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Abstract

We present new solutions in terms of elementary functions of the multi-component non-

linear Schrödinger equations and known solutions of the Davey-Stewartson equations such as

multi-soliton, breather, dromion and lump solutions. These solutions are given in a simple

determinantal form and are obtained as limiting cases in suitable degenerations of previously

derived algebro-geometric solutions. In particular we present for the �rst time breather and

rational breather solutions of the multi-component nonlinear Schrödinger equations.

1 Introduction

One of the signi�cant advances in mathematical physics at the end of the 19th century has been
the discovery by Gardner, Greene, Kruskal and Miura [18] of the applicability of the Inverse
Scattering Transform (IST) to the Korteweg-de Vries equation, and the construction of multi-
soliton solutions. The most important physical property of solitons is that they are localized
wave packets which survive collisions with other solitons without change of shape. For a guide
to the vast literature on solitons, see for instance [31, 10]. Existence of soliton solutions to the
nonlinear Schrödinger equation (NLS)

i
∂ψ

∂t
+
∂2ψ

∂x2
+ 2ρ |ψ|2 ψ = 0, (1.1)

where ρ = ±1, was proved by Zakharov and Shabat [42] using a modi�cation of the IST. The NLS
equation is a famous nonlinear dispersive partial di�erential equation with many applications,
e.g. in hydrodynamics (deep water waves), plasma physics and nonlinear �ber optics. The N -
soliton solutions to both the self-focusing NLS equation (ρ = 1), as well as the defocusing NLS
equation (ρ = −1), can also be computed by Darboux transformations [28], Hirota's bilinear
method (see e.g. [20, 34, 9]) or Wronskian techniques (see [17, 30, 16]). Hirota's method relies
on a transformation of the underlying equation to a bilinear equation. The resulting multi-soliton
solutions are expressed in the form of polynomials in exponential functions. Wronskian techniques
formulate the N -soliton solutions in terms of the Wronskian determinant of N functions. This
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method allows a straightforward direct check that the obtained solutions satisfy the equation
since di�erentiation of a Wronskian is simple. On the other hand, multi-soliton solutions of
(1.1) can be directly derived from algebro-geometric solutions when the associated hyperelliptic
Riemann surface degenerates into a Riemann surface of genus zero, see for instance [7].

In the present paper, we construct solutions in terms of elementary functions of two gener-
alizations of the NLS equation (1.1): the multi-component NLS equation (n-NLS), where the
number of dependent variables is increased, and the Davey-Stewartson equation (DS), an in-
tegrable generalization to 2 + 1 dimensions. The solutions of n-NLS and DS presented in this
paper are obtained by degenerating algebro-geometric solutions, previously investigated by the
author in [22] using Fay's identity [29]. This method for �nding solutions in terms of elementary
functions has not been applied to n-NLS and DS so far. It provides a uni�ed approach to various
solutions of n-NLS and DS expressed in terms of a simple determinantal form, and allows to
present new solutions to the multi-component NLS equation in terms of elementary functions.

One way to generalize the NLS equation is to increase the number of dependent variables in
(1.1). This leads to the multi-component nonlinear Schrödinger equation

i
∂ψj
∂t

+
∂2ψj
∂x2

+ 2

(
n∑
k=1

sk|ψk|2
)
ψj = 0, j = 1, . . . , n, (1.2)

denoted by n-NLSs, where s = (s1, . . . , sn), sk = ±1. Here ψj(x, t) are complex valued func-
tions of the real variables x and t. The case n = 1 corresponds to the NLS equation. The
two-component NLS equation (n = 2) is relevant in the study of electromagnetic waves in
optical media in which the electric �eld has two nontrivial components. Integrability of the
two-component NLS equation in the case s = (1, 1) was �rst established by Manakov [25]. In
optical �bers, for arbitrary n ≥ 2, the components ψj in (1.2) correspond to components of the
electric �eld transverse to the direction of wave propagation. These components of the transverse
�eld form a basis of the polarization states. Integrability for the multi-component case with any
n ≥ 2 and sk = ±1 was established in [38]. Multi-soliton solutions of (1.2) were considered in a
series of papers, see for instance [25, 35, 36, 23, 1].

In this paper, we present a family of dark and bright multi-solitons, breather and rational
breather solutions to the multi-component NLS equation. This appears to be the �rst time that
breathers and rational breathers are given for the multi-component case. The notion of a dark
soliton refers to the fact that the solution tends asymptotically to a non-zero constant, i.e., it
describes a darkening on a bright background, whereas the bright soliton is a localized bright spot
being described by a solution that tends asymptotically to zero. The name 'breather' re�ects
the behavior of the pro�le which is periodic in time or space and localized in space or time.
It is remarkable that degenerations of algebro-geometric solutions to the multi-component NLS
equation lead to the breather solutions, well known in the context of the one-component case as
the soliton on a �nite background [3] (breather periodic in space), the Ma breather [24] (breather
periodic in time) and the rational breather [33]. In the NLS framework, these solutions have
been suggested as models for a class of extreme, freak or rogue wave events (see e.g. [19, 32, 4]).
A family of rational solutions to the focusing NLS equation was constructed in [13] and was
rediscovered recently in [11] via Wronskian techniques. Here we give for the �rst time a family
of breather and rational breather solutions of the multi-component NLS equation. For the one
component case, our solutions consist of the well known breather and Peregrine breather of the
focusing NLS equation. For the multi-component case, we �nd new pro�les of breathers and
rational breathers which do not exist in the scalar case.
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Another way to generalize the NLS equation is to increase the number of spatial dimensions
to two. This leads to the DS equations,

iψt + ψxx − α2 ψyy + 2 (Φ + ρ |ψ|2)ψ = 0,

Φxx + α2 Φyy + 2ρ |ψ|2xx = 0, (1.3)

where α = i, 1 and ρ = ±1; ψ(x, y, t) and Φ(x, y, t) are functions of the real variables x, y and
t, the latter being real valued and the former being complex valued. In what follows, DS1ρ

corresponds to the case α = i, and DS2ρ to α = 1. The DS equation (1.3) was introduced
in [12] to describe the evolution of a three-dimensional wave package on water of �nite depth.
Complete integrability of the equation was shown in [5]. A main feature of equations in 1 + 1
dimensions is the existence of soliton solutions which are localized in one dimension. Solutions
of the 2 + 1 dimensional integrable equations which are localized only in one dimension (plane
solitons) were constructed in [2, 6]. Moreover, various recurrent solutions (the growing-and-
decaying mode, breather and rational growing-and-decaying mode solutions) were investigated
in [40]. The spectral theory of soliton type solutions to the DS1 equation (called dromions) with
exponential fall o� in all directions on the plane, and their connection with the initial-boundary
value problem, have been studied by di�erent methods in a series of papers [8, 15, 39, 37]. The
lump solution (a rational non-singular solution) to the DS2− equation was discovered in [6].

Here we present a family of dark multi-soliton solutions to the DS1 and DS2+ equations, as
well as a family of bright multi-solitons for the DS1 and DS2− equations, obtained by degener-
ating algebro-geometric solutions. Moreover, a class of breather and rational breather solutions
of the DS1 equation is given. These solutions have a very similar appearance to those in 1 + 1
dimensions. In this paper it is shown how the simplest solutions, the dromion and the lump
solutions can be derived from algebro-geometric solutions.

The paper is organized as follows: Section 2 contains various facts from the theory of theta
functions and identities due to Fay. These identities were used to construct algebro-geometric
solutions of n-NLS and DS equations in [22], and will be needed for the degeneration of the
underlying theta-functional solutions. Section 3 provides technical tools dealing with the degen-
eration of Riemann surfaces. We present a method which allows to degenerate algebro-geometric
solutions associated to an arbitrary Riemann surface that can be applied to general integrable
equations. In Section 4 solutions in terms of elementary functions to the complexi�ed n-NLS
equation are derived by degenerating algebro-geometric solutions; for an appropriate choice of
the parameters one gets multi-solitonic solutions, and for the �rst time breather and rational
breather solutions to the multi-component NLS equation (1.2). In Section 5 a similar program is
carried out for the DS equations; well known solutions such as multi-solitons, dromion or lump
are rediscovered from an algebro-geometric approach.

2 Theta functions and Fay's identity

Solutions of equations (1.2) and (1.3) in terms of the multi-dimensional theta function were dis-
cussed in [22]. In this section we recall some facts from the construction of these solutions which
will be used in the following to get particular solutions as limiting cases of algebro-geometric
solutions.
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2.1 Theta functions

Let Rg be a compact Riemann surface of genus g > 0. Denote by {Aj ,Bj}gj=1 a canonical
homology basis, and by {ωj}gj=1 the dual basis of holomorphic di�erentials normalized via∫

Ak

ωj = 2iπδk, j k, j = 1, . . . , g. (2.1)

The matrix B of B-periods of the normalized holomorphic di�erentials with entries (B)kj =∫
Bk ωj is symmetric and has a negative de�nite real part. The theta function with (half integer)

characteristic δ = [δ′, δ′′] is de�ned by

Θ[δ](z|B) =
∑
m∈Zg

exp
{
1
2〈B(m + δ′),m + δ′〉+ 〈m + δ′, z + 2iπδ′′〉

}
(2.2)

for any z ∈ Cg; here δ′, δ′′ ∈
{

0, 12
}g

are the vectors of characteristic and 〈., .〉 denotes the
scalar product 〈u,v〉 =

∑
i ui vi for any u,v ∈ Cg. The theta function Θ[δ](z) is even if the

characteristic δ is even i.e, 4 〈δ′, δ′′〉 is even, and odd if the characteristic δ is odd, i.e., 4 〈δ′, δ′′〉
is odd. An even characteristic is called non-singular if Θ[δ](0) 6= 0, and an odd characteristic is
called non-singular if the gradient ∇Θ[δ](0) is non-zero.

2.2 Corollaries of Fay's identity

Let us �rst introduce some notation. Let ka denote a local parameter near a ∈ Rg. Consider the
following expansion of the normalized holomorphic di�erentials ωj near a,

ωj(p) = (Va, j +Wa, j ka(p) + o (ka(p))) dka(p), (2.3)

where p lies in a neighbourhood of a, and Va, j ,Wa, j ∈ C. Let us denote by Da the operator of
directional derivative along the vector Va = (Va,1, . . . , Va,g)

t:

DaF (z) =

g∑
j=1

∂zjF (z)Va,j = 〈∇F (z),Va〉 , (2.4)

where F : Cg −→ C is an arbitrary function, and denote by D′a the operator of directional
derivative along the vector Wa = (Wa,1, . . . ,Wa,g)

t.
Now let δ be a non-singular odd characteristic. For any z ∈ Cg and any distinct points

a, b ∈ Rg, the following two versions of Fay's identity [14] hold (see [29] and [22])

DaDb ln Θ(z) = q1 + q2
Θ(z + r) Θ(z− r)

Θ(z)2
, (2.5)

D′a ln
Θ(z + r)

Θ(z)
+D2

a ln
Θ(z + r)

Θ(z)
+
(
Da ln

Θ(z + r)

Θ(z)
−K1

)2
+ 2D2

a ln Θ(z) +K2 = 0, (2.6)

where the scalars qi,Ki for i = 1, 2 depend on the points a, b and are given by

q1(a, b) = DaDb ln Θ[δ](r), (2.7)

q2(a, b) =
Da Θ[δ](0)Db Θ[δ](0)

Θ[δ](r)2
, (2.8)
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K1(a, b) =
1

2

D′a Θ[δ](0)

Da Θ[δ](0)
+Da ln Θ[δ](r), (2.9)

K2(a, b) = −D′a ln Θ(r)−D2
a ln (Θ(r) Θ(0))−

(
Da ln Θ(r)−K1(a, b)

)2
. (2.10)

Here we used the notation r =
∫ b
a ω where ω = (ω1, . . . , ωg)

t is the vector of the normalized
holomorphic di�erentials.

2.3 Integral representation of q2(a, b) and K1(a, b)

Quantities q2(a, b) and K1(a, b) de�ned in (2.8) and (2.9) respectively, admit integral representa-
tion which will be more convenient for our purposes. These integral representations follow from
the fact that meromorphic di�erentials normalized by the condition of vanishing A-periods can
be expressed in terms of theta functions.

Let a, b ∈ Rg be two distinct points connected by a contour which does not intersect A and
B-cycles. Hence we can de�ne the normalized meromorphic di�erential of the third kind Ωb−a
which has residue 1 at b and residue −1 at a. Now let a ∈ Rg, and N ∈ N with N > 1. The

normalized meromorphic di�erential of the second kind Ω
(N)
a has only one singularity at the point

a and is of the form

Ω(N)
a (p) =

(
1

ka(p)N
+O(1)

)
dka(p), p ∈ Rg, (2.11)

where ka is a local parameter in a neighbourhood of a.

Proposition 2.1. Let a, b ∈ Rg be distinct points. Denote by ka and kb local parameters in a
neighbourhood of a and b respectively. The quantities q2(a, b) and K1(a, b) de�ned in (2.8) and
(2.9) respectively admit the following integral representations:

q2(a, b) = − lim
b̃→b
ã→a

[(
ka(ã) kb(b̃)

)−1
exp

{∫ b̃

ã
Ωb−a(p)

}]
, (2.12)

where the integration contour does not cross any cycle of canonical basis, and

K1(a, b) = lim
ã→a

[∫ ã

c
Ω(2)
a (p) +

1

ka(ã)

]
−
∫ b

c
Ω(2)
a (p), (2.13)

where c is an arbitrary point on Rg.

Proof of (2.12) can be found in [22], where similar statements lead to (2.13).

3 Uniformization map and degenerate Riemann surfaces

It is well known that solutions in terms of theta functions are almost periodic due to the pe-
riodicity properties of the theta functions. In the limit when the Riemann surface degenerates
to a surface of genus zero, periods of the surface diverge, and the theta series breaks down to
elementary functions. Whereas this procedure is well-known in the case of a hyperelliptic surface,
i.e., a two-sheeted branched covering of the Riemann sphere, where such a degeneration consists
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in colliding branch points pairwise, it has not been applied so far to theta-functional solutions
on non-hyperelliptic surfaces.

We present here a method to treat this case based on the uniformization theorem for Riemann
surfaces. In particular, we show that the theta function tends to a �nite sum of exponentials in
the limit when the arithmetic genus of the associated Riemann surface drops to zero, and give
explicitly the constants (2.7)-(2.10) in this limit. As illustrated in Section 4 and 5, particular
solutions of n-NLS and DS such as multi-solitons, well known in the theory of soliton equations,
arise from such degenerations of algebro-geometric solutions.

3.1 Degeneration to genus zero

Let us �rst recall some techniques used for degenerating Riemann surfaces (see [14] for more
details). There exist basically two ways for degenerating a Riemann surface by pinching a cycle:
a cycle homologous to zero in the �rst case, and a cycle non-homologous to zero in the second
case. The �rst degeneration leads to two Riemann surfaces whose genera add up to the genus of
the pinched surface, whereas the limiting situation for the second degeneration is one Riemann
surface of genus g−1 with two points identi�ed, g being the genus of the non-degenerated surface.
In both cases, locally one can identify the pinched region to a hyperboloid

y2 = x2 − ε, (3.1)

where ε > 0 is a small parameter, such that the vanishing cycle coincides with the homology
class of a closed contour around the cut [−

√
ε,
√
ε] in the x-plane. In what follows, we deal with

the degeneration of the second type and make consecutive pinches until the surface degenerates
to genus zero.

To degenerate the Riemann surface Rg of genus g into a Riemann surface R0 of genus zero,
we pinch all Ai-cycles into double points. After desingularization one gets R0, and each double
point corresponds to two di�erent points on R0, denoted by ui and vi for i = 1, . . . , g. In this
limit, holomorphic normalized di�erentials ωi become normalized di�erentials of the third kind

with poles at ui and vi. Note that the normalized di�erential of the second kind Ω
(N)
a with a

pole of order N > 1 at a remains a di�erential of the second kind with the same order of the pole
after degeneration to genus zero. We keep the same notation for the di�erential of the second
kind on the degenerated surface.

The compact Riemann surface R0 of genus zero is conformally equivalent to the Riemann
sphere with the coordinate w. This mapping between R0 and the w-sphere is called the uni-
formization map and we denote it by w(p) = w for any p ∈ R0. Therefore, in what follows we
let R0 stand also for the Riemann sphere with the coordinate w.

Meromorphic di�erentials on R0 can be constructed using the fact that in genus zero, such
di�erentials are entirely de�ned by their behaviors near their singularities. This leads to the
following third and second kind di�erentials on R0:

• Di�erentials of the third kind:

Ωvi−ui =

(
1

w − wvi
− 1

w − wui

)
dw. (3.2)

• Di�erentials of the second kind:

6



Ω(2)
a =

1

k′a(wa)

dw

(w − wa)2
, (3.3)

where ka is a local parameter in a neighbourhood of wa ∈ R0 and the prime denotes the derivative

with respect to the argument. This is the di�erential on R0, obtained from Ω
(2)
a (2.11) de�ned

on Rg, in the limit as the surface Rg degenerates to R0. The factor (k′a(wa))
−1 ensures that the

biresidue of Ω
(2)
a with respect to the local parameter ka is 1 as before the degeneration.

3.2 Degenerate theta function

To study the theta function with zero characteristic in the limit when the genus tends to zero,
let us �rst analyse the behavior of the matrix B of B-periods of the normalized holomorphic
di�erentials. Since holomorphic normalized di�erentials ωi become di�erentials of the third kind
with poles at ui and vi, for a small parameter ε > 0, elements (B)ik of the matrix B have the
following behavior

(B)ik =

∫ vi

ui

Ωvk−uk +O(ε), i 6= k, (3.4)

(B)kk = ln ε+O(1).

Therefore, the real parts of diagonal terms of the Riemann matrix tend to −∞ when ε tends to
zero, that is when the Riemann surface degenerates into the Riemann surface R0. It follows that
the theta function (2.2) with zero characteristic tends to one, since only the term corresponding
to the vector m = 0 in the series may give a non-zero contribution.

To get non constant solutions of (1.2) and (1.3) after the degeneration of the Riemann surface,
let us write the argument of the theta-function in the form Z − D, where D is a vector with
components Dk = (1/2) (B)kk + dk, for some dk ∈ C independent of ε. Hence for any Z ∈ Cg
one gets

lim
ε→0

Θ(Z−D) =
∑

m∈{0,1}g
exp

 ∑
1≤i<k≤g

(B)ikmimk +

g∑
k=1

mk (Zk − dk)

 . (3.5)

Here we use the same notation for the quantities (B)ik on the degenerated surface. The expression
in the right hand side of (3.5) can be put into a determinantal form (see Proposition 3.1) which
will be used in the whole paper. This determinantal form can be obtained from the following
representation of the components (B)ik after degeneration, obtained from (3.2) and (3.4),

(B)ik = ln

{
wvi − wvk
wvi − wuk

wui − wuk
wui − wvk

}
. (3.6)

Hence, following [27] one gets

Proposition 3.1. For any z ∈ Cg the following holds

∑
m∈{0,1}g

exp

 ∑
1≤i<k≤g

(B)ikmimk +

g∑
k=1

mk zk

 = det(T), (3.7)
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where T is a g × g matrix with entries

(T)ik = δi,k +
wvi − wui
wvi − wuk

e
1
2
(zi+zk). (3.8)

3.3 Degenerate constants

The next step is to give explicitly the quantities (independent of the vector z) appearing in (2.5)
and (2.6), i.e., Va,Wa, r, q2, etc, after the degeneration to genus zero. We use the same notation
for these quantities on the degenerated surface. For any distinct points a, b ∈ R0, it follows from
(2.3) and (3.2) that

Va,k =
1

k′a(wa)

(
1

wa − wvk
− 1

wa − wuk

)
, (3.9)

Wa,k =
1

k′a(wa)
2

(
− 1

(wa − wvk)2
+

1

(wa − wuk)2

)
− k′′a(wa)

k′a(wa)
2
Va,k , (3.10)

rk = ln

{
wb − wvk
wb − wuk

wa − wuk
wa − wvk

}
, (3.11)

for k = 1, . . . , g. Moreover, from the integral representation of q2(a, b) and K1(a, b) (see (2.12)
and (2.13)), using (3.2) and (3.3) one gets

q2(a, b) =
1

k′(wa)k′(wb)(wa − wb)2
, (3.12)

K1(a, b) =
1

k′(wa)(wb − wa)
− 1

2

k′′(wa)

k′ 2(wa)
. (3.13)

Putting z = 0 in (2.5) and taking the limit ε→ 0 leads to

q1(a, b) = − q2(a, b), (3.14)

due to the fact that the theta function tends to one and that its partial derivatives tend to zero.
In the same way, taking the limit ε→ 0 in (2.6) one gets

K2(a, b) = −
(
K1(a, b)

)2
. (3.15)

4 Degenerate algebro-geometric solutions of n-NLS

One way to construct solutions of (1.2) is �rst to solve its complexi�ed version, a system of 2n

equations of 2n dependent variables
{
ψj , ψ

∗
j

}n
j=1

,

i
∂ψj
∂t

+
∂2ψj
∂x2

+ 2

(
n∑
k=1

ψk ψ
∗
k

)
ψj = 0,

−i
∂ψ∗j
∂t

+
∂2ψ∗j
∂x2

+ 2

(
n∑
k=1

ψk ψ
∗
k

)
ψ∗j = 0, j = 1, . . . , n, (4.1)
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where ψj(x, t) and ψ∗j (x, t) are complex valued functions of the real variables x and t. This
system reduces to the n-NLSs equation (1.2) under the reality conditions

ψ∗j = sj ψj , j = 1, . . . , n. (4.2)

Algebro-geometric solutions of the system (4.1) were obtained in [22] by the use of the degenerated
versions (2.5) and (2.6) of Fay's identity; these solutions are given by:

Theorem 4.1. Let Rg be a compact Riemann surface of genus g > 0 and let f be a meromorphic
function of degree n + 1 on Rg. Let za ∈ C be a non critical value of f , and consider the �ber
f−1(za) = {a1, . . . , an+1} over za. Choose the local parameters kaj (p) = f(p)− za, for any point
p ∈ Rg lying in a neighbourhood of aj. Let D ∈ Cg and Aj 6= 0 be arbitrary constants. Then the

following functions {ψj}nj=1 and
{
ψ∗j

}n
j=1

are solutions of the system (4.1)

ψj(x, t) = Aj
Θ(Z−D + rj)

Θ(Z−D)
exp {i (−Ej x+ Fj t)} ,

ψ∗j (x, t) =
q2(an+1, aj)

Aj

Θ(Z−D− rj)

Θ(Z−D)
exp {i (Ej x− Fj t)} . (4.3)

Here Θ denotes the theta function (2.2) with zero characteristic, and Z = iVan+1 x+ iWan+1 t,
where vectors Van+1 and Wan+1 are de�ned in (2.3). Moreover, rj =

∫ aj
an+1

ω, where ω is the
vector of normalized holomorphic di�erentials, and the scalars Ej , Fj are given by

Ej = K1(an+1, aj), Fj = K2(an+1, aj)− 2
n∑
k=1

q1(an+1, ak). (4.4)

The scalars qi,Ki for i = 1, 2 are de�ned in (2.7)-(2.10).

The proof of this theorem is based on the following identity:

n+1∑
k=1

Vak = 0, (4.5)

which is satis�ed by the vectors Vak associated to the �ber f−1(za) = {a1, . . . , an+1} over za.
We shall use this relation to construct solutions of (1.2) in terms of elementary functions.

Remark 4.1. The relationship between solutions of the Kadomtesv-Petviashvili (KP1) equation
(generalization of the KdV equation to two spatial variables, see, for instance, [7]) and solutions
of the multi-component NLS equation was investigated in [22]. This relationship implies that all
solutions of equation (1.2) constructed in this paper provide also solutions of the KP1 equation
as explained in [22].

In the next section, solutions of (4.1) in terms of elementary functions are derived from
solutions (4.3) by degenerating the associated Riemann surface Rg into a Riemann surface of
genus zero. Imposing reality conditions (4.2), by an appropriate choice of the parameters one
gets special solutions of (1.2) such as multi-solitons and breathers. To the best of our knowledge,
such an approach to multi-solitonic solutions of n-NLSs has not been studied before. Moreover,
breather and rational breather solutions to the multi-component case are derived here for the
�rst time.
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4.1 Determinantal solutions of the complexi�ed n-NLS equation

Solutions of the complexi�ed scalar NLS equation in terms of elementary functions were obtained
in [7], when the genus of the associated hyperelliptic spectral curve tends to zero. For speci�c
choices of parameters, they get dark and bright multi-solitons of the NLS equation, as well
as quasi-periodic modulations of the plane wave solutions previously constructed in [21]. A
direct generalization of this approach to the multi-component case is not obvious, due to the
complexity of the associated spectral curve. To bypass this problem and to construct spectral
data associated to algebro-geometric solutions (4.3) in the limit when the genus tends to zero,
we use the uniformization map between the degenerate Riemann surface and the sphere. Details
of such a degeneration were presented in Section 3.

Let us discuss solutions of n-NLS in genus zero. Consider the following meromorphic function
f(w) on the sphere:

f(w) = α
n+1∏
i=1

w − wai
w − wbi

(4.6)

where waj 6= wbk for all j, k, waj 6= wak for j 6= k, and α ∈ C. Without loss of generality,
put α = 1. This function is of degree n + 1 on the sphere, hence it represents a genus zero
(n+1)-sheeted branched covering of CP1. Recall that a meromorphic function f on the sphere is
called real if its zeros as well as its poles are real or pairwise conjugate.

If not stated otherwise, the local parameter in a neighbourhood of a regular point wa (i.e.
f ′(wa) 6= 0) is chosen to be ka(w) = f(w) − f(wa) for any w lying in a neighbourhood of wa.
Solutions of the complexi�ed system (4.1) associated to the meromorphic function f (4.6) on the
sphere are given by:

Proposition 4.1. Let j, k ∈ N satisfy 1 ≤ j ≤ n and 1 ≤ k ≤ g. Let f be a meromorphic
function (4.6) of degree n + 1 on the sphere, with complex zeros {wai}n+1

i=1 and complex poles
{wbi}

n+1
i=1 . Let d ∈ Cg and Aj 6= 0 be arbitrary constants. Moreover, assume that wuk , wvk ∈ C

satisfy
f(wuk) = f(wvk). (4.7)

Then the following functions are solutions of the complexi�ed system (4.1)

ψj(x, t) = Aj
det(Tj,1)
det(Tj,0)

exp{i (−Ej x+ Fj t)},

ψ∗j (x, t) =
q2(an+1, aj)

Aj

det(Tj,−1)
det(Tj,0)

exp{i (Ej x− Fj t)}. (4.8)

For β = −1, 0, 1, Tj,β denotes the g × g matrix with entries (3.8) where zjk = Zk − dk + β rj,k.
Here Zk = iVan+1,k x+iWan+1,k t, where the scalars Van+1,k and Wan+1,k are de�ned in (3.9) and
(3.10), and rj,k is de�ned in (3.11) with wa := wan+1 and wb := waj . The scalars Ej and Fj are
given by

Ej = K1(an+1, aj), Fj = − (K1(an+1, aj))
2 + 2

n∑
k=1

q2(an+1, ak),

where q2(an+1, aj) and K1(an+1, aj) are de�ned in (3.12) and (3.13).
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Proof. Consider solutions (4.3) associated to a Riemann surface Rg of genus g, and assume
f(ai) = 0 for any 1 ≤ i ≤ n + 1. Pinch all A-cycles of the associated Riemann surface Rg into
double points, as explained in Section 3. After desingularization, the meromorphic function f
of degree n+ 1 on Rg becomes a meromorphic function of degree n+ 1 on the sphere, given in
general form by (4.6). In the limit considered here, the theta function tends to the determinantal
form (3.7). Quantities de�ned on the degenerated surface and independent of the variables x and
t were constructed in Section 3.3 and are given in (3.9)-(3.15). Condition (4.7) follows from the
fact that double points appearing after degeneration of Rg are desingularized into two distinct
points wuk and wvk having the same projection under the meromorphic function f . Note that
equation (4.5) holds in the limit, since by (2.3) and (4.6) one has

n+1∑
i=1

Vai,k =
1

f(wuk)
− 1

f(wvk)
(4.9)

which by (4.7) equals zero for k = 1, . . . , g.

Remark 4.2. Functions (4.8) give a family of solutions to the complexi�ed multi-component
NLS equation (4.1) depending on 3n+ g + 2 complex parameters: wai , wbi for 1 ≤ i ≤ n+ 1, dk
for 1 ≤ k ≤ g, and Aj for 1 ≤ j ≤ n.

Remark 4.3. The following transformations leave equation (4.1) invariant

ψj(x, t) −→ ψj
(
β x+ 2βλ t, β2 t

)
exp

{
−i
(
λx+ λ2 t

)}
,

ψ∗j (x, t) −→ β2 ψ∗j
(
β x+ 2βλ t, β2 t

)
exp

{
i
(
λx+ λ2 t

)}
, (4.10)

where λ = µβ−1 for any µ ∈ C and any β 6= 0. Such a transformation may be useful to simplify
the expressions in the obtained solutions and thus to facilitate the numerical implementation.

4.2 Multi-solitonic solutions of n-NLS

Imposing reality conditions (4.2) on the degenerate solutions (4.8) of the complexi�ed system,
one gets particular solutions of (1.2) such as dark and bright multi-solitons. Dark and bright
solitons di�er by the fact that the modulus of the �rst tends to a non zero constant and the
modulus of the second tends to zero when the spatial variable tends to in�nity. Such solutions
were obtained in [7] for the one component case by degenerating algebro-geometric solutions,
and describe elastic collisions between solitons. Elastic means that the solitons asymptotically
retain their shape and speed after interaction. The interaction of vector solitons is more complex
than the one of scalar solitons because inelastic collisions can appear in all components of one
solution (see for instance [1]).

In what follows N ∈ N with N ≥ 1.

4.2.1 Dark multi-solitons of n-NLSs, s 6= (1, . . . , 1).

Dark multi-soliton solutions of 2-NLSs were investigated in [35]. The dark N -soliton solution
derived here corresponds to elastic interactions between N dark solitons. Moreover, it is shown
that this type of solutions does not exist for the focusing multi-component nonlinear Schrödinger
equation, i.e., in the case where s = (1, . . . , 1).
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Proposition 4.2. Let j, k ∈ N satisfy 1 ≤ j ≤ n and 1 ≤ k ≤ N . Let f be a real meromorphic
function (4.6) of degree n+ 1 on the sphere, having n+ 1 real zeros {wai}n+1

i=1 . Choose θ ∈ R and
d ∈ RN . Moreover, assume that wuk , wvk ∈ C satisfy (4.7) and

wuk = wvk . (4.11)

Put sj = sign(f ′(wan+1)f ′(waj )). Then the following functions de�ne smooth dark N -soliton
solutions of n-NLSs, where s = (s1, . . . , sn) with s 6= (1, . . . , 1),

ψj(x, t) = Aj e
iθ det(Tj,1)

det(Tj,0)
exp {i (−Ej x+ Fj t)} . (4.12)

Here Aj = |q2(an+1, aj)|1/2, and the remaining notation is as in Proposition 4.1 with g = N .

Proof. Let us check that the functions ψj and ψ
∗
j de�ned in (4.8) satisfy reality conditions (4.2)

with sj = sign(f ′(wan+1)f ′(waj )). Put Aj = |q2(an+1, aj)|1/2 in (4.8). Then with the above

assumptions, it is straightforward to see that ψ∗j = sj ψj where sj = sign(q2(an+1, aj)), which by
(3.12) leads to sj = sign(f ′(wan+1)f ′(waj )). Moreover, with (4.11) it can be seen that condition
(4.5) is equivalent to

1

|wan+1 − wvk |2
+

n∑
j=1

f ′(wan+1)

f ′(waj )

1

|waj − wvk |2
= 0, (4.13)

for k = 1, . . . , N . Therefore, by (4.13) the quantity f ′(wan+1)f ′(waj ) cannot be positive for all j,
which yields s 6= (1, . . . , 1). The solutions are smooth since the denominator in (4.12) is a �nite
sum of real exponentials.

Remark 4.4. The dark N -soliton solutions (4.12) depend on N + 1 real parameters dk, θ and
a real meromorphic function f (4.6) de�ned by 2n + 2 real parameters. The solitons are dark
since the modulus of the ψj tends to Aj when x ∈ R tends to in�nity.

Example 4.1. With the notation of Proposition 4.1 and 4.2, functions ψj (4.12) are given for
N = 1 by

ψj(x, t) = Aj
1 + eZ1−d1+rj,1

1 + eZ1−d1 ei (−Ejx+Fjt).

4.2.2 Bright multi-solitons of n-NLSs.

Bright multi-solitons of the NLS equation presented in [7] were obtained by collapsing all branch
cuts of the underlying hyperelliptic curve of the algebro-geometric solutions. This way they get
solutions expressed as the quotient of a �nite sum of exponentials similar to dark multi-solitons,
except that the modulus of the solutions tends to zero instead of a non-zero constant when the
spatial variable tends to in�nity. Following this approach, a family of bright multi-solitons of
n-NLSs is obtained here by further degeneration of (4.8).

For the multi-component case there exist two sorts of bright soliton interactions: elastic
or inelastic. Inelastic collisions between bright solitons were investigated in [36] for the two
component case and in [23] for the multi-component case. The family of bright multi-solitons of
n-NLSs obtained here describes the standard elastic collision with phase shift. Notice that there
exist various ways to degenerate algebro-geometric solutions. Therefore, it appears possible that
bright solitons with inelastic collision can be obtained by di�erent degenerations.
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Proposition 4.3. Let j ∈ N satisfy 1 ≤ j ≤ n. Take waj , θ ∈ R and choose d̂ ∈ C2N such that

d̂2k−1 = d̂2k. Moreover, let wu2k , wv2k−1
∈ C satisfy

wu2k = wv2k−1
(4.14)

for 1 ≤ k ≤ N . Choose γj ∈ R and put sj = sign(γj). Then the following functions give bright
N -soliton solutions of n-NLSs

ψj(x, t) = Aj e
iθ det(Kj)

det(M)
, (4.15)

where Aj = |γj |1/2 |waj |−1. Here Kj and M are 2N × 2N matrices with entries (Kj)ik and (M)ik
given by:

- for i and k even: (Kj)ik = δ2,i
wui
wuk

e
1
2
(z2+zk+r̂j,2+r̂j,k) + δi,k − δ2,i δ2,k

+ δ2,k (δ2,i − 1)
wui
wu2

e
1
2
(zi−z2+r̂j,i−r̂j,2)

- for i even and k odd: (Kj)ik = α2
uk

wui
αvi − αuk

αv2 − αvi
αv2 − αuk

e
1
2
(zi+zk+r̂j,i+r̂j,k)

- for i odd and k even: (Kj)ik =
wvi

wvi − wuk
e

1
2
(zi+zk+r̂j,i+r̂j,k)

- for i and k odd: (Kj)ik = δi,k

- for i, k even, or i, k odd: (M)ik = δi,k

- for i even and k odd: (M)ik = αuk αvi
wui

αvi − αuk
e

1
2
(zi+zk)

- for i odd and k even: (M)ik = − wvi
wvi − wuk

e
1
2
(zi+zk).

Here αv2k = αu2k−1
where

αu2k−1
=

n∑
j=1

γj

(
1

waj
− 1

waj − wv2k−1

)
. (4.16)

Moreover, zk is a linear function of the variables x and t satisfying z2k = z2k−1, given by

z2k−1 = iαu2k−1
x+ iα2

u2k−1
t− d̂2k−1.

The scalars r̂j,k satisfy r̂j,2k = − r̂j,2k−1 where

r̂j,2k−1 = ln

{
waj − wv2k−1

waj wv2k−1
αu2k−1

}
.

Proof. Consider functions (4.8) obtained from (4.3) for the choice of local parameters kai :

kai(w) = (γi f
′(wai))

−1f(w)
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for any w lying in a neighbourhood of wai , i = 1, . . . , n+1, and assume g = 2N . Hence condition
(4.5) becomes

n+1∑
i=1

γi

(
1

wai − wvk
− 1

wai − wuk

)
= 0 (4.17)

for k = 1, . . . , N . Now put Aj = |q2(an+1, aj)|1/2 in (4.8), where

q2(an+1, aj) = γn+1 γj (wan+1 − waj )−2.

Choose a small parameter ε > 0 and de�ne dk = − ln ε+ d̂k, for k = 1, . . . , 2N, and

wu2k−1
= wan+1 + ε2 α−1u2k−1

, wv2k = wan+1 + ε2 α−1v2k , (4.18)

for k = 1, . . . , N . Now put γn+1 = ε2 and consider in the determinant det(Tj,1) appearing in
(4.8) the substitution

L2i −→ L2i −
(Tj,1)2i,2
(Tj,1)2,2

L2,

for i = 2, . . . , N, where Lk denotes the line number k of the matrix Tj,1, and (Tj,1)i,k denotes
the entries of this matrix. In the limit ε→ 0, it can be seen that the functions ψj given in (4.8)
converge towards functions (4.15), where the following change of parameters (eliminating the
parameter wan+1) has been made:

waj → waj + wan+1 , wu2k → wu2k + wan+1 , wv2k−1
→ wv2k−1

+ wan+1 ,

for j = 1, . . . , n and k = 1, . . . , N . Analogous statements can be made for the functions ψ∗j .
By assumption, it is straightforward to see that the functions ψj and ψ

∗
j obtained in the limit

considered here satisfy the reality conditions ψ∗j = sj ψj with sj = sign(γj). Moreover, in this
limit condition (4.17) yields (4.16).

Remark 4.5. The bright N -soliton solutions (4.15) depend on 2N complex parameters d̂2k−1,
wv2k−1

, and 2n + 1 real parameters waj , γj , θ. Moreover, all parameters appearing in (4.15) are
free, contrary to the dark multi-solitons (4.12) where parameters wuk and wvk have to satisfy
the polynomial equation (4.7). The solitons are bright since the modulus of the ψj tends to zero
when x ∈ R tends to in�nity, in contrast to the dark solitons.

4.3 Breather and rational breather solutions of n-NLS

Solutions obtained here di�er from the dark multi-solitons studied in Section 4.2.1 by the reality
condition imposed on parameters wui and wvi in solutions (4.8) of the complexi�ed system for
i = 1, . . . , g. By an appropriate choice of parameters, one gets periodic solutions (breathers)
as well as rational solutions (rational breathers). The name `breather' re�ects the behavior of
the pro�le of the solution which is periodic in time (respectively, space) and localized in space
(respectively, time). This appears to be the �rst time that explicit breather and rational breather
solutions of n-NLSs are given.

In what follows N ∈ N with N ≥ 1.
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4.3.1 Multi-Breathers of n-NLSs.

Multi-breather solutions of n-NLSs are given in the following proposition. The N -breather solu-
tion corresponds to an elastic interaction between N breathers.

Proposition 4.4. Let j, k ∈ N satisfy 1 ≤ j ≤ n and 1 ≤ k ≤ N . Let f be a real meromorphic
function (4.6) of degree n+ 1 on the sphere, having n+ 1 real zeros {wai}n+1

i=1 . Choose θ ∈ R and

take d̂ ∈ C2N such that d̂2k−1 = d̂2k. Let wu2k , wu2k−1
, wv2k , wv2k−1

∈ C satisfy (4.7) and

wu2k = wv2k−1
, wu2k−1

= wv2k . (4.19)

Put sj = sign(f ′(wan+1)f ′(waj )). Then the following functions de�ne N -breather solutions of
n-NLSs

ψj(x, t) = Aj e
iθ det(Tj,1)

det(Tj,0)
exp {i (−Ej x+ Fj t)} , (4.20)

where Aj = |q2(an+1, aj)|1/2, and the remaining notation is the same as in Proposition 4.1 for
g = 2N .

Remark 4.6. Functions (4.20) cover a family of breather solutions of n-NLSs depending on N
complex parameters dk, a real parameter θ, and a real meromorphic function f (4.6) de�ned by
2n+ 2 real parameters.

To simplify the computation of the solutions, we apply transformation (4.10) to the solutions
(4.20), with β and λ given by

β = 1, λ =
1

2
f ′′(wan+1) f ′(wan+1)−2. (4.21)

Hence, the quantity f ′′(wan+1)f ′(wan+1)−2 Van+1,k in the expression (3.10) for the scalar Wan+1,k

disappears, as well as the quantity 1
2f
′′(wan+1)f ′(wan+1)−2 in the expression (3.13) for the scalar

K1(an+1, aj).

Example 4.2. Figure 1 shows a breather solution of the 4-NLSs equation with s = (−,−,+,−).
It corresponds to the following choice of parameters: wa1 = 10, wa2 = −5, wa3 = −1/3, wa4 =
1/4, wa5 = 1/2, and wu1 ≈ 0.55−0.11i with f(wu1) = 2i, wu2 ≈ −0.35+0.07i with f(wu2) = −2i.

Example 4.3. Figure 2 shows an elastic collision between two breather solutions of the 4-NLSs

equation with s = (−,+,+,−). It corresponds to the following choice of parameters: wa1 =
1/3, wa2 = 3, wa3 = 1/7, wa4 = 2, wa5 = 1, wb1 = −1, wb2 = 4, wb3 = −2, wb4 = 0, and
wu1 ≈ 0.55−0.11i with f(wu1) = 2i, wu2 ≈ −0.35+0.07i with f(wu2) = −2i, wu3 ≈ −0.91−0.52i
with f(wu3) = 10− 5i, and wu4 ≈ 14.46 + 5.32i with f(wu4) = 10 + 5i.

4.3.2 N-rational breathers of n-NLSs, for 1 ≤ N ≤ n.

Here we are interested in solutions of n-NLSs that can be expressed in the form of a ratio of
two polynomials (modulo an exponential factor). These solutions, called rational breathers, are
neither periodic in time nor in space, but are isolated in time and space. They are obtained
from breather solutions (4.20) in the limit when the parameters wv2k−1

and wu2k−1
tend to each

others, as well as the parameters wv2k and wu2k , for k = 1, . . . N . An appropriate choice of the
parameters di in (4.20) for i = 1, . . . , 2N , leads to limits of the form 0/0 in the expression for the
breather solutions. Thus, by performing a Taylor expansion of the numerator and denominator
in (4.20), one gets a family of N -rational breather solutions of n-NLSs.
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Figure 1: Breather of 4-NLS−−+−.

Figure 2: 2-breather of 4-NLS−++−.
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Proposition 4.5. Let N, j ∈ N satisfy 1 ≤ N ≤ n and 1 ≤ j ≤ n. Let f be a real meromorphic
function (4.6) of degree n+ 1 on the sphere, having n+ 1 real zeros {wai}n+1

i=1 . Choose θ ∈ R and

take d̂ ∈ C2N such that d̂2k = d̂2k−1 for 1 ≤ k ≤ N . Moreover, let wu2k−1
, wv2k ∈ C, 1 ≤ k ≤ N ,

be complex conjugate critical points of the meromorphic function f , i.e., they are solutions of
f ′(w) = 0, which is equivalent to

n+1∑
i=1

1

f ′(wai)

1

(w − wai)2
= 0. (4.22)

Put sj = sign(f ′(wan+1)f ′(waj )). Then the following functions give N -rational breathers of n-
NLSs

ψj(x, t) = Aj e
iθ det(Kj,1)

det(Kj,0)
exp {i (−Ej x+ Fj t)} , (4.23)

where Aj = |q2(an+1, aj)|1/2. For β = 0, 1, Kj,β denotes a 2N × 2N matrix with entries (Kj,β)i,k
given by:

- for i and k even: (Kj,β)ik = (1− δi,k)
1

wvi − wvk
− δi,k (zk + β r̂j,k)

- for i even and k odd: (Kj,β)ik =
1

wvi − wuk
- for i odd and k even: (Kj,β)ik = − 1

wui − wvk
- for i and k odd: (Kj,β)ik = − (1− δi,k)

1

wui − wuk
− δi,k (zk + β r̂j,k).

Here zk is a linear function of the variables x and t given by

zk = i V̂an+1,k x+ i Ŵan+1,k t− d̂k

for k = 1, . . . , 2N, where V̂an+1,2k = − V̂an+1,2k−1 and Ŵan+1,2k = − Ŵan+1,2k−1 with

V̂an+1,2k−1 =
1

f ′(wan+1)

1

(wan+1 − wu2k−1
)2
, Ŵan+1,2k−1 = − 1

f ′(wan+1)2
2

(wan+1 − wu2k−1
)3

for k = 1, . . . , N . Scalars r̂j,k satisfy r̂j,2k = − r̂j,2k−1 and are given by

r̂j,2k−1 = −
wan+1 − waj

(wan+1 − wu2k−1
) (waj − wu2k−1

)
.

Scalars Ej , Fj are de�ned by

Ej =
1

f ′(wan+1) (waj − wan+1)
, Fj = −E2

j + 2
n∑
k=1

q2(an+1, ak).
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Proof. To symplify the expression for the obtained solutions, apply the transformation (4.10)
to functions (4.20) with β and λ as in (4.21). Let ε > 0 be a small parameter and de�ne
dk = ε d̂k + iπ, for k = 1, . . . , 2N . Moreover, assume

wv2k−1
= wu2k−1

+ ε αv2k−1
, wu2k = wv2k + ε αu2k , (4.24)

for some αv2k−1
, αu2k ∈ C, where k = 1, . . . , N . Note that equation number k of system (4.9)

can be written as

n+1∑
j=1

1

f ′(waj )

f(wvk) f(wuk)

(waj − wvk) (waj − wuk)
= − f(wvk)− f(wuk)

wvk − wuk
. (4.25)

Hence, in the limit ε→ 0, equation (4.25) becomes

n+1∑
j=1

1

f ′(waj )

f(wv2k−1
)2

(waj − wv2k−1
)2

= − f ′(wv2k−1
),

and
n+1∑
j=1

1

f ′(waj )

f(wu2k)2

(waj − wu2k)2
= − f ′(wu2k),

for k = 1, . . . , N . Therefore, choose wv2k−1
and wu2k to be distinct critical points of the meromor-

phic function f for k = 1, . . . N, i.e., they are solutions of f ′(w) = 0, in such way that equation
(4.5) holds in the limit considered here. Since the condition f ′(w) = 0 is equivalent to solve a
polynomial equation of degree 2n, it follows that 1 ≤ N ≤ n. Now take the limit ε→ 0 in (4.20).
Note that parameters αv2k−1

, αu2k cancel in this limit, and the degenerated functions take the
form (4.23).

Remark 4.7. Functions (4.23) provide a family of rational breather solutions of n-NLSs de-
pending on N complex parameters dk, a real parameter θ, and a real meromorphic function f
(4.6) de�ned by 2n + 2 real parameters, chosen such that f admits complex conjugate critical
points.

Example 4.4. With the notation of Proposition 4.5 the functions ψj (4.23) for N = 1 are given
by

ψj(x, t) = Aj e
iθ B + (z1 + r̂j,1)(z1 − r̂j,1)

B + |z1|2
exp {i (−Ejx+Njt)} ,

where B = (2 Im(wu1))−2 .

Example 4.5. Figure 3 shows a rational breather solution of the 4-NLSs equation with s =
(+,+,+,+). It corresponds to the following choice of parameters: kak(w) = f ′(wak)f(w) for
k = 1, . . . , n + 1, with wa1 = 3, wa2 = 5, wa3 = 7, wa4 = 0, wa5 = 4, and wu1 ≈ 4.53 + 0.56i
being a solution of

∑n+1
i=1 (w − wai)−2 = 0. We observe that functions ψ2 and ψ3 coincide with

the Peregrine breather well known in the scalar case [33], whereas functions ψ1, ψ4 belong to a
new class of rational breathers which does not exist in the scalar case. This new type of rational
breathers emerges due to the higher degree of the meromorphic function associated to the solutions
of n-NLSs for n > 1.
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Figure 3: Rational breather of 4-NLS++++.

Figure 4: 2-rational breather of 4-NLS++++.
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Example 4.6. Figure 4 shows a 2-rational breather solution of the 4-NLSs equation with s =
(+,+,+,+). It corresponds to the following choice of parameters: kak(w) = f ′(wak)f(w) for
k = 1, . . . , n + 1, with wa1 = 3, wa2 = 5, wa3 = 7, wa4 = 0, wa5 = 4, and wu1 ≈ 4.53 + 0.56i,
wu3 ≈ 3.45 + 0.56i being solutions of

∑n+1
i=1 (w − wai)−2 = 0, and dk = 10. Variation of the

parameters dk leads to a displacement in the (x, t)-plane of the rational breathers appearing in
each of the pictures of Figure 4.

5 Degenerate algebro-geometric solutions of the DS equations

Solutions of the DS equations (1.3) in terms of elementary functions constructed here are obtained
analogously to the solutions of the n-NLS equation, therefore some details will be omitted. Let
us introduce the function φ := Φ + ρ|ψ|2, where ρ = ±1, and the characteristic coordinates
ξ = 1

2(x− iα y), η = 1
2(x+ iα y), α = i, 1 in (1.3). In these coordinates the DS equations become

iψt +
1

2
(∂2ξ + ∂2η)ψ + 2φψ = 0,

∂ξ∂ηφ+
ρ

2
(∂2ξ + ∂2η)|ψ|2 = 0. (5.1)

Recall that DS1ρ denotes the case α = i (here ξ and η are both real), and DS2ρ the case α = 1
(here ξ and η are pairwise conjugate).

To construct solutions of (5.1) in terms of elementary functions, let us �rst introduce its
complexi�ed version:

iψt +
1

2
(ψξξ + ψηη) + 2ϕψ = 0,

−iψ∗t +
1

2
(ψ∗ξξ + ψ∗ηη) + 2ϕψ∗ = 0, (5.2)

ϕξη +
1

2
((ψψ∗)ξξ + (ψψ∗)ηη) = 0,

where ϕ := Φ + ψψ∗. This system reduces to (5.1) under the reality condition:

ψ∗ = ρψ, (5.3)

which leads to ϕ = φ. Theta-functional solutions of (5.2) were studied in [22] and can be written
in the following form.

Theorem 5.1. Let Rg be a compact Riemann surface of genus g > 0, and let a, b ∈ Rg be
distinct points. Take arbitrary constants D ∈ Cg and A, κ1, κ2 ∈ C \ {0}, h ∈ C. Denote by ` a
contour connecting a and b which does not intersect cycles of the canonical homology basis. Then
for any ξ, η, t ∈ C, the following functions ψ, ψ∗ and ϕ are solutions of system (5.2)

ψ(ξ, η, t) = A
Θ(Z−D + r)

Θ(Z−D)
exp

{
−i
(
G1 ξ +G2 η −G3

t
2

)}
,

ψ∗(ξ, η, t) = − κ1κ2 q2(a, b)
A

Θ(Z−D− r)

Θ(Z−D)
exp

{
i
(
G1 ξ +G2 η −G3

t
2

)}
, (5.4)

ϕ(ξ, η, t) =
1

2
(ln Θ(Z−D))ξξ +

1

2
(ln Θ(Z−D))ηη +

h

4
.
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Here Z = iκ1Va ξ − iκ2Vb η + i (κ21Wa − κ22Wb)
t
2 , where the vectors Va,Vb and Wa,Wb

were introduced in (2.3). Moreover r =
∫
` ω, where ω is the vector of normalized holomorphic

di�erentials, and the scalars G1, G2, G3 are given by

G1 = κ1K1(a, b), G2 = κ2K1(b, a), (5.5)

G3 = κ21K2(a, b) + κ22K2(b, a) + h. (5.6)

Scalars q2(a, b),K1(a, b),K2(a, b) are de�ned in (2.8), (2.9), (2.10) respectively.

Remark 5.1. In the case where vectors Va and Vb satisfy Va + Vb = 0, as mentioned in [22],
solutions of the Davey-Stewartson equation become solutions of the NLS equation (1.1) under
an appropriate change of variables.

In this section, we study the behaviour of theta-functional solutions (5.4) of the complexi�ed
DS equations when the Riemann surface degenerates into a Riemann surface of genus zero.
Imposing the reality condition (5.3), for particular choices of the parameters one gets well-known
solutions such as multi-soliton, breather, rational breather, dromion and lump. This appears to
be the �rst time that such solutions of DS are derived from algebro-geometric solutions.

5.1 Determinantal solutions of the complexi�ed DS equations

Here solutions of the complexi�ed system (5.2) are given as a quotient of two determinants. In
the next subsections, this particular form will be more convenient to produce special solutions
of the DS equations (5.1).

Proposition 5.1. Let k ∈ N satisfy 1 ≤ k ≤ g. Let wa, wb, wuk , wvk , h ∈ C, and A, κ1, κ2 ∈
C \ {0}. Choose d ∈ Cg. Then the following functions are solutions of the system (5.2)

ψ(ξ, η, t) = A
det(T1)

det(T0)
exp

{
−i (G1 ξ +G2 η −G3

t
2)
}
,

ψ∗(ξ, η, t) = − κ1 κ2
A (wa − wb)2

det(T−1)
det(T0)

exp
{

i (G1 ξ +G2 η −G3
t
2)
}
, (5.7)

ϕ(ξ, η, t) =
1

2
(ln det(T0))ξξ +

1

2
(ln det(T0))ηη +

h

4
.

For β = −1, 0, 1, Tβ denotes the g × g matrix with entries (3.8) with zk = Zk − dk + β rk. Here
the scalars rk are given in (3.11) and

Z = iκ1Va ξ − iκ2Vb η + i (κ21Wa − κ22Wb)
t

2
(5.8)

with

Vc,k =
1

wc − wvk
− 1

wc − wuk
, Wc,k = − 1

(wc − wvk)2
+

1

(wc − wuk)2
, (5.9)

where c ∈ {a, b}. The scalars G1, G2, G3 are given by

G1 =
κ1

wb − wa
, G2 =

κ2
wa − wb

, G3 = −G2
1 −G2

2 + h. (5.10)
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Proof. Consider solutions (5.4) of system (5.2) in the limit when the Riemann surface degener-
ates to a Riemann surface of genus zero, as explained in Section 3. In this limit, choose the local
parameters ka and kb near a ∈ R0 and b ∈ R0 to be the uniformization map between the degen-
erate Riemann surface R0 and the w-sphere. Hence, for any w ∈ R0 lying in a neighbourhood of
wa ∈ R0, ka(w) = w−wa. Therefore, quantities independent of variables ξ, η and t are obtained
from (3.9)-(3.15).

Remark 5.2. Functions (5.7) give a family of solutions of the complexi�ed system, involving ele-
mentary functions only. These solutions depend on 3g+6 complex parameters wa, wb, h, A, κ1, κ2
and wuk , wvk , dk. Varying these parameters we will obtain di�erent types of physically interesting
solutions investigated in the next subsections.

5.2 Multi-solitonic solutions of the DS equations

Soliton solutions of the DS equations were shown to be representable in terms of Wronskian
determinants in [5]. Single soliton and multi-soliton solutions corresponding to the known one-
dimensional solutions can be obtained from this representation. These solitons are pseudo-one-
dimensional in the sense that in the (x, y)-plane, they have the same form as one-dimensional
solitons in the (x, t)-plane, but that they move with an angle with respect to the axes. The
multi-soliton solution describes the interaction of many such solitons each propagating in di�er-
ent directions.

In what follows N ∈ N with N ≥ 1.

5.2.1 Dark multi-soliton of DS1ρ and DS2+

Here dark multi-solitons of the DS1ρ and DS2+ equations are derived from functions (5.7) for
an appropriate choice of the parameters. They were investigated in [41].

Put g = N and A = |κ1κ2|1/2 |wa − wb|−1 in (5.7). Moreover, assume h ∈ R and d ∈ RN .

Reality condition for DS1ρ. Let us check that with the following choice of parameters,

wa, wb ∈ R, κ1, κ2 ∈ R \ {0} , wvk = wuk , k = 1, . . . , N, (5.11)

functions ψ and ψ∗ in (5.7) satisfy the reality condition ψ∗ = ρψ with ρ = − sign(κ1κ2). Indeed,
this can be deduced from the fact that G1, G2, G3 ∈ R, and

det (Tβ) = det
(
Tβ
)

= det (T−β) , (5.12)

since u and v can be interchanged in the proof of (3.7). Therefore, functions ψ and φ in (5.7)
de�ne dark multi-soliton solutions of DS1ρ.

Smoothness. The dark multi-soliton solutions obtained here are smooth because the denomi-
nator det(T0) of functions ψ and φ (5.7) consists of a �nite sum of real exponentials (see (3.7)),
since ξ, η, t are real.

Remark 5.3. One gets a family of smooth dark multi-soliton of the DS1ρ equation, depending
on N + 6 real parameters wa, wb, h, κ1, κ2, dk, a phase θ, and N complex parameters wuk .
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Reality condition for DS2+. Let us check that with the following choice of parameters,

wa = wb, κ1 = κ2, wuk , wvk ∈ R, k = 1, . . . , N, (5.13)

the functions ψ and ψ∗ (5.7) satisfy the reality condition ψ∗ = ψ. With (5.13), it is straightfor-
ward to see that (5.12) is also satis�ed. Moreover, since G1 = G2, G3 ∈ R and (wa − wb)2 < 0,
the functions ψ and ψ∗ (5.7) satisfy the reality condition ψ∗ = ψ. Therefore, they de�ne dark
multi-soliton solutions of DS2+.

Smoothness. To get smooth solutions, additional conditions are needed to ensure that det(T0)
does not vanish for all complex conjugate ξ = η̄. For instance, if

wv1 < wu1 < wv2 < wu2 < . . . < wvN < wuN ,

the scalars (B)ik (3.6) are real for any i, k ∈ {1, . . . , N}. Therefore, the functions ψ and φ (5.7)
are smooth, since their denominator does not vanish as a �nite sum of real exponentials.

Remark 5.4. One gets a family of smooth dark multi-soliton of the DS2+ equation, depending
on 3N + 1 real parameters h,wuk , wvk , dk, a phase θ, and 2 complex parameters wa, κ1.

5.2.2 Bright multi-soliton of DS1ρ and DS2−

In this part we construct bright multi-soliton to the DS1ρ and DS2− equations. It is well known
that such solutions can be written in terms of a quotient of sums of exponentials, for which the
modulus tends to zero if the spatial variables tend to in�nity.

To get bright multi-soliton solutions, one degenerates once more solutions (5.7) of the com-
plexi�ed system. Put g = 2N and A = |κ1κ2|1/2 |wa − wb|−1 in (5.7), and take h ∈ R.

Degeneration. Choose a small parameter ε > 0 and de�ne dk = − ln ε+ d̂k, for k = 1, . . . , 2N ,
and

wu2k−1
= wa + ε α−1u2k−1

(wa − wb), wv2k−1
= wb + ε α−1v2k−1

(wa − wb),

wu2k = wb + ε α−1u2k (wa − wb), wv2k = wa + ε α−1v2k (wa − wb),
(5.14)

for k = 1, . . . , N . Moreover, put κ1 = ε κ̂1 (wa − wb), and κ2 = ε κ̂2 (wa − wb). Consider in the
determinant det(T1) appearing in (5.7) the substitution

L2i −→ L2i −
(T1)2i,2
(T1)2,2

L2

for i = 2, . . . , N , where Lk denotes the line number k of the matrix T1 and (T1)i,k the entries of
this matrix. An analogous transformation has to be considered for the matrix T−1 appearing in
function ψ∗. Now take the limit ε → 0 in (5.7). The function ψ obtained in this limit has the
form (5.17). Notice that in this limit, the dependence on the parameters wa and wb disappears.

Reality condition for DS1ρ. It is straightforward to see that, with the following choice
of parameters,

κ̂1, κ̂2 ∈ R \ {0} , d̂2k−1 = d̂2k, αu2k−1
= αv2k , αu2k = αv2k−1

, k = 1, . . . , N, (5.15)
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the functions ψ and ψ∗ obtained in the limit considered here satisfy the reality condition ψ∗ = ρψ
with ρ = − sign(κ̂1κ̂2).

Reality condition for DS2−. In the same way, with the following choice of parameters,

κ̂1 = κ̂2, d̂2k−1 = d̂2k, αu2k−1
= αu2k , αv2k−1

= αv2k , k = 1, . . . , N, (5.16)

the functions ψ and ψ∗ obtained in the considered limit satisfy the reality condition ψ∗ = −ψ.

The solutions. Let θ ∈ R. With (5.15), the following functions of the variables ξ, η, t ob-
tained in the considered limit, give bright N -soliton solutions of DS1ρ where ρ = − sign(κ̂1κ̂2)
and γ = 0; because of (5.16) these functions de�ne bright N -soliton solutions of DS2− where
γ = 1:

ψ(ξ, η, t) = Â eiθ
det(K)

det(M)
,

φ(ξ, η, t) =
1

2
(ln det(M))ξξ +

1

2
(ln det(M))ηη +

h

4
, (5.17)

where Â = |κ̂1κ̂2|1/2. Here K and M are 2N × 2N matrices with entries (K)ik and (M)ik given
by:

- for i and k even: (K)ik = δi,k − δ2,i δ2,k + δ2,i e
1
2
(z2+zk+r̂2+r̂k)

+ δ2,k (δ2,i − 1) e
1
2
(zi−z2+r̂i−r̂2)

- for i even and k odd: (K)ik = −
α2
uk

αvi − αuk
αv2 − αvi
αv2 − αuk

e
1
2
(zi+zk+r̂i+r̂k)

- for i odd and k even: (K)ik = − αvi αuk
αvi − αuk

e
1
2
(zi+zk+r̂i+r̂k)

- for i and k odd: (K)ik = δi,k,

- for i, k even, or i, k odd: (M)ik = δi,k

- otherwise: (M)ik = (−1)i+1 αvi αuk
αvi − αuk

e
1
2
(zi+zk).

Here zk is a linear function of the variables ξ, η and t given by

z2k−1 = i κ̂1 αu2k−1
ξ + i κ̂2 αv2k−1

η + i
(
κ̂21 α

2
u2k−1

+ κ̂22 α
2
v2k−1

) t
2
− d̂2k−1 + γ

iπ

2
,

z2k = − i κ̂1 αv2k ξ − i κ̂2 αu2k η − i
(
κ̂21 α

2
v2k

+ κ̂22 α
2
u2k

) t
2
− d̂2k + γ

iπ

2
,

for k = 1, . . . , N . Moreover, the scalars r̂k are de�ned by

r̂k = (−1)k ln {−αvkαuk} , k = 1, . . . , 2N.

Remark 5.5. i) With (5.15), functions (5.17) give a family of bright multi-soliton solutions of the
DS1ρ equation depending on 3N complex parameters d̂2k−1, αu2k−1

, αu2k and 4 real parameters
h, θ, κ̂1, κ̂2.
ii) With (5.16), functions (5.17) provide a family of bright multi-soliton solutions of the DS2−

equation depending on 3N+1 complex parameters d̂2k−1, αu2k−1
, αv2k−1

, κ̂1 and 2 real parameters
h, θ.
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5.3 Breather and rational breather solutions of the DS equations

The breather solutions of the DS equation were found in [40]. Here a family of breather solutions
and rational breather solutions of the DS1 equation are derived from algebro-geometric solutions.
These solutions resemble their 1 + 1 dimensional analogues. In particular, the pro�les of the
corresponding solutions of the DS equation in the (x, y, t) coordinates look as those in the (x, t)
coordinates extended along a spatial variable y.

5.3.1 Multi-Breathers of DS1ρ

TheN -breather solution obtained here corresponds to an elastic interaction betweenN breathers.
Put g = 2N and A = |κ1κ2|1/2 |wa − wb|−1 in (5.7). It is straightforward to see that with the
following choice of parameters,

wa, wb, h ∈ R, κ1, κ2 ∈ R \ {0} , d2k−1 = d2k, wv2k = wu2k−1
, wv2k−1

= wu2k , (5.18)

for k = 1, . . . , N , functions ψ and ψ∗ (5.7) satisfy the reality condition ψ∗ = ρψ with ρ =
− sign(κ1κ2). Therefore, analogously to the n-NLS equation, functions ψ and φ in (5.7) give
N -breather solutions of DS1ρ.

Remark 5.6. One gets a family of breather solutions of DS1ρ depending on 3N complex pa-
rameters d2k−1, wu2k−1

, wu2k and 6 real parameters wa, wb, h, κ1, κ2 and a phase θ.

Example 5.1. Figure 5 shows the evolution in time of 2-breather solution of DS1− with the
following choice of parameters: wa = 8, wb = −1, wu1 = 5− 2i, wu2 = 2 + i, wu3 = 3− i, wu4 =
1 + 4i, κ1 = κ2 = 1, dk = h = 0.

Figure 5: 2-breather of DS1− at a) t = 0, b) t = 45.
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5.3.2 Multi-rational breathers of DS1ρ

In this part, we deal with rational solutions (modulo an exponential factor) of the DS1ρ equation.
These solutions are obtained as limiting cases of the breather solutions. The N -rational solutions
describe elastic interaction between N rational breathers, and are expressed as a quotient of two
polynomials of degree N in the variables ξ, η, t.

Assume g = 2N and put A = |κ1κ2|1/2 |wa − wb|−1 in (5.7).

Degeneration. Let ε > 0 be a small parameter and de�ne dk = ε d̂k + iπ, for k = 1, . . . , 2N,
and

wv2k−1
= wu2k−1

+ ε αv2k−1
, wu2k = wv2k + ε αu2k (5.19)

for k = 1, . . . , N . It is straightforward to see that det(Tβ) ≈ ε2NPβ , where Pβ is a polynomial
of degree 2N with respect to the variables ξ, η and t. Now take the limit ε → 0 in (5.7). The
function ψ obtained in this limit is an N -rational breather solution of DS1ρ given by (5.21).

Reality condition. Imposing the following constraints on the parameters:

wa, wb, h ∈ R, κ1, κ2 ∈ R \ {0} , d̂2k = d̂2k−1, wu2k−1
= wv2k , k = 1, . . . , N, (5.20)

it can be seen that the functions ψ and ψ∗ (5.7) in the considered limit satisfy the reality con-
dition ψ∗ = ρψ, with ρ = − sign(κ1κ2).

The solutions. Let θ ∈ R. Then the following degenerated functions de�ne N -rational breather
solutions of DS1ρ

ψ(ξ, η, t) = Aeiθ
det(K1)

det(K0)
exp

{
−i (G1 ξ +G2 η −G3

t
2)
}
,

φ(ξ, η, t) =
1

2
(ln det(K0))ξξ +

1

2
(ln det(K0))ηη +

h

4
, (5.21)

where Kβ , with β = 0, 1, is a 2N × 2N matrix with entries (Kβ)ik given by

- for i and k even: (Kβ)ik = (1− δi,k)
1

wvi − wvk
− δi,k (zk + β r̂k)

- for i even and k odd: (Kβ)ik =
1

wvi − wuk
- for i odd and k even: (Kβ)ik = − 1

wui − wvk
- for i and k odd : (Kβ)ik = − (1− δi,k)

1

wui − wuk
− δi,k (zk + β r̂k).

Here zk is a linear function of the variables ξ, η and t given by

zk = iκ1V̂a,k ξ − iκ2V̂b,k η + i
(
κ21 Ŵa,k − κ22 Ŵb,k

) t
2
− d̂k.

Moreover, for c ∈ {a, b}, the scalars V̂c,k, Ŵc,k and r̂k satisfy V̂c,2k = V̂c,2k−1, Ŵc,2k = Ŵc,2k−1
and r̂2k = r̂2k−1, and are given by:

V̂c,2k−1 =
1

(wc − wu2k−1
)2
, Ŵc,2k−1 = − 2

(wc − wu2k−1
)3
,
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r̂2k−1 = − wa − wb
(wa − wu2k−1

) (wb − wu2k−1
)
,

for k = 1, . . . , N . Constants G1, G2, G3 are given in (5.10).

Remark 5.7. Functions (5.21) give a family of rational solutions of DS1ρ depending on 2N
complex parameters d2k−1, wu2k−1

and 6 real parameters wa, wb, h, θ, κ1, κ2.

Example 5.2. Figure 6 shows the evolution in time of the 2-rational breather solution of DS1−

with the following choice of parameters: wa = 2, wb = 1, wu1 = 2i, wu3 = 2 + i, κ1 = κ2 =
1, dk = h = 0.

Figure 6: 2-rational breather of DS1− at a) t = −5, b) t = 0, c) t = 5.

Example 5.3. Figure 7 (resp. Figure 8) shows the interaction between a line rational breather
and a rational breather solution of DS1− with the following choice of parameters: wa = 2, wb =
−2, wu1 = 3i (resp. wu1 = 3i + 1) , wu3 = 2i, κ1 = κ2 = 1, dk = h = 0. By line rational breather
we denote a growing and decaying mode localized only in one direction.

5.4 Dromion and lump solutions of the DS equations

Here we construct the dromion solution of DS1ρ and the lump solution of DS2− which correspond
to solutions localized in all directions of the plane. These solutions arise by suitable degenerations
of solutions (5.7) to the complexi�ed system, and by imposing the reality condition ψ∗ = ρψ.
This appears to be the �rst time that such solutions are obtained as limiting cases of theta-
functional solutions.

5.4.1 Dromion of DS1ρ

Boiti et al. [8] have shown that the DS1 equation has solutions that decay exponentially in
all directions. The solutions they obtained can move along any direction in the plane, and the
only e�ect of their interactions is a shift in their position, independently of their relative initial
position in the plane. Later, Fokas and Santini [15, 39] pointed out that by an appropriate choice
of the boundary conditions, the localized solitons (called �dromions�) of the DS1 equation pos-
sess properties which are di�erent from the properties of one-dimensional solitons, namely, the
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Figure 7: Interaction between a line rational breather and a rational breather of DS1− at a)
t = −50, b) t = −20, c) t = −5, d) t = 0, e) t = 10, f) t = 50. The rational breather propagates
in the same direction as the line breather.

Figure 8: Interaction between a line rational breather and a rational breather of DS1− at a)
t = −50, b) t = −20, c) t = −5, d) t = 0, e) t = 10, f) t = 50. The rational breather propagates
transversally to the direction of the line breather.
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performed solutions do not preserve their form upon interaction. For a particular choice of their
spectral parameters, they recovered solutions previously derived by Boiti et al. For details on the
theory of dromion solutions the reader is referred to [37] and references therein. In this section
we explore how the simplest dromion solution can be derived from algebro-geometric solutions.

Let us consider solutions of the complexi�ed system obtained in (5.7). Assume g = 4 and
put A = |κ1κ2|1/2 |wa − wb|−1.

Degeneration. Choose a small parameter ε > 0 and de�ne dk = − ln(ε) + d̂k for k = 1, . . . , 4,
and

wu1 = ε αu1 , wu2 = wa + ε αu2 , wu3 = wb + ε αu3 , wu4 = ε αu4 ,

wv1 = wa + ε αv1 , wv2 = ε αv2 , wv3 = ε αv3 , wv4 = wb + ε αv4 . (5.22)

Moreover, put κ1 = ε κ̂1 αv1 and κ2 = ε κ̂2 αu3 . Now consider the limit ε → 0 in (5.7). The
functions ψ and φ obtained in this limit are given by (5.24).

Reality condition. Choose wa, wb, h, θ ∈ R and κ̂1, κ̂2 ∈ R \ {0}. Moreover, assume

d̂2k = d̂2k−1, αv2k−1
= αu2k , αv2k = αu2k−1

, k = 1, 2. (5.23)

Put ρ = − sign(κ̂1κ̂2). With (5.23), it can be seen that the degenerated functions ψ and ψ∗

obtained in the considered limit satisfy the reality condition ψ∗ = ρψ. Therefore, the following
degenerated functions give the dromion solution of DS1ρ

ψ(ξ, η, t) = Â eiθ
ez1+z3

ϕ(ξ, η, t)
,

φ(ξ, η, t) =
1

2
∂ξξ ln {ϕ(ξ, η, t)}+

1

2
∂ηη ln {ϕ(ξ, η, t)}+

h

4
, (5.24)

where
ϕ(ξ, η, t) = 1 +A1 e

2Re(z1) +A2 e
2Re(z3) +A3 e

2Re(z1)+2Re(z3).

Here zk is a linear function of the variables ξ, η, t given by

z1 = − i
κ̂1
αv1

ξ − i
κ̂21
α2
v1

t

2
− d̂1, z3 = − i

κ̂2
αu3

η − i
κ̂22
α2
u3

t

2
− d̂3.

Constants Â, A1, A2 and A3 are given by

Â = |κ̂1κ̂2|1/2
wawb

(αv3 − αu1)αv1αu3
, A1 =

wa
4 Im(αv1) Im(αu1)

,

A2 =
wb

4 Im(αv3) Im(αu3)
, A3 = A1A2 +

wawb
4 Im(αv1) Im(αu3)

1

|αu1 − αv3 |2
.

Moreover, in the case where A1 > 0, A2 > 0 and A3 > 0, functions (5.24) are smooth solutions
of DS1ρ.
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Remark 5.8. i) Functions (5.24) de�ne a family of dromion solutions of DS1ρ depending on 6
complex parameters d̂1, d̂3, αu1 , αv1 , αu3 , αv3 and 6 real parameters wa, wb, κ̂1, κ̂2, h, θ.
ii) In the case where αu1 , αv3 ∈ R, one gets localized breathers, namely, the solution oscillates
with respect to the time variable (modulus of ψ is constant with respect to t).

Di�erent degenerations can be investigated for larger values of g. The performed functions
lead to particular solutions such as dromions which move along sets of straight and curved
trajectories, as well as oscillating dromion solutions. We do not discuss these solutions here.

5.4.2 Lump of DS2−

The lump solutions were discovered in [26] for the KP1 equation, and have been extensively
studied. Arkadiev et al. [6] have constructed a family of travelling waves (the lump solutions)
of DS2− that we rediscover here.

Let us consider functions ψ,ψ∗, φ given in (5.7), assume g = 2 and put A = |κ1κ2|1/2|wa −
wb|−1. Moreover, consider the following transformation which leaves the system (5.2) invariant:

ψ(ξ, η, t)→ ψ (ξ + β1 t, η + β2 t, t) exp
{
−i
(
β1 ξ + β2 η +

(
β21 + β22

)
t
2

)}
,

ψ∗(ξ, η, t)→ ψ∗ (ξ + β1 t, η + β2 t, t) exp
{

i
(
β1 ξ + β2 η +

(
β21 + β22

)
t
2

)}
,

φ(ξ, η, t)→ φ (ξ + β1 t, η + β2 t, t) , (5.25)

where βi = µi κ
−1
i for some µi ∈ C.

Degeneration. Choose a small parameter ε > 0 and de�ne dk = iπ + ε d̂k, for k = 1, 2,
and

wv1 = wa + ε αv1 , wu1 = wa + ε αu1 ,

wv2 = wb + ε αv2 , wu2 = wb + ε αu2 .

Moreover, put κk = ε2 κ̂k, and µk = ε2 µ̂k for k = 1, 2. Now take the limit ε → 0 in (5.25). The
functions ψ and φ obtained in this limit are given in (5.26).

Reality condition. Choose wa, wb ∈ C such that wa = −wb or wa, wb ∈ R. Take h, θ ∈ R and
assume

κ̂1 = κ̂2, µ̂1 = µ̂2, d̂1 = d̂2, αv1 = αv2 , αu1 = αu2 .

With this choice of parameters, it can be seen that the functions ψ and ψ∗ obtained in the limit
considered here satisfy the reality condition ψ∗ = −ψ.

The solutions. Therefore, the following degenerated functions provide smooth solutions of
DS2−

ψ(x, y, t) =
Â eiθ

B̂ + |z1|2
exp

{
−i
(
2Re(β1 ξ) + Re(β21) t

)}
,

φ(x, y, t) =
1

2
∂ξξ ln

{
B̂ + |z1|2

}
+

1

2
∂ξξ ln

{
B̂ + |z1|2

}
+
h

4
, (5.26)
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where ξ = x+ iy and β1 = µ̂1 κ̂
−1
1 . Here z1 = i V̂a,1 (κ̂1 ξ + µ̂1 t)− d̂1 and

V̂a,1 = − αu1 − αv1
αu1αv1

, Â =
|κ̂1| |αu1 − αv1 |2

|wa − wb|αv1 αu1
, B̂ =

|αu1 − αv1 |2

(wb − wa)2
.

Simpli�cations. To simplify (5.26), put

d̂1 = − iµ

V̂a,1 κ̂1
, ν =

αu1αv1
|κ̂1| |wa − wb|

, λ = β1,

for arbitrary µ ∈ C. In this way, functions (5.26) become

ψ(x, y, t) = ν
exp{−2iRe(λ ξ)− iRe(λ2) t+ iθ}

|ξ + λ t+ µ|2 + |ν|2
,

φ(x, y, t) =
1

2
∂ξξ ln

{
|ξ + λ t+ µ|2 + |ν|2

}
+

1

2
∂ξξ ln

{
|ξ + λ t+ µ|2 + |ν|2

}
+
h

4
, (5.27)

where ξ = x + iy. Here λ, ν, µ are arbitrary complex constants, and θ, h ∈ R. Solutions (5.27)
coincide with the lump solution previously obtained in [6].

6 Outlook

In this paper, various classes of solutions to the multi-component NLS equation and the DS equa-
tions in terms of elementary functions have been presented as limiting cases of algebro-geometric
solutions discussed in a previous paper [22]. We did not construct all families of solutions present
in the literature, but we believe that di�erent degenerations will lead to interesting new or known
solutions that are not presented here.

In particular, future investigations might address bright multi-solitons of n-NLS with inelastic
collision. This novel type of inelastic collision, which is not observed in 1 + 1 dimensional soliton
systems, follows from a family of bright soliton solutions having more parameters than the ones
presented here with standard elastic collision. We believe that also this kind of solutions arises
from algebro-geometric solutions after suitable degenerations.

I thank C. Klein who interested me in the subject, and V. Shramchenko for carefully reading
the manuscript and providing valuable hints. I am grateful to D. Korotkin and V. Matveev for
useful discussions and hints. This work has been supported in part by the project FroM-PDE
funded by the European Research Council through the Advanced Investigator Grant Scheme,
the Conseil Régional de Bourgogne via a FABER grant and the ANR via the program ANR-09-
BLAN-0117-01.
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