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ABSTRACT

Aims. We investigate the electromagnetic interaction of a relativistic stellar wind with small bodies in orbit around the star.

Methods. Based on our work on the theory of Alfvén wings to relativistic winds presented in a companion paper, we estimate the
force exerted by the associated current system on orbiting bodies and evaluate the resulting orbital drift.

Results. This Alfvénic structure is found to have no significant influence on planets or smaller bodies orbiting a millisecond pulsar.
On the timescale of millions of years, it can however affect the orbit of bodies with a diameter of 100 kilometres around standard pulsars with
a periodP ∼1 s and a magnetic fieldB ∼ 108 T. Kilometer-sized bodies experience drastic orbital changes on a timescale of 104 years.
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1. Introduction

Accretion discs are expected to form at some phase of the evo-
lution of neutron stars in a binary system, possibly giving birth
to second generation planets. The interaction of the disc with
the pulsar’s wind constrains its extension and notably the value
of its inner radius. The rotational power transferred to thedisk
by the magnetic field of a young neutron star (propeller effect)
would rapidly disrupt a disc of plasma, putting its inner radius
beyond the light cylinder (Ekşi et al. 2005). Concerning dust,
ablation by the pulsar’s wind would extract protons and pro-
vide them enough kinetic energy to chase them away (Jones
2007). The Poynting-Robertson effect (Burns et al. 1979) may
also act on the drift of smaller (and isothermal) particles such
as grains and dust (Cordes & Shannon 2008). This is consistent
with infra-red observations of radio-pulsars showing thattheir
inner radius is two or more orders of magnitude larger than the
light cylinder radius (Jones 2008).

On the other hand, small bodies, such as planetoids, aster-
oids or comets may also orbit pulsars and it is expected that
some of them occasionally fall below the light cylinder. For
instance Cordes & Shannon (2008) have shown that neutral,
circumpulsar debris that enters the magnetospheres of neutron
stars could disrupt current flows and account for some of the
intermittency seen in radio pulsars. The neutral material of size
∼ 1 m or more can move toward the star under the influence of

collisions and of the Yarkovsky effect (a net force induced by
a difference of temperature between the illuminated and warm
afternoon side and the night-time face).

In the present paper, we study the influence of a pulsar’s
wind on the trajectory of hypothetical larger bodies (1-100km)
through the action of the Poynting flux. It is based on Alfvén
wings, whose theory is described in a joint paper (Mottez
& Heyvaerts 2011), hereafter (MH1). The concept of Alfvén
wings was initially developed by Neubauer (1980) to explain
the interaction of Jupiter with its satellite Io. It says that a con-
ducting solid body embedded in a plasma flow slower than
Alfvén waves supports a system of electric currents carriedby
a stationary Alfvénic structure. When the wind is relativistic
albeit slower than the total Alfvén speed, the amplitude of this
current can be estimated. In the present study, we estimate the
force exerted by the associated current system on orbiting bod-
ies and evaluate the resulting orbital drift.

2. Alfvén wings

In this section, results demonstrated in the companion paper
(MH1) and useful for the present study are recalled.

The star is assumed to be spinning with an angular fre-
quencyΩ∗. For simplicity, the theory is developed for a pulsar
with a magnetic dipole axis aligned with the rotation axis. The
wind flow is assumed to be radial (r direction in spherical coor-
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dinates) and the magnetic field in the companion’s environment
to be mainly azimuthal (φ direction). The wind is characterized
by two invariants along its flow : the neutron star’s magnetic
flux Ψ, and the mass fluxf ,

f = γ0ρ
′
0vr

0r2, (1)

Ψ = r2Br
0, (2)

wherev0 is the unperturbed wind’s velocity,Br
0 is the radial

magnetic field,γ0 is the wind’s Lorentz factor, andρ′0 is the
proper rest mass density in the unperturbed wind’s frame. The
azimuthal magnetic field is given by,

Bφ0 = Br
0

vφ0 −Ω∗r
vr

0

∼ −
Br

0Ω∗r

c
, (3)

the approximation in the right hand side term being relevantat
large distance from the light cylinder.

The engine of the Alfvén wings is the convection electric
field associated to the wind that appears in the reference frame
of the star’s companion. The wing currents are generated by a
potential dropU along the body of radiusRP,

U = 2RPE0 =
2RPΩ∗Ψ

r
, (4)

whereE0 = vr
0Bφ0, directed perpendicularly to the wind flow

and to the magnetic field, is the convection electric field in-
duced by the motion of the wind into the magnetic field. This
potential generates a system of currents that flow along the
companion, then in space into the plasma, in a direction which
depends on the wind’s magnetic field and the wind’s velocity.
The conductivity of the plasma part of this circuit has been
evaluated by Neubauer (1980) for the non-relativistic motion of
Io in the Jovian magnetospheric plasma. In the ultra-relativistic
wind of a pulsar, it can be approximated very simply by

ΣA ∼
1
µ0c
. (5)

(See Eq. (67-69) of (MH1) for more details.)
Then, adopting a simplified geometry, it is possible to esti-

mate the total electric current. Neubauer (1980) gives useful ex-
pressions for the total currentI flowing along an Alfvén wing.
Writing RP for the body’s radius, he gets:

I = 4 (E0 − Ei) RP ΣA = 4

(

Ω∗Ψ

r
− Ei

)

RP ΣA (6)

The electric fieldEi, set along the body, is caused by its iono-
sphere or surface internal resistance. The Joule dissipation is
maximum whenEi = E0/2. In our estimations, we shall use
Neubauer’s values forI.

3. A magnetic thrust

The above theory, because of the involved symmetries, de-
scribes mainly what happens in space, far enough from the
body. At closer distances, the plasma suffers compressive mo-
tions and compressive MHD waves certainly have a non-
negligible influence on the system. These waves propagate

quasi-isotropically. Their amplitude decrases as the inverse of
the distance to the body and they contribute to deflect the wind
around it. Nevetheless, without entering into these considera-
tion, we can still make a few inferences based on the theory
of the Alfvén wings, as presented in the previous section. As
Neubauer (1980), we can assume that the current associated
to the wing is closed in the vicinity of the body (see Fig. 1),
through its surface or its ionosphere. We can estimate (roughly)
what force the wind exerts on it.

The two Alfvén wings carry a current that, in the two
branches flowing along the body (perpendicular to the plane of
Fig 1), generates a force densityj×B. The two current systems
flowing on each side of the body exert this force density in the
same radial direction. We may expect the body to orbit near the
equatorial plane of the pulsar. In this plane, at such a distance,
the magnetic field direction is almost azimuthal, being perpen-
dicular to the wind flow velocity. The sign ofBφ0 depends on
whether the magnetic moment of the neutron star is parallel or
antiparallel to the rotation axis. Nevertheless, the forcedensity
j × B always has the same direction as the wind velocity.

At first order, considering Eq. (4),E0 = Ω∗Ψ/r and the
force is expressed explicitely as a function of the distancer
from the pulsar to the body as

F = 2RPIBφ = 8

(

Ω∗Ψ

r
− Ei

)

R2
P
Ω∗Ψ

µ0c2r
. (7)

The powerĖJ dissipated by Joule effect along the ionosphere
or in the body is maximized when the internal load matches the
external one, that is, still according to Neubauer (1980), when
Ei = E0/2. In that case the force is

F =
4
µ0c2

R2
PΩ

2
∗Ψ

2

r2
(8)

On the night side of the body, this force tends to wipe out the
ionosphere (if there is one), but on the day side, on the con-
trary, it pushes the ionosphere towards it. The dynamics of
this system is probably quite complex, but we can retain that
there is a force pushing the body and/or its atmosphere away
from its star. Maybe the atmosphere has been completely wiped
out, and the day side of the body is ionised by the flux of X
rays coming from the neutron star. Then, the current may flow
along the dayside of the body’s crust, directly pushing it away.
Actually, it remains that, when the field is azimuthal and the
dissipation is maximal, the force is radial and proportional to
r−2 (Eq. (8)). Therefore, it acts the same way as the gravita-
tional force, and cannot have a secular influence on the orbit.
WhenEi does not vary with the distancer of the body asE0

does, according to Eq. (7), a fraction of the force is not of a
Keplerian nature. For an azimuthal field, this force is however
still central and causes nothing more than a periastron preces-
sion. Since we are mainly interested in the evolution of the
semi-major axis and of the eccentricity, we don’t consider this
case any further in this paper.

But the unperturbed magnetic field also has a small radial
component and the force is therefore not exactly central. Our
estimate thatBφ ∼ BrΩ∗r/c shows that the small angle between
the magnetic field and the azimuthal direction is:

δ = c/Ω∗r . (9)
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In the case of PSR 1257+12, at 1 AU,δ = 2 × 10−6. In the
general context of a vacuum dipole wave, or a pulsar wind, its
sign does not vary, and its amplitude decreases gently with the
distance. As the force densityj×B is perpendicular to the mag-
netic field, the force is not strictly radial when the field is not
strictly azimuthal. In spite of the small value of this angle, this
azimuthal force component acts constantly in the same direc-
tion. Therefore, this force can work.

The tangential component of the force always has the same
direction as the rotation of the neutron star. Therefore, ifthe
planet’s orbital angular momentum and the star’s rotational
spin are parallel (in the same direction), thej × B force con-
tributes to its acceleration, and therefore it increases its semi-
major axis and its eccentricity. The force modulus increases at
smaller distance and the angleδ also becomes larger. These two
effects cause the tangential force to become stronger at closer
distances from the star.

From Eqs. (8) and (9), a rough estimate of the tangential
force is

Ft = Fδ =
4
µ0c

R2
PΨ

2Ω∗

r3
. (10)

Let vorb ∼ (GM∗/r)1/2 be the orbital velocity. The power asso-
ciated to the work ofFt is

Ẇt = Ftvorb ∼
4G1/2

µ0c

M1/2
∗ R2

PΨ
2Ω∗

r7/2
. (11)

Four planets have been discovered around two pulsars.
Three of them orbit PSR 1277+12, with periods of the order
of a few weeks. Their mass is comparable to the mass of the
Earth (more details are given in (MH1)). Planets around pul-
sars are expected to have been captured by the neutron star or
to have orbited its progenitor before the supernova explosion.
A capture would provide an initially large orbital eccentricity.
Similarly, a body surviving a supernova explosion should be
left after the event with a large eccentricity. However, theec-
centricities of the orbits of planets measured around pulsars are
very small (see Table (2) in (MH1)). Could the tangential com-
ponent of thej×B force associated to the planets’Alfvén wings
be an explanation ?

Let us notice that a captured planet orbiting in the opposite
direction to the star’s rotation experiences a tangential compo-
nent of thej × B force that tends to slow it down and/or to
reduce its eccentricity.

This force may also be exerted on smaller bodies, such as
comets or asteroids. Here again, it is interesting to know how
the orbits of such bodies would be influenced by their Alfvén
wings. This may be of importance for second generation plan-
ets, which form (or not) after the supernova explosion from
solid debris in the fall back accretion disc.

4. Influence of the magnetic thrust on the orbit

Let us now write down the equations of motion of an iso-
lated body, orbiting a neutron star, under the action of the
(Newtonian) gravitational force and the magnetic thrust. The
magnetic thrust is decomposed into its radial component (Eq.
(8)) and orthoradial component. We roughly assumeEi to be a

fraction ofE0. The orthoradial component is given by Eq. (10).
The acceleration then is:

Fr

MP
=

C

r2
and

Ft

MP
=

D

r3
, (12)

whereC andD are constant factors,

C =
4R2

PΩ
2
∗Ψ

2

µ0c2MP
, (13)

D =
4R2

PΩ∗Ψ
2

µ0cMP
. (14)

The radial force does not modify the body’orbit, which remains
Keplerian, the star’s massM∗ being replaced by the slightly
lower massM,

M = M∗ −
C
G
. (15)

The equations of motion then become

r̈ − rφ̇2 = −
GM
r2

(16)

d (r2φ̇)
dt

=
D
r2

(17)

These equations are those of a Keplerian motion, with a small
correction induced by the right-hand side term of Eq. (17).
Therefore, we can consider that this motion is Keplerian in first
approximation, and that the orbital elementsa and e evolve
very slowly. They are quasi-constant over an orbit. It is pos-
sible to compute their slow average variations over an orbital
period,< da/dt > and< de/dt >. One first needs to compute
the instantaneous driftsda/dφ andde/dφ, and the variations
∆a and∆e over an orbit through an integration overφ from 0
to 2π, considering the values ofa ande to be constant in this
sum and the motion to be purely Keplerian. The average values
< da/dt > and< de/dt > are the variations∆a et∆e divided
by the orbital period. The orbit of a Keplerian motion is repre-
sented by the equation

r =
a (1− e2)

1+ e cosφ
(18)

The correction (proportional toD) is equivalent to a force that
is tangential to the orbit. The induced variations ofa ande in
this rather standard problem are (Milani et al. 1987):

da
dφ
=

2D
GM

(1+ e cosφ)2

(1− e2)2
(19)

de
dφ
=

D
GMa

e(1+ cos2 φ) + 2 cosφ
(1− e2)

(20)

In one orbit,a changes by

∆a =
∫ 2π

0

d a
dφ

dφ =
4πD
GM

1+ e2/2
(1− e2)2

(21)

The change of the eccentricity over one orbit is

∆e =
∫ 2π

0

d e
dφ

dφ =
3πD
GMa

e
(1− e2)

, (22)
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The average changes ofa ande over an orbital period are

<
da
dt
> =

∆a
P
= 2a

D
√

GMa5

(

2+ e2

2(1− e2)2

)

(23)

<
de
dt
> =

∆e
P
=

3
2

D
√

GMa5

e
(1− e2)

(24)

These variation rates both have the same sign asD. We can
see that for a prograde orbit,D > 0, a ande increase, the or-
bit becoming more eccentric and distant. Therefore, the Alfvén
wing thrust tends to chase the body away from the star. A ret-
rograd orbit evolves toward a circular shape with a decreasing
semi-major axis.

We now present a few numerical applications of Eqs. (23)
and (24). The basic numerical data about the pulsars and their
companions can be found in Tables 1 and 2 of the joint pa-
per (MH1). In table 1 of the present paper, we have written
the corresponding yearly variations ofa and e for the four
know pulsar’s planets, and for hypothetical pulsar’s compan-
ions. For large planets, the influence of the Alfvén wing on the
orbit is negligible; the Alfvén wing could not explain why the
orbits of the planets around PSR 1257+12 and PSR 1620-26
have a small eccentricity. The orbit of small bodies (1 and 100
km) orbiting a 10ms pulsar is also not significantly altered by
the Alfvén wing. On the contrary, the trajectory of a 100km
body orbiting a 1s pulsar, because of a much larger ambient
magnetic field, can be significantly modified on a time scale
of millions of years. The effect is significant in only 10 000
years for a 1km sized asteroid. The orbits of asteroids orbit-
ing in the sense of the neutron star’s rotation spin increasein
size and become more and more eccentric. Objects in counter-
rotation (anti-parallel orbital angular momentum and rotation
spin) would be quickly precipitated onto the neutron star. We
can then expect that a young pulsar, even isolated (with no ac-
cretion disc), can stimulate the in-fall of small bodies.

In order to get a more precise idea about the Eqs. (23,24),
we have solved them numerically, using a fourth order Runge-
Kutta algorithm, for a small set of initial orbits. We have
solved the equation over a time span small enough to con-
sider that the pulsar parameters that determine the parameter
D are constant. Figure 2 shows the evolution of the semi-major
axis of a 1 km size body, initially at a distance of 0.16 AU,
for various values of the initial eccentricity. We have chosen
D/
√

GM = +1014m5/2 · s−1 that corresponds to the value given
in Table 1. The sign+ means that the body orbits in the sense
of the pulsar’ spin. We can see that, in accordance to what was
said above, the semi-major axis increases significantly in atime
scale of tens of thousand years. The increase is slightly larger
for an initially large eccentricity. Figure 3 shows the evolution
of the corresponding eccentricities. There is no variationfor an
initially null eccentricity, and the larger the initial eccentricity,
the larger its further increase.

Figure 4 shows the evolution of the semi-major axis for the
same body in the case of counter-rotation. In less than 6000
years, the body falls onto the star, or at least beyond the in-
ner frontier between the wind and the magnetosphere (which
is the limit of validity of the present calculations). In thein-
ner magnetosphere, the magnetic thrust still acts onto the body
(although differently), and a rapid fall onto the star is expected.

5. Conclusion

A planet orbiting around a pulsar develops a system of
Alfvén wings, caused by its interaction with the sub-Alfvénic
Poynting-flux-dominated pulsar wind. A system of strong elec-
tric currents is set, which exerts an ortho-radial force upon the
planet that can, if the magnetic to mechanical energy coupling
is efficient, have an incidence on the planetary orbit.

The data in Table 1 show that the orbital drift of a planet
around a millisecond pulsar is negligible. In particular, this ef-
fect cannot be involved in an explanation for the very low ec-
centricity of the four known planets orbiting a pulsar. But,for
bodies with a diameter of a few kilometres orbiting around
a P = 1 second pulsar, the drifts occur on time scales that
are short in comparison with the time of evolution of an iso-
lated pulsar. For bodies orbiting in the same direction as the
star’spin (the orbital angular momenta being in the same di-
rection as the star’s angular momentum) this force tends to in-
crease the semi-major axis and the eccentricity. For bodiesin
counter-rotation (the two angular momentum having opposite
directions), this force tends to decrease the eccentricityand the
semi-major axis, favouring the precipitation of the body onto
the neutron star. If the bodies falling into the pulsar’s magne-
tosphere studied by Cordes & Shannon (2008) fall under the
influence of the Alfvén wings, then these object were, before
their fall, in counter-rotation with the the neutron star. Rocks
and asteroids in counter-rotation may come directly from the
fall back after the supernova explosion. They may as well come
from recent collisions. As suggested by Cordes & Shannon
(2008) the smaller bodies (about 1 metre) falling toward the
star, and evaporating in its vicinity, may cause a momentary
interruption of the pulsar’s radio emissions. It is also possi-
ble that the fall of a larger object on the star’s crust powers
transient high energy emissions, such as those observed with
soft gamma-ray repeaters. This might be particularly relevant
for those associated to pulsars with a "standard" magnetic field
(Rea et al. 2010) or with the Crab nebula (Abdo et al. 2011).
These aspects of the question remain to be explored

More generally, the force caused by Alfvén wings may have
consequences on the dynamics of fall-back accretion discs,and
onto the formation of second generation planets around pulsars.
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Ekşi, K. Y., Hernquist, L., & Narayan, R. 2005, The

Astrophysical Journal, 623, L41



Mottez and Heyvaerts: magnetic thrust 5

Table 1. Electric potential drop, total electric current associated to the Alfvén wing. Electrical energẏEJmax dissipated in the Alfvén wing.
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Fig. 2. Evolution of the semi-major axis of a 1 km sized body as a
function of time, under the influence of the magnetic thrust.The body
orbits in the same direction as the pulsar’ spin. The four curves are
given for four different values of the initial eccentricity.
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Fig. 3. Evolution of the eccentricity in the same cases as in Fig. 2.
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Fig. 4. Evolution of the semi-major axis of a 1 km sized body as a
function of time, under the influence of the magnetic thrust.The body
orbits in the opposite direction to the pulsar’ spin. The four curves are
given for four different values of the initial eccentricity.


