2 = 1 andF (2)

1 (x, θ) = F
(2)
2 (x, θ) = x/2.

First prove that our process is well defined:

Lemma 4.1(Non explosion). Let p ≥ 1. If for all x ∈ R
∗
+, r(x) ≤ C0(1 + xp), andz0(1 + xp) < +∞, then our

process is well defined for allt ≥ 0. Moreover

E

[

sup
s∈[0,T ]

Zs(1 + xp)

]

≤ z0(1 + xp)eCpT

Proof. As in the example 2.1, we can write

Zt(f) = Z0(f) +

∫ t

0

∫

E

f ′(x) Zs(dx) ds

+

∫ t

0

∫

U×R+×[0,1]

1{u∈Vs−,l≤r(Xu
s−)}f(θX

u
s−) + f((1− θ)Xu

s−)− f(Xu
s−) ρ(ds, du, dl, dθ)

Using the same argument to [25, theorem 3.1], we introduceτn = inf{ t ≥ 0 | Zt(1 + xp) > n } and,

sup
u∈[0,t∧τn]

Zu(1 + xp) ≤ Z0(1 + xp) +

∫ t∧τn

0

Zs(px
p−1)ds

+

∫ t∧τn

0

∫

U×R+×[0,1]

1u∈Vs−,l≤r(Xu
s−)(1 + (θp + (1 − θ)p − 1)(Xu

s−)
p) ρ(ds, du, dl, dθ)

≤ Z0(1 + xp) +

∫ t∧τn

0

p× sup
u∈[0,s∧τn]

Zu(1 + xp)ds.

+

∫ t

0

∫

U×R+×[0,1]

1{u∈Vs−,l≤r(Xu
s−)} ρ(ds, du, dl, dθ)
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Then,

E

[

sup
u∈[0,t∧τn]

Zu(1 + xp)

]

≤ z0(1 + xp) +

∫ t

0

Cp,C0 E

[

sup
u∈[0,s∧τn]

Zu(1 + xp)

]

ds.

So, by the Gronwall lemma,

E

[

sup
s∈[0,t∧τn]

Zs(1 + xp)

]

≤ z0(1 + xp)eCpt ≤ z0(1 + xp)eCpT .

We deduce thatτn tends a.s. to infinity, and our process is well defined. �

In order to have the many-to-one formula, we give a conditionfor the existence of eigenelement extracted to [46] (see
[45], for an asymmetric division cell, and [19], for a non linear motion between the division).

Theorem 4.2(Sufficient condition for the existence of eigenelements). Assume∃r, r̄ such that:

∀x ≥ 0, 0 < r ≤ r(x) ≤ r̄

Then there is a unique eigenelement(λ0, V ) and we have:

r ≤ λ0 ≤ r̄
c

1 + xk
≤ V (x) ≤ C(1 + xk)

whereC, c are two positive constants and2kλmin > λmax

So, we get a many-to-one formula with an auxiliary process generated by

(15) Gf(x) = f ′(x) + r(x)
2V (x/2)

V (x)
(f(x/2)− f(x)) .

But , even if this theorem gives us a many-to-one formula, we need a smootherr to have a convergence:

Theorem 4.3 (Sufficient condition for the existence of smooth eigenelements). Under the same assumption and if
furthermorer(x) is constant equal atr∞ for a x large enough then

c(1 + xk) ≤ V (x) ≤ C(1 + xk)

whereC, c are two constant and2k = 2r∞
λ0+r∞

.

Proof of theorem 1.1.Under the assumptions of theorem 1.1 and theorem 4.3,V (x/2)/V (x) is bounded. Thus, the
auxiliary process is ergodic and admits a unique invariant law, as can be checked using a suitable Foster-Lyapunov
function [13, 42] (for instance,V (x) = 1 + x). Finally, we use theorem 1.4 to conclude. The explicit formula is an
application of the theorem of [44]. �

We can see that the assumptions of theorem 4.3 are strong, andnot necessary. Because ifr(x) = ax+ b (with a, b ≥ 0

anda or b positive) thenV (x) = x
√
b2+4a−b

2 + 1 is an eigenvector and 2a√
b2+4a−b

the eigenvalue. Thus we deduce,

Proposition 4.4(Convergence of the empirical measure whenr(x) = ax+ b). For r(x) = x there exists a measureπ
such that

lim
t→+∞

1

Nt

∑

u∈Vt

g(Xu
t ) =

∫

g dπ

where the convergence holds in probability and for any continuous functiong on E such that∀x ∈ E, |g(x)| ≤
C(1 + x).

It is a pity not to manage to obtainΛ(x) = x, because in this case the invariant measure of the auxiliaryprocess
possesses an explicit form [28]. So, we also obtain

lim
t→+∞

Nt e
−λ0t =W

∫

E

1

V
dπ

andλ0 = 2a√
b2+4a−b

is the Malthus parameter (see remark 3.3).

Remark 4.5(Value ofr for the Escherichia coli cell). We can find some estimate of the division rate in the literature (for
the macroscopic model). An inverse problem is developed in[22, 47]. In [21], this method is applied with experimental
data extracted to[35]. It is also explain why our model is realistic for the Escherichia coli cell. More recently,[20]
gives a nonparametric estimation of the division rate.
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4.2. Size-structured population (equal mitosis) : Homogeneousrate of division (proof of theorem 1.2). Whenr
is constant, the process is easier to be studied and we can findsome result about the auxiliary process in [11, 37, 44].
It is the most homogeneous possible case.r andp constant andX is linear. Furthermore, the generator conserves
the polynomial function. So, we can calculate the moments (proposition 4.6). This knowledge gives us the Laplace
transformation of the equilibrium, and by inversion, the formula (3). Now, we give the moments, the proof of theorem
1.2 and some remarks about this result. Letµ =

∑n
i=1 xi be a deterministic measure, we denote byZµ the process,

distributed asZ starting atµ, indeed:

Zµ d
=

n
∑

i=1

Zxi

whereZxi are i.i.d. and distributed asZ starting with one point with sizexi.

Proposition 4.6(Moments of the empirical measure). For all m ∈ N, and for allt ≥ 0, we have,

E[Zµ
t (x

m)] = E





∑

u∈V µ
t

(Xu
t )

m



 =

∫ +∞

0

ert





m!
∏m

i=1 θi
+m!

m
∑

i=1





i
∑

k=0

xk

k!

m
∏

j=k,j 6=i

1

θj − θi



 e−θit



 µ(dx)

whereθi = 2r
(

1− 2−i
)

. In particular,

E[Zµ
t (x)] = ertE





∑

u∈V µ
t

Xu
t



 =

∫ +∞

0

1

r
−
(

1

r
− x

)

e−rt µ(dx)

=
n

r
(ert − 1) +

n
∑

i=1

xi

and

E[Zµ
t (x

2)] = ertE





∑

u∈V µ
t

(Xu
t )

2





= ert
∫ +∞

0

4

3r2
+ 2

[

e−rt

(−2

r2
+

2x

r

)

+ e−3rt/2

(

4

3r2
− 2x

3r
+
x2

2

)]

µ(dx).

=
4n

3r2

(

ert − 3 + 2e−rt/2
)

+

(

n
∑

i=1

xi

)

(

4

r
− 4

3r
e−rt/2

)

+ e−rt/2
n
∑

i=1

x2i .

Proof. It is an application of the moment estimate of the homogeneous TCP windows size process [37, Theorem 8] and
theorem 1.3. �

proof of theorem 1.2.We have to prove

∀t ≥ 0, W
(1)
W|·|

(L(Zx
t ),L(Zy

t )) ≤ |x− y|.

We recall again, the Wasserstein distance between two laws,m1 andm2, with finite mean on a metric space(F, dF ), is
defined by

W
(p)
dF

(m1,m2) = (inf E[dF (X,Y )p])
1/p

where the infimum runs over all coupling ofX ∼ m1 andY ∼ m2 (see for instance [49, 54]). Let us explain how
we build our coupling. Since this process is homogeneous, wecan see it as a process indexed by a tree [4]. For our
coupling, we take two process indexed by the same tree. In other word, like the time of branching do not depend of the
position, we can take the same for our two processes. LetT =

⋃

n∈N
{1, 2}n be the set according to represent cells

having lived at a certain moment. Let(du)u∈U a family of i.i.d. exponential with mean1/r, which will model the
lifetimes. We buildZx andZy by recurrence.∀t ∈ [0, d∅), X

∅
t = x + t (resp.Y ∅

t = y + t ), α(u) = 0. Then for all
u ∈ T , for all k ∈ {1, 2}, α(uk) = α(u) + du and

∀u ∈ T , ∀k ∈ {1, . . . , νu}, ∀t ∈ [α(uk), α(uk) + duk), X
uk
t =

1

2
Xu

α(uk)− + t− α(uk)

( resp.Y uk
t = Y u

α(uk)−/2 + t− α(uk)). Finally,Vt = {u ∈ T | α(u) ≤ t < α(u) + du} and

Zx
t =

∑

u∈Vt

δXu
t

and Zy
t =

∑

u∈Vt

δY u
t
.
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Then, we see that the trajectories are parallels between thebranching events. At this time,
∑

u∈Vt
|Xu

t −Y u
t | is constant.

Hence, we easily prove
∑

u∈Vt

|Xu
t − Y u

t | = |x− y|.

But, If m1 = 1
n

∑n
k=0 δxi

andm2 = 1
n

∑n
k=0 δyi

are two discrete measures, wheren ∈ N
∗ andxi, yi ∈ F , we have

the following matching representation [54]:

W
(p)
dF

(m1,m2)
p = inf

τ∈Sn

1

n

n
∑

i=1

dF (xi, yτ(i))
p

whereSn denote the symmetric group. Thus,

W
(1)
|·| (Zx

t , Z
y
t ) ≤ |x− y|

and the others inequalities follow. �

Remark 4.7(Convergence to equilibrium). Usually, for the real Markov processes, if we have a bound of

W (L(Xt|X0 ∼ µ),L(Xt|X0 ∼ ν)),

it is enough to take the invariant probability measure forµ to obtain a speed of convergence toward the equilibrium.
But here, it is not possible because the equilibrium is not a Dirac mass. But, we can try to estimate the distance between
Zx andZπn , such that

1

n
πn =

1

n

n
∑

i=1

δxi
→ π.

By the branching properties, we get, ,

Zπn

t
d
=

n
∑

i=1

Zxi

t

whereZxi

t are independent and distributed asZ starting atδxi
. Thus,

W|·|

(

Zx
t

E[Nx
t ]
,
Zπn

t

E[Nπn

t ]

)

≤ e−r(m−1)t 1

n

n
∑

i=1

W|·|(Z
x
t , Z

xi

t )

Now, we want to take the infimum and obtain a result such that,

W
(1)
W|·|

(

L
(

Zx
t

E[Nx
t ]

)

,L
(

Zπn

t

E[Nπn

t ]

))

≤ e−r(m−1)t 1

n

n
∑

i=1

W
(1)
W|·|

(L(Zx
t ),L(Zxi

t ))

≤ e−r(m−1)t 1

n

n
∑

i=1

|x− xi|

≤ e−r(m−1)tW|·|(δx, πn)

But, these inequalities are false. It seems to be impossibleto use the inequalities, of theorem 1.2, to obtain a bound to
the equilibrium. One explication is that this problem is similar to the following: LetX,Y, Z three random variables
such thatX andY are independent. Is there a constantC such that,

W

(

L
(

X + Y

2

)

,L(Z)
)

≤ C × W (L(X),L(Z)) +W (L(Y ),L(Z))
2

.

But it is enough to considerX,Y, Z are three Bernoulli variables with same parameter to see that it is not possible. We
can only find

W
(1)
W|·|

(

L
(

Zx
t

E[Nx
t ]

)

,L
(

Zπn

t

E[Nπn

t ]

))

≤ e−r(m−1)t 1

n

n
∑

i=1

E[W|·|(L(Zx
t ),L(Zxi

t ))]

whereZxi

t andZxj

t are independent for alli 6= j. This inequalities suggests that we must consider the independent
coupling, but it is not satisfactory too (see proposition 4.9 latter).

Remark 4.8(Generalisation of theorem 1.2). In the proof of theorem 1.2, we only need that, for alln, θ, x andy,
n
∑

j=1

|F (k)
j (XT , θ)− F

(k)
j (YT , θ)| ≤ |x− y|
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whereX,Y are generated byA and start respectively atx, y andT is exponentially distributed. For instance we can
considerX is a continuous lévy process and a sub-critical fragmentation:

∀x ∈ E, ∀k ∈ N
∗, ∀j ≤ k, F

(k)
j (x,Θ) = Θk

jx,

k
∑

j=1

Θk
j ≤ 1 and ∀j ∈ {1, . . . , k}, Θk

j ∈ [0, 1].

Proposition 4.9(Independent coupling). Letµ =
∑n

i=1 xi ν =
∑m

i=1 yi be two discrete measures andZµ andZν be
two independent processes starting atµ andν. We get,

(16) ∀t > 0, E

[

W
(2)
|·|

(

Zµ
t

Nµ
t

,
Zν
t

Nν
t

)]2

≤ 2t2

(1 − e−t)2
+O(t2e−rt).

Proof. By matching and Cauchy-Schwarz formulas, we get,

E

[

W
(2)
|·|

(

Zµ
t

Nµ
t

,
Zν
t

Nν
t

)]2

= E

[

W
(2)
|·|

(

Nν
t × Zµ

t

Nν
t N

µ
t

,
Nµ

t × Zν
t

Nν
t N

µ
t

)]2

≤ E







√

√

√

√

1

Nν
t N

µ
t

∑

u∈V ν
t

∑

v∈V µ
t

|Xu
t − Y v

t |2






2

(17)

≤ E

[

1

Nν
t N

µ
t

]

× E





∑

u∈V ν
t

∑

v∈V µ
t

|Xu
t − Y v

t |2




where,
Zµ
t =

∑

u∈V µ
t

δXu
t

and Zν
t =

∑

v∈V ν
t

δY v
t
.

Then,

E

[

1

Nν
t N

µ
t

]

= E

[

1

Nµ
t

]

E

[

1

Nν
t

]

=
1

n×m
E

[

1

Nt

]2

whereNt is the classical Yule process starting atN0 = 1. Then, sinceNt is is geometric with parametere−rt [4], we
get

∀t > 0, E

[

1

Nν
t N

µ
t

]

=
r2t2

nm

e−2rt

(1− e−rt)2
.

In the other hand, we have, by proposition 4.6,

E





∑

u∈V ν
t

∑

v∈V µ
t

|Xu
t − Y v

t |2




=E[Ny
t ]E





∑

u∈V x
t

(Xu
t )

2



+ E[Nx
t ]E





∑

v∈V y
t

(Y v
t )

2



− 2E





∑

v∈V y
t

Y v
t



E





∑

u∈V x
t

Xu
t





=
8mn

3r2

(

e2rt − 3ert + 2ert/2
)

+ (mµ(x) + nν(x))

(

4

r
ert − 4

3r
ert/2

)

+
(

mµ
(

x2
)

+ nν
(

x2
))

ert/2

−2

(

nm

r2
(ert − 1)2 +

1

r
(ert − 1)(mµ(x) + nν(x)) + ν(x)µ(x)

)

=
2mn

r2
e2rt − 4mn

r2
ert +

16mn

3r2
ert/2 − 2nm

r2

+
1

r
(mµ(x) + nν(x))

(

2ert − 4

3
e−rt/2 + 2

)

+
(

mµ
(

x2
)

+ nν
(

x2
))

e−rt/2 − 2µ(x)ν(x).

Thus, we deduce (16). �

The coupling choice does not seem to be responsible of the non-optimality (the limit is deterministic). The error results
maybe from the matching choice (17). But it is the only one such that we can estimate the distance. In spite of
everything, we have

Proposition 4.10(Wasserstein convergence). Under the assumptions of theorem 1.2, we have

lim
t→+∞

W
(1)
|·|

(

Zt

Nt
, π

)

= 0 in probability.
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Proof. As x 7→ 1 + x is a Lyapounov function for the auxiliary process, we have

lim
t→+∞

Zt

Nt
(f) = π(f) in probability

for all functionf such thatf(x) ≤ C(1 + x). The convergence also holds in distribution. By the Prokhorov theorem,
in an other probability space, we have,

lim
t→+∞

Zt

Nt
(f) = π(f) a.s.

for all bounded function and forf(x) = x. This convergence is equivalently to a Wasserstein convergence. Thus, by a
classical argument of discreteness (Varadarajan theorem type), we get,

lim
t→+∞

W
(1)
|·|

(

Zt

Nt
, π

)

= 0 a.s..

Hence, in our probability space we getlimt→+∞W
(1)
|·| (Zt/Nt, π) = 0 in distribution. And like the convergence is

deterministic, we get the result. �

4.3. Explicit eigenelements for a parasite infection model.In theorem 1.3, we did not required thatλ0 was the first
eigenvalue. So, it is possible to have different eigenelements and auxiliary processes. Consider the following example,
where some eigenelements are explicit. :

(18) ∀x > 0, Af(x) = axf ′(x) + b(x)f ′′(x)

with b smooth enough. We also consider that forj ≤ k and for all measurable and non-negativef ,

(19) E[f(F
(k)
j (x,Θ))] = E[f(Θk

jx)]

where

(20)
k
∑

j=1

Θk
j = 1 and Θk

j ∈ [0, 1] a.s..

This process can model physical or biological polymers. It can also models cell division with parasite infection [5]. We
easily finda is an eigenvalue andV (x) = x is its eigenvector. So, for all measurable and non-negativefunctionf ,

E

[

∑

u∈Vt

Xu
t f(X

u
t )

]

= E[f(Yt)]e
atx0

whereY is a Markov process, generated by,

GY f(x) =

(

ax+ 2
b(x)

x

)

f ′(x) + b(x)f ′′(x) + r(x)









∑

k∈N

pk(x)

k
∑

j=1

E[Θk
j f(Θ

k
jx)]



 − f(x)



 .

Whenr is affine, we obtain a second formula. Assumem is constant andr(x) = cx+ d, with c ≥ 0 andd(m− 1) > a

(or d > 0 andc = 0). So,V1(x) = c(m−1)
d(m−1)−ax + 1 is an eigenvector associated to the eigenvalueλ1 = d(m − 1)

(⇒ λ1 > λ0 = a). Thus, for all measurable and positive function,

E

[

∑

u∈Vt

f(Xu
t )

]

e−dt = E

[

f(Ut)

τUt + 1

]

(τx0 + 1)

whereτ = c(m−1)
d(m−1)−a andU is generated, for allf ∈ D(A) and for allx > 0, by

GUf(x) =

(

ax+
2b(x)τ

τx+ 1

)

f ′(x) + b(x)f ′′(x) +
r(x)(τx +m)

τx + 1

(

E[
∑

k≥1 pk(x)(τΘ
k
j x+ 1)f(Θk

jx)]

τx +m
− f(x)

)

.

So, if we start with one cell infected byx0 parasite thend(m− 1) is the Malthus parameter (see remark 3.3):

Proposition 4.11(Properties of the number of individual alive). Under (18-20) and ifr(x) = cx+ d, with c ≥ 0 and
d(m− 1) > a (or d > 0 andc = 0). Nt verifies,

E[Nt] = ed(m−1)t + τx0 (e
d(m−1)t − eat).

And(Nte
−d(m−1)t)t≥0 and(Nt/E[Nt])t≥0 converge a.s..
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Proof. First, a same computation of lemma 4.1 gives that the processis well defined and that the weighted many-to-one
formula holds. So, as we get:

Nt =

(

∑

u∈Vt

1 + τXu
t

)

− τ

(

∑

u∈Vt

Xu
t

)

the proposition follows. �

Consider the same parameter of [5], that isb(x) = σ2x andp2 = 1. Xt = Zt(V ) is the total number of parasite. It is a
martingale, so we easily obtainE[Xt] = eatE[X0] andXte

−at converge a.s.. But since his bracket is2σ2(1 − e−at),
we have a convergence a.s and inL2. This result is already know, because in this case,(Xt)t≥0 is a Feller diffusion.

5. MACROSCOPIC INTERPRETATION

To prove theorem 1.5, we need to use different topology onM(E). We note(M(E), dv) (resp.(M(E), dw)) when it
is embedded with the vague (resp. weak) topology. These topologies will be understood in the following sense:

lim
n→+∞

dv(Xn, X∞) = 0 ⇐⇒ ∀f ∈ C0, lim
n→+∞

E[f(Xn)] = E[f(X∞)]

lim
n→+∞

dw(Xn, X∞) = 0 ⇐⇒ ∀f ∈ Cb, lim
n→+∞

E[f(Xn)] = E[f(X∞)]

whereC0 is the set of continuous function that vanishes to zero at theinfinity andCb the set of bounded continuous
function. We also will useD([0, T ], E) andC([0, T ], E) be respectively the set of càd-làg function embedded with the
Skorohod topology and the set of continuous function embedded with the uniform topology [8].

5.1. Law of large number (proof of theorem 1.5 ). In this section, we consider a sequenceZ(n) distributed asZ,
starting at some measure of probabilityZ(n)

0 , and the following scaling:X(n) = 1
nZ

(n). We describe the behavior of
this renormalized process whenn go to infinity.

Heuristically, to understand the behaviour of our process when we start with a large population distributed by a de-
terministic measureX0, we can approximateX0 by the interesting sequence defined byX

(n)
0 = 1

n

∑n
k=0 δYk

,where
(Yk)k≥1 is a sequence i.i.d. distributed byX0. Thus, we get,

X(n) =
1

n
Z(n) d

=
1

n

n
∑

k=0

ZYk

whereZYk

t are i.i.d. distributed asZ, with Z0 = δYk
. So, letϕ a bounded function, the law of large number gives:

∀t ≥ 0, lim
n→∞

1

n

n
∑

k=0

ZXk

t (ϕ) = E

[

ZY1
t (ϕ)

]

So by corollary 2.3 , it implies thatX(n) converges to the solution of the following integro-differential equation:

(21) µt(ϕ) = µ0(ϕ) +

∫ t

0

µs(Aϕ) +

∫

E

r(x)
∑

k≥0

pk(x)

∫ 1

0

k
∑

j=1

ϕ(F
(k)
j (x, θ))dθ − ϕ(x) µs(dx) ds

In fact, this convergence is better. It is a processes convergence. There is that the theorem 1.5 said.

Lemma 5.1(Semi-martingale decomposition). for all ϕ ∈ D(A2) andt ≥ 0,

X
(n)
t (ϕ) = Xn

0 (ϕ) +M
(n)
t (ϕ) + V

(n)
t (ϕ)

with

V
(n)
t (ϕ) =

∫ t

0

∫

E

Aϕ(x) + r(x)

∫ 1

0

∑

k∈N

k
∑

j=1

ϕ(F
(k)
j (x, θ)) − ϕ(x)pk dθ X

(n)
s (dx) ds

andM (n)
t (ϕ) is a square-integrable and càdlàg martingale with bracket

1

n







∫ t

0

2X(n)
s (Aϕ2)− 2X(n)

s (ϕ× Aϕ) +

∫

E

r(x)

∫ 1

0

∑

k∈N∗





k
∑

j=1

ϕ(F
(k)
j (x, θ)) − ϕ(x)





2

pk(x) dθ X
(n)
s (dx) ds
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Proof. It is an application of the lemma 2.2 because the generator ofX(n), denoted byL(n), verifies:

L(n)Fϕ(µ) = ∂tE[Fϕ(X
(n))|X(n)

0 = µ] t=0 = ∂tE[Fϕ/n(Z
(n))|Z(n)

0 = nµ]
t=0

= LFϕ/n(nµ)

whereFϕ(µ) = F (µ(ϕ)). �

Lemma 5.2. Under the assumptions of theorem 1.5,X(n) is tight for the vague topology.

Proof. For this proof, we are inspired by [25]. According to [51], itis enough to show that, for any continuous bounded
function f , the sequence of laws ofX(n)(f) is tight in D([0, T ],R). To prove this, we use the Aldous-Rebolledo
criterion. LetS be a dense subset ofC0 that contained the functionx 7→ 1. We have the following two points to be
verified: For all functionf ∈ S,

(1) for all t ≥ 0,
(

X
(n)
t (f)

)

n≥0
is tight.

(2) for all n ∈ N, andε, η > 0, there existsδ such that for each stopping timesSn bounded byT ,

lim sup
n→+∞

sup
0≤u≤δ

P(|V (n)
Sn+u(f)− V

(n)
Sn

(f)| ≥ η) ≤ ε.

lim sup
n→+∞

sup
0≤u≤δ

P(|〈M (n)(f)〉Sn+u − 〈M (n)(f)〉Sn
| ≥ η) ≤ ε.

The first point explain a pointwise tightness and the second point, called the Aldous condition, gives a "stochastic
continuity". It look like the Arzelà-Ascoli theorem. For our problem we can takeS = D(A2). The first point gives,

P(|X(n)
t (f)| > k) ≤ ‖f‖∞ E[X

(n)
t (1)]

k

≤ ‖f‖∞ E[N
(n)
0 ] Cr̄,k̄

n k
.

SinceE[N (n)
0 ]/n converges , it is bounded, and for a largek, we have the tightness. Letδ > 0 andSn ≤ Tn ≤

(Sn + δ) ≤ T , we get

E[|V (n)
Tn

(f)− V
(n)
Sn

(f)|] = E





∣

∣

∣

∣

∣

∣

∫ Tn

Sn

X(n)
s (Af) +

∫

E

r(x)

∫ 1

0

∑

k∈N

k
∑

j=1

f(F
(k)
j (x, θ)) − f(x)pk dθ X

(n)
s (dx) ds

∣

∣

∣

∣

∣

∣





≤ Cr̄,k̄,T [‖Af‖∞ + ‖f‖∞]× (Tn − Sn)

≤ Cr̄,k̄,T,f δ.

In the other hand,

E[|〈M (n)(f)〉Tn
− 〈M (n)(f)〉Sn

|]

=
1

n
E





∣

∣

∣

∣

∣

∣

∫ Tn

Sn

2X(n)
s (Af2)− 2X(n)

s (f ×Af) +

∫

E

r(x)

∫ 1

0

∑

k∈N

k
∑

j=1

(f(F
(k)
j (x, θ)) − f(x))2pk dθ X

(n)
s (dx) ds

∣

∣

∣

∣

∣

∣





≤ 1

n
× Cr̄,k̄,T,f × (Tn − Sn)

≤Cr̄,k̄,T,fδ

n.

Then, for a sufficiently smallδ the second point is verified and we conclude that
(

X(n)
)

n≥1
is uniformly tight in

D([0, T ],M(E)) for the vague topology. �

Proof of theorem 1.5.First, by the Doob’s inequality, we get,

sup
ϕ

E

[

sup
t≤T

∣

∣

∣M (n)(ϕ)t

∣

∣

∣

]

≤ 2 sup
ϕ

E[〈M (n)(ϕ)〉T ] ≤
Cr̄,k̄

n

where the supremum is taken over all the functionϕ ∈ D(A2) such that‖ϕ‖∞ ≤ 1. Hence,

(22) lim
n→+∞

sup
ϕ

E

[

sup
t≤T

∣

∣

∣M (n)(ϕ)t

∣

∣

∣

]

= 0.

But,

M
(n)
t (ϕ) = X

(n)
t (ϕ) −X

(n)
0 (ϕ)−

∫ t

0

∫

E

Aϕ(x) + r(x)

∫ 1

0

∑

k∈N

k
∑

j=1

ϕ(F
(k)
j (x, θ))− ϕ(x)pk dθ X

(n)
s (dx) ds.
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So, we have to prove that the limit of(M (n)
t (ϕ)) is also

Xt(ϕ)−X0(ϕ)−
∫ t

0

Xs(Aϕ) +

∫

E

λ(x)





k
∑

j=1

ϕ(F
(K)
j (x, θ)) pk(x) dθ − ϕ(x).



 Xs(dx) ds

Since this equation has a unique solution, it is enough to prove that the convergenceofX(un) is inD([0, T ], (M(E), dw)),
for each convergent subsequence(un)n∈N∗ . If E is compact, the vague topology and the weak topology coincide, and
we have the result. For the case(ii) of the assumptions, we can use the Méléard-Roelly criterion[39]. Let (un)n a
subsequence such that(X(un))n converges in distribution toX in D([0, T ], (M(E), dv)). We have to prove thatX is
in C([0, T ], (M(E), w)) andX(n)(1) converges toX(1). To prove it, as in [34, 40], we can use the following lemma:

Lemma 5.3(Analogous of the lemma 3.3 of [40]). Under the same assumptions of theorem 1.5,

lim
k→+∞

lim sup
n→+∞

E

[

sup
t≤T

X
(n)
t (ψk)

]

= 0

where(ψk)k≥0 are defined at theorem 1.5.

This lemma explain that we can commute the limit, The proof ispostponed after. Hence, a same computation to [40]
give us the convergence inD([0, T ], (M(E), w)) to our process. Thus, each subsequence converges to the equation
(21). There is a unique solution, and our sequence convergesin D([0, T ], (M(E), w)) to z (defined at the corollary
2.3) the unique solution about the equation (21).

But the lemma 5.3 is so strong, we can give another argument, without to use the Méléard-Roelly criterion [39]. As in
[40], we can prove thatX is continuous, from[0, T ] to (M(E), dw), because

sup
t≥0

sup
f,‖f‖∞≤1

|X(n)
t− (f)−X

(n)
t (f)| ≤ k̄

n
.

Then, letG be a Lipschitz function onC([0, T ], (M(E), dw)), we get,

|E[G(Xun)]−G(X)| ≤ E

[

sup
t∈[0,T ]

dw

(

X
(un)
t , Xt

)

]

≤ E

[

sup
t∈[0,T ]

dw

(

X
(un)
t , X

(un)
t (.× (1 − ψk))

)

]

+ E

[

sup
t∈[0,T ]

dw

(

X
(un)
t (.× (1 − ψk)), Xt(.× (1− ψk))

)

]

+ sup
t∈[0,T ]

dw (Xt(.× (1− ψk)), Xt) .

According the lemma 5.3, we obtain that

lim
k→+∞

lim sup
n→+∞

E

[

sup
t∈[0,T ]

dw

(

X
(un)
t , X

(un)
t (.× (1 − ψk))

)

]

= 0

and

lim
k→+∞

lim sup
n→+∞

sup
t∈[0,T ]

dw(Xt(.× (1− ψk)), Xt) = 0.

Then, we havedw(X
(un)
t (.× (1− ψk)), Xt(.× (1− ψk))) = dv(X

(un)
t (.× (1 − ψk)), Xt(.× (1− ψk))). Thus,

lim
k→+∞

lim sup
n→+∞

E

[

sup
t∈[0,T ]

dw(X
(un)
t (.× (1− ψk)), Xt(.× (1− ψk)))

]

= 0

by contuinity ofν 7→ ν(1 − ψk) in D(M(E), dv)). �
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proof of lemma 5.3.we denote byµn,k
t = E(X

(n)
t (ψk)), and we get:

µn,k
t = E[X

(n)
0 (ψk)] +

∫ t

0

E





∫

E

Aψk(x) + r(x)





∑

k≥1

k
∑

j=1

pk(x)

∫ 1

0

ψk(F
(k)
j (x, θ)) − ψk(x)



X(n)
s (dx)



 ds

≤ µn,k
0 + C

∫ t

0

µn,k−1
s + µn,k

s ds

and by Gronwall’s lemma, iteration, monotonicity and the boundedness of1nE[supt≤T N
n
t ]:

µn,k
t ≤ C1(µ

n,k
0 +

∫ t

0

µn,k−1
s ds)

≤ C1µ
n,k
0 + C2

1Tµ
n,k−1
0 +

∫ t

0

∫ s

0

µn,k−2
u duds

≤
k−1
∑

l=0

µn,k−l
0 C1

(C1T )
l

l!
+ C2 ×

(C1T )
k

k!

≤ µ
n,⌊k/2⌋
0 C1e

C1T + C3

∑

l>⌊k/2⌋

(C1T )
l

l!
+ C2 ×

(C1T )
k

k!

whereC1, C2 andC3 are three constants. Thus,

lim
k→+∞

lim sup
n→+∞

µn,k
t = 0.

Then, the following expression concludes the proof,

E

[

sup
t≤T

|Xn
t (ψk)|

]

≤ µn,k
0 + C

∫ t

0

µn,k−1
s + µn,k

s ds+ E

[

sup
t≤T

|M (n)
t (ψk)|

]

.

�

Example 5.4 (Asymmetric mitosis). Let F (2)
1 (x, θ) = G−1(θ)x and F (2)

2 (x, θ) = (1 − G−1(θ))x. WhereG is
the cumulative distribution function of the random fraction in [0, 1] associated with the branching event. It verifies
G(x) = 1−G(1 − x). If n(t, .) is the density ofzt, then it is a weak solution solution of the following P.D.E. :

∂tn(t, x) + ∂xn(t, x) + r(x) n(t, x) = 2E[
1

Θ
r(x/Θ)n(t, x/Θ)].

Especially, we deduce that the following P.D.E. gets a weak solution:

∂tn(t, x) + ∂xn(t, x) + r(x) n(t, x) =

∫ +∞

x

b(x, y)n(t, y)dy

whereb verify the following properties:

b(x, y) ≥ 0, b(x, y) = 0 for y < x(23)
∫ +∞

0

b(x, y)dx = 2r(y)(24)

∫ +∞

0

xb(x, y)dx = yr(y)(25)

b(x, y) = b(y − x, y).(26)

This equation was studied in[45]. b(x, y) = 2
y r(y)g(

x
y ), whereg is the density ofG. b has this form is equivalently at

verify the following points (23 - 26).
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5.2. Central Limit Theorem for size-structured population (pro of of theorem 1.6). Our aim in this section is to
describe the limit of the fluctuation process defined by:

∀t ∈ [0, T ], ∀n ∈ N
∗, η(n)t =

√
n(X

(n)
t −Xt).

For a better understanding, we only give the convergence on the example of the size-structured population (asymmetric
mitosis). The result of this section are easily generalisable for splitted diffusion, but we do not want to weigh down the
hypotheses and the notations.

Theorem 5.5(Central limit theorem for asymmetric size-structured population). Let T > 0. Assumeη(n)0 converges
and

E

[

sup
n≥1

∫

E

1 + x X
(n)
0 (dx)

]

< +∞.

Then the sequence(η(n))n≥1 converges inD([0, T ], C−2,0) to the unique solution of the evolution equation: for all
f ∈ C2,0,

(27) ηt(f) = η0(f) +

∫ t

0

∫ +∞

0

f ′(x) + r(x)

(∫ 1

0

f(qx) + f((1− q)x)G(dq) − f(x)

)

ηs(dx) ds+ M̃(f)

whereM̃(f) is a martingale and a Gaussian process with bracket:

〈M̃t(f)〉 =
∫ t

0

∫ +∞

0

2f ′(x)f(x) + 2r(x)

∫ 1

0

(f(qx)− f(x))2G(dq) Xs(dx) ds.

AndC2,0 is the set of functionC2, such thatf, f ′, f ′′ vanish to zero whenx vanishes to infinity.C−2,0 is its dual space.

By lemma 5.1, we have the following representation:

∀ t ≥ 0, η
(n)
t = η

(n)
0 + Ṽ

(n)
t + M̃

(n)
t

where

∀ϕ ∈ Cb ∩ C1, Ṽ
(n)
t (ϕ) =

∫ t

0

∫ +∞

0

ϕ′(x) + r(x)

(∫ 1

0

ϕ(qx) + ϕ((1− q)x)G(dq) − ϕ(x)

)

η(n)s (dx) ds

andM̃ (n)
t is a martingale with bracket:

(28) 〈M̃ (n)
t (ϕ)〉 =

∫ t

0

∫ +∞

0

2r(x)

∫ 1

0

(ϕ(qx) − ϕ(x))2G(dq) X(n)
s (dx) ds.

The set of signed measure is not metrizable, so we can not adapt the proof of theorem 1.5. As in [38, 52], we consider
η(n) like an operator in a Sobolev space, and use the Hilbertian properties of this space to have tightness (see for
instance [41] for tightness condition on Hilbert spaces). Let us explain the Sobolev space that we will use. Letp > 0,
j ∈ N , andW j,p be the closure of the set of functionC∞ to [0,+∞) intoR with compact support with the following
norm:

∀f ∈ W j,p, ‖f‖2W j,p =

j
∑

k=0

∫ ∞

0

(

f (k)(x)

1 + xp

)2

dx.

W j,p is an Hilbert space and we considerW−j,p the dual space. LetCj,p, the space of functionf , Cj , such that:

∀k ≤ j, lim
x→+∞

f (k)(x)

1 + xp
= 0

and we embed it by the following norm:

∀f ∈ Cj,p, ‖f‖Cj,p =

j
∑

k=0

sup
x≥0

f (k)(x)

1 + xp
.

Thus,Cj,p is a Banach space and we denote byC−j,p its dual space. These spaces verify the following continuous
injection [38, 1]:

(29) Cj,p ⊂W j,p+1 and W 1+j,p ⊂ Cj,p.

Or equivalently, iff is smooth enough,

‖f‖W j,p+1 ≤ C‖f‖Cj,p and ‖f‖Cj,p ≤ C‖f‖W j+1,p .

The first embedding/inequality prove that the tightness inW j,p+1 implies the tightness inCj,p. The second is useful
for some upper bound:
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Lemma 5.6. If (ek)k≥1 is a basis ofW 2,1, we get:
∑

k≥1

ek(x)
2 ≤ C(1 + x).

Proof. LetD0
x : f 7→ f(x) and D1

x : f 7→ f ′(x) be an operator onW 2,1. We have, for allf ∈W 2,1,

|D0
xf | ≤ (1 + x)‖f‖C0,1 ≤ C(1 + x)‖f‖W 1,1 ≤ C(1 + x)‖f‖W 2,1

But, by Parseval identity we get,

‖D0
x‖2W−2,1 =

∑

k≥1

ek(x)
2.

It ends the proof. �

We introduce the trace
(

〈〈M̃ (n)〉〉t
)

t≥0
of
(

M̃
(n)
t

)

t≥0
defined such that

(

‖M̃ (n)
t ‖2W−2,1 − 〈〈M̃ (n)〉〉t

)

t
is a local

martingale. Then since

‖M̃ (n)
t ‖2W−2,1 =

∑

k≥1

M̃
(n)
t (ek)

where(ek)k≥1 is a basis ofW 2,1, and by (28), we get,

〈〈M̃ (n)〉〉t =
∑

k≥1

∫ t

0

∫ +∞

0

2r(x)

∫ 1

0

(ek(qx)− ek(x))
2G(dq) X(n)

s (dx) ds.

Now, we first prove the tightness of(η(n))n≥1 then we prove theorem 5.5.

Lemma 5.7. (ηn)n≥1 is tight inD([0, T ],W−2,1).

Proof. By [33, theorem 2.2.2] and [33, theorem 2.3.2] (see also [38,lemma C]), it is enough to prove

(1) E
[

sups≤t ‖ηns ‖2W−2,1

]

< +∞.
(2) ∀n ∈ N, ∀ε, ρ > 0, ∃δ such that for each stopping timesSn bounded byT ,

lim sup
n→+∞

sup
0≤u≤δ

P

(

‖V (n)
Sn+u − V

(n)
Sn

‖W−2,1 ≥ η
)

≤ ε

lim sup
n→+∞

sup
0≤u≤δ

P

(∣

∣

∣

∣

〈〈

M̃ (n)
〉〉

Sn+u
−
〈〈

M̃ (n)
〉〉

Sn

∣

∣

∣

∣

≥ η

)

≤ ε.

These two points are the Aldous-Rebolledo criterion. For the first point, we get,

∑

k≥1

〈M̃ (n)
t (ek)〉 ≤

∫ t

0

2r̄

∫ 1

0

2
∑

k≥1

e2k(qx) + 2
∑

k≥1

e2k(x) G(dq) X
(n)
s (dx) ds

≤ CT X
(n)
0 (1 + x)

then, by the assumptions of theorem 5.5, we have the boundedness. Thus since,

‖M̃ (n)
t ‖2W−2,1 =

∑

k≥1

(M̃
(n)
t (ek))

2

we have by Doob inequality,

E

[

sup
t∈[0,t]

‖M̃ (n)
t ‖2W−2,1

]

≤ C.

Then
‖η(n)t ‖2W−2,1 ≤ ‖η(n)0 ‖2W−2,1 + ‖Ṽ (n)

t ‖2W−2,1 + ‖M̃ (n)
t ‖2W−2,1 ≤ C + ‖Ṽ (n)

t ‖2W−2,1 .

And

‖Ṽ (n)
t ‖2W−2,1 ≤ C

∫ t

0

sup
w≤s

‖η(n)s ‖2W−2,1ds.

So by Gronwall lemma we obtain

E

[

sup
s≤t

‖η(n)s ‖2W−2,1

]

≤ C
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Then for the second point, we have

E[‖V (n)
Sn+u − V

(n)
Sn

‖W−2,1 ] ≤ E

[

C

∫ Sn+u

Sn

sup
s≤T

‖η(n)s ‖2W−2,1

]

≤ Cu.

So, by Markov-Chebyshev inequality, we get the Aldous condition. A same proof gives〈〈M̃ (n)〉〉 also verify the Aldous
condition. Thus,(η(n))n≥1 is tight. �

Proof of theorem 5.5.Let M̃ a continuous Gaussian process with quadratic variation, given for everyf ∈ C2,0 (⊂
W 2,1) andt ∈ [0, T ] by:

∑

k≥1

∫ t

0

∫ +∞

0

2r(x)

∫ 1

0

(f(qx)− f(x))2G(dq)Xs(dx).

Since we have,

∀f ∈ C2,0, sup
t∈[0,T ]

|M̃ (n)(f)| ≤ Cf√
n

and〈M̃ (n)
t 〉 converge in law to〈M̃t〉, we obtain, by [32, theorem 3.11 p.473], the convergence ofM̃ (n)(f) to M̃(f).

By lemma 5.7 and (29) , the sequence(η(n))n≥1 is also tight inC−2,0. Let η be an accumulation point. Since the
martingale partM̃ , η is almost surely continuous. Hence,η solves (27). Using Gronwall’s inequality, we obtain
that this equation admits inC([0, T ], C−2,0) a unique solution for a given Gaussian white noiseM̃ . We deduce the
announced result. �

6. OPEN PROBLEMS

In the literature, the auxiliary process is sometimes called an hybrid process [6]. When the motion between the branch-
ing times is deterministic, indeedA is a vector fields, the auxiliary process is a piecewise deterministic Markov process
(PDMP). These processes were introduced in the literature by Davis [14] as a general class of non diffusion stochastic
models. Some properties of the PDMPs are given in [15, 31]. But, there is a lot of question about this process.

Speed of convergence for piecewise deterministic Markov processes:
In [11], we see that it is sometimes easier to have a speed of convergence for the embedded chain than for the contin-
uous process (the embedded chain is the continuous process indexed at the jump times). We have some link about the
invariant measure of the process and its embedded chain in [12, 15], but it would be interesting to find a link between
their long time behaviour. We can also research a criterion,like the Bakry-Emery criterion, to have a quantitative rateof
decay for the entropy. We can find a first approach in [9, 10]. Itis also interesting to improve theorem 1.2 or proposition
4.9.

Regularity of the stationary distribution:
In [13], we can find some criterion for ergodicity. A natural question is the regularity of the invariant distribution
(support, density,...). For instance, is there Hörmander’s condition? At the moment, there is some properties of PDMP
semi-group in [27, 53].

Other functional of the empirical measure:
this paper gives some result about the convergence of the empirical measure

∑

u∈Vt
δXu

t
, but it do not capture other

symmetric functional of the population, like the bigger cell or the more infected cell:

max
u∈Vt

f(Xu
t ),

or the following functional:
∫ t

0

∑

u∈Vs

f(Xu
s ) ds =

∑

u∈T

∫ β(u)∧t

α(u)∧t

f(Xu
s ) ds

Interesting result for the maximum for branching Brownian motion are developed in [2].

Statistic:
A natural application of our limit theorem is the parameter estimation. Working in the Kolmogorov equation and the
macroscopic process, [20] gives a non parametric estimation of r.
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Eigenproblem:
The existence of eigenelement is fundamental to have our many-to-one formula. As say in introduction, [19, 43] give
some condition to have it. The problem is that, in these papers, the eigenvector are not lower bounded. Hence, it will
be interesting to find a theorem like the theorem 4.3.

Acknowledgment: I would like to express my gratitude to my Ph.D. supervisor Djalil Chafaï for his encouragement,
and essential help on the form and the content of this paper. Ialso thank, Viet Chi Tran for pointing out some references
and for fruitful discussions, Florent Malrieu, Vincent Bansaye and Denis Villemonais for their remarks, and all the
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