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Introduction

Let (M, g) be an m-dimensional Riemannian manifold which admits an isometric immersion φ in the Euclidean space (R n , can) and denote by H its mean curvature. In the case where M is compact and without boundary, the well-known Reilly inequality (see [START_REF] Reilly | On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space[END_REF]) gives an extrinsic upper bound for the first non zero eigenvalue λ 1 (M ) of the Laplacian ∆ = -tr • Hess of (M, g) in terms of the mean curvature of its immersion φ:

(1)

λ 1 ≤ m Vol(M ) M |H| 2 dv g
where dv g , Vol(M ) denote respectively the Riemannian volume element and the volume of (M, g), and |H| 2 denotes the square of the length of the mean curvature H of the immersion φ.

More precisely, if we denote by H r the r-th mean curvatures of the immersion (see the section below for the definitions), Reilly [START_REF] Reilly | On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space[END_REF] proved the following more general result Theorem 1.1.

1)

If n > m + 1 and r is an odd integer, 1 ≤ r ≤ m, then

(2) λ 1 M H r-1 dv g 2 ≤ m Vol(M ) M |H r | 2 dv g .
If for some such r, we have equality in this last inequality and if H r does not vanish identically, then φ immerses M minimally into some hypersphere of R n and H r is parallel in the normal bundle of M in R n . In particular, if r = 1 and we have equality, then φ immerses M as a minimal submanifold of some hypersphere of R n (here we don't need to assume that the mean curvature vector H 1 = H does not vanish identically). 2) If n = m + 1 and r is any integer, 0 ≤ r ≤ m, then

(3) λ 1 M H r-1 dv g 2 ≤ m Vol(M ) M H 2 r dv g .
We get equality in this last inequality for some r, 0 ≤ r ≤ m, if and only if φ immerses M as a hypersphere in R n .

For r = 1, the Reilly inequality above can easily be extended to immersed submanifolds of spheres and after a partial result of Heintze [START_REF] Heintze | Extrinsic upper bounds for λ1[END_REF], it has been generalized to hyperbolic submanifolds by El Soufi and Ilias ([6] and [START_REF] Soufi | Second eigenvalue of Schrödinger operators and mean curvature[END_REF]). The generalization to all r for spherical and hyperbolic submanifolds was obtained by Grosjean (see [START_REF] Grosjean | Quelques estimations extrinsèques de la première valeur propre d'opérateurs elliptiques naturels définis sur des sous variétés et applications[END_REF], [START_REF] Grosjean | Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds[END_REF] and [START_REF] Grosjean | Extrinsic upper bounds for the first eigenvalue of elliptic operators[END_REF]). Note that until now, there is no similar inequalities when M has boundary.

Let M be a compact Riemannian manifold with boundary ∂M . In the present article, we will be interested in the first non zero eigenvalue p 1 of the Steklov problem (4)

   ∆f = 0 in M ∂f ∂ν = p f on ∂M,
where ν is the outward unit normal of ∂M in M . We observe that one can consider more generally the Steklov problem with a density ρ and the modified boundary condition ∂f ∂ν = p ρ f . But for simplicity, we consider only the case ρ ≡ 1. The general case can be treated easily with minor changes. It is known that the Steklov boundary problem (4) has a discrete spectrum

0 = p 0 < p 1 ≤ p 2 ≤ . . . → ∞.
The boundary value problem (4) was first introduced by Steklov [START_REF] Stekloff | Sur les problèmes fondamentaux de la physique mathématique (suite et fin)[END_REF], in 1902, for a bounded planar domain M . His motivation came from physics. In fact, the function f represents the steady state temperature on M such that the flux on the boundary is proportional to the temperature (for other physical motivations see for instance [START_REF] Bandle | Isoperimetric inequalities and applications[END_REF]). Steklov problem is also important in harmonic analysis and inverse problems (see for instance [START_REF] Calderón | On an inverse boundary value problem[END_REF]), this is because it has the same sets of eigenvalues and eigenfunctions as the wellknown Dirichlet-Neumann map which associates to each function defined on the boundary ∂M , the normal derivative of its harmonic extension to M . The first isoperimetric inequality, for the first non zero eigenvalue p 1 , to appear in the literature was obtained by Weinstock [START_REF] Weinstock | Inequalities for a classical eigenvalue problem[END_REF]. He considered Steklov problem on a simply-connected plane domain M and proved that (5)

p 1 ≤ 2π L(∂M ) ,
where L(∂M ) is the length of ∂M . Since then, many authors have discussed this problem and have derived various eigenvalues estimates (see for instance [START_REF] Payne | New isoperimetric inequalities for eigenvalues and other physical quantities[END_REF], [START_REF] Bandle | Über des Stekloffsche Eigenwertproblem: Isoperimetrische Ungleichungen für symmetrische Gebiete[END_REF], [START_REF] Hersch | Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type[END_REF], [START_REF] Hersch | Some inequalities for Stekloff eigenvalues[END_REF], [START_REF] Kuttler | Inequalities for membrane and Stekloff eigenvalues[END_REF], [START_REF] Shamma | Asymptotic behavior of Stekloff eigenvalues and eigenfunctions[END_REF], [START_REF] Edward | An inequality for Steklov eigenvalues for planar domains[END_REF], [START_REF] Escobar | An isoperimetric inequality and the first Steklov eigenvalue[END_REF], [START_REF] Escobar | A comparison theorem for the first non-zero Steklov eigenvalue[END_REF], [START_REF] Escobar | The geometry of the first non-zero Stekloff eigenvalue[END_REF], [START_REF] Brock | An isoperimetric inequality for eigenvalues of the Stekloff problem[END_REF], [START_REF] Dittmar | Sums of reciprocal Stekloff eigenvalues[END_REF], [START_REF] Girouard | On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues[END_REF], [START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF], [START_REF] Henrot | Some isoperimetric inequalities with application to the Stekloff problem[END_REF] and the recent survey [START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF]). Unfortunately, we note that the majority of the results on this subject concerns simply connected planar domains.

Recently, Fraser and Schoen [START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF] extended the result of Weinstock [START_REF] Dittmar | Sums of reciprocal Stekloff eigenvalues[END_REF] to arbitrary bounded Riemannian surfaces M of genus γ with k boundary components and obtained

p 1 L(∂M ) ≤ 2(γ + k)π.
These last authors also considered Steklov problem on a compact m-dimensional Riemannian manifold with non-empty boundary admitting proper conformal immersions into the unit ball B n and obtained, in the spirit of the work of Li and Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] (extended by El-Soufi and Ilias [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF]) concerning the first eigenvalue of Laplacian (or the Neumann Laplacian if the manifold has boundary), an upper bound for p 1 in terms of the relative n-conformal volume V rc (M, n) (see [START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF] for details) :

p 1 V ol(∂M ) V ol(M ) 2-m m ≤ m V rc (M, n) 2 m .
In this article, we will consider Steklov problem on a compact Riemannian manifold M isometrically immersed in R n or in S n and will derive upper bounds for p 1 in terms of the r-th mean curvatures of ∂M in R n or in S n , similar to those for λ 1 obtained by Reilly and Grosjean. In fact, for Euclidean submanifolds, we prove the following Theorem 1.2. Let (M m , g) be a compact Riemannian manifold with boundary ∂M and φ : (M m , g) -→ (R n , can) an isometric immersion. Denote by H r the r-th mean curvatures of ∂M in R n . We have 1) If n > m and r is an odd integer, 1 ≤ r ≤ m -1, then

(6) p 1 ∂M H r-1 dv g 2 ≤ m Vol(M ) ∂M |H r | 2 dv g .
If in addition H r does not vanish identically, then we have equality in [START_REF] Soufi | Une inégalité du type "Reilly" pour les sous-variétés de l'espace hyperbolique[END_REF] for such r if and only if φ immerses M minimally in B n ( 1 p 1 ), such that φ(∂M ) ⊂ ∂B n ( 1 p 1 ) orthogonally and H r is proportional to φ. In particular, if r = 1 then, we have equality in [START_REF] Soufi | Une inégalité du type "Reilly" pour les sous-variétés de l'espace hyperbolique[END_REF] if and only if φ is a minimal immersion of M in B n ( 1 p 1 ) such that φ(∂M ) ⊂ ∂B n ( 1 p 1 ) minimally and orthogonally (here we don't need to assume that the mean curvature vector H 1 = H of ∂M does not vanish identically).

2) If n = m, let M be a bounded domain of R m . In this case, if r is any integer, 0 ≤ r ≤ m -1, then (7) p 1 ∂M H r-1 dv g 2 ≤ m Vol(M ) ∂M H 2 r dv g .
And for any r, 0 ≤ r ≤ m -1, equality holds in [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF] if and only if M is a ball.

We also obtain similar estimates for compact spherical submanifolds with boundary (see theorem 3.2). The case of submanifolds of a hyperbolic space, which is more difficult, remains open.

Prerequisites

To begin we shall briefly recall some definitions and results needed in all the sequel (for the details see [START_REF] Reilly | Variational properties of mean curvatures[END_REF], [START_REF] Reilly | On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space[END_REF], [START_REF] Grosjean | Quelques estimations extrinsèques de la première valeur propre d'opérateurs elliptiques naturels définis sur des sous variétés et applications[END_REF] and [START_REF] Grosjean | Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds[END_REF]). Let (M, g) be an orientable m-dimensional Riemannian manifold isometrically immersed by φ in an n-dimensional Riemannian manifold (N, h) of constant sectional curvature. Before defining some important extrinsic invariants, we recall the definition of the generalized Kronecker symbols. If i 1 , . . . , i r and j 1 , . . . , j r are integers between 1 and m, then δ i 1 ,...,ir j 1 ,...,jr is +1 or -1 according as the i's are distinct and the j's are an even or an odd permutation of the i's and is 0 in all the other cases. Let B be the second fundamental form of the immersion φ, which is normal-vector valued and let (B ij = B(e i , e j )) i,j≤m be its matrix at a point x ∈ M with respect to an orthonormal frame (e i ) 1≤i≤m at x. For any r ∈ 1, . . . , m , we define the r-th mean curvature of the immersion φ as follows (following [START_REF] Reilly | On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space[END_REF])

• If r is even, the r-th mean curvature is a function H r defined at x by, H r = m r -1 1 r! i 1 ,...,ir j 1 ,...,jr δ i 1 ,...,ir j 1 ,...,jr h(B i 1 j 1 , B i 2 j 2 ) . . . h(B i r-1 j r-1 , B irjr )
and

• If r is odd, the r-th mean curvature is a normal vector field defined at x by,

H r = m r -1 1 r! i 1 ,...,ir j 1 ,...,jr δ i 1 ,...,ir j 1 ,...,jr h(B i 1 j 1 , B i 2 j 2 ) . . . h(B i r-2 j r-2 , B i r-1 j r-1 ) B irjr
And by convention, we set H 0 = 1 and H m+1 = 0. We also observe that H 1 = H is the usual mean curvature vector. If the codimension of the immersion φ is 1 and if M is oriented by a unit normal vector field ν, it is convenient to work with the real valued second fundamental form b (i.e b(X, Y ) = h(B(X, Y ), ν)). Therefore, the r-th mean curvature of odd order can be defined as real valued (replace the vector field H r by the scalar h(H r , ν)) and if we choose an orthonormal frame at x which diagonalizes b (i.e b x (e i , e j ) = µ i δ ij ), we get the following expression for any r ∈ {1, . . . , m},

H r = m r -1 i 1 <•••<ir µ i 1 . . . µ ir
where (µ i ) are the principal curvatures of the immersion φ at x. For convenience, when N = R m+1 , we extend the definition of H r for r = -1 by setting H -1 = -< φ, ν >.

Remark 2.1. All our definitions work for a general Riemannian manifold N , without any assumption about its sectional curvature.

Let (e i ) 1≤i≤m be an orthonormal frame at x ∈ M , (e * i ) 1≤i≤m its dual coframe and as before, (B ij ) the matrix of B at x with respect to (e i ). We define the following (0, 2)-tensors T r for r ∈ {1, . . . , m} :

• If r is even, we set

T r = 1 r! i,i 1 ,.
..,ir j,j 1 ,...,jr δ i,i 1 ,...,ir j,j 1 ,...,jr h(

B i 1 j 1 , B i 2 j 2 ) . . . h(B i r-1 j r-1 , B irjr ) e * i ⊗ e * j and • If r is odd, we set T r = 1 r! i,i 1 ,...,ir j,j 1 ,...,jr δ i,i 1 ,...,ir j,j 1 ,...,jr h(B i 1 j 1 , B i 2 j 2 ) . . . h(B i r-2 j r-2 , B i r-1 j r-1 ) B irjr ⊗e * i ⊗e * j .
By convention T 0 = g. As for the r-th mean curvatures, if the codimension of M is one (i.e n = m + 1), then we can unify these two formulas. In fact, if ν is the unit normal vector field (determined by the orientation of M ) and (e i ) is an orthonormal frame at x which diagonalizes the scalar valued second fundamental form b, then the tensors T r can be viewed as scalar valued (0, 2) tensors (by replacing T r by h(T r (., .), ν) if r is odd) and we have at

x T r = i 1 <•••<ir i j =i µ i 1 . . . µ ir e * i ⊗ e * i .
Using Codazzi equation and the fact that the sectional curvature of N is constant, one can easily derive div M T r = 0, for r ∈ {1, . . . , m} and r even if the codimension is not 1. The properties of the r-th mean curvatures and the tensors T r can be summarized as follows (see for instance [START_REF] Grosjean | Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds[END_REF]) Lemma 2.1. For any integer r ∈ {1, . . . , m}, we have

tr(T r ) = k(r)H r .
Moreover, if r is even i,j

T r (e i , e j ) B(e i , e j ) = k(r)H r+1 and, if r is odd i,j h(T r (e i , e j ), B(e i , e j )) = k(r)H r+1

where k(r) = (mr) m r . As pointed out before, if the codimension is 1, we use the real valued r-th mean curvatures of odd order and if N = R m+1 , we set H -1 = -< φ, ν >. Let us now recall the Hsiung-Minkowski formulas (the case of codimension 1 is due to Hsiung [START_REF] Hsiung | Some integral formulas for closed hypersurfaces[END_REF] and the generalization for arbitrary codimension is due to Reilly [START_REF] Reilly | Variational properties of mean curvatures[END_REF], [START_REF] Reilly | On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space[END_REF])

Lemma 2.2. (Hsiung-Minkowski formulas) If M is compact without bound- ary, then we have 1) If n > m + 1 and r is an odd integer, 1 ≤ r ≤ m, then M h(φ, H r ) + H r-1 dv g = 0.
2)

If n = m + 1 and r is any integer, 0 ≤ r ≤ m, then M h(φ, H r ν) + H r-1 dv g = 0.
3. The Reilly inequality 3.1. The Euclidean case. We first assume that N = R n endowed with its standard metric "can" and use the same notations as in the preceding paragraph. We consider the Steklov eigenvalue problem on a compact Riemannian manifold M immersed in the Euclidean space R n ,

   ∆f = 0 in M, ∂f ∂ν = p f on ∂M. (8) 
The first eigenvalue is 0 with constant eigenfunctions and the second eigenvalue p 1 has the following variational characterization ( 9)

p 1 = min {f∈C 1 ( M ) , ∂M f dvg =0} M |∇f | 2 dv g ∂M f 2
dv g where dv g is the volume element of g on M and on ∂M . In addition, for a function f ∈ C 1 ( M ) such that ∂M f dv g = 0, we have

p 1 = M |∇f | 2 dv g ∂M f 2 dv g
if and only if the function f is an eigenfunction of the Steklov problem (4) associated to the eigenvalue p 1 .

In the sequel, the n-dimensional Euclidean ball of radius r will be denoted by B n (r).

Our main result is the following Theorem 3.1. Let (M m , g) be a compact Riemannian manifold with boundary, immersed isometrically by φ in (R n , can). Denote by H r the r-th mean curvatures of the boundary ∂M of M in R n . We have 1) If n > m and r is an odd integer, 1 ≤ r ≤ m -1, then

(10) p 1 ∂M H r-1 dv g 2 ≤ m Vol(M ) ∂M |H r | 2 dv g .
If in addition H r does not vanish identically, then we have equality in [START_REF] Edward | An inequality for Steklov eigenvalues for planar domains[END_REF] for such r if and only if

φ immerses M minimally in B n ( 1 p 1 ), such that φ(∂M ) ⊂ ∂B n ( 1 p 1 )
orthogonally and H r is proportional to φ.

In particular, if r = 1 then, we have equality in [START_REF] Edward | An inequality for Steklov eigenvalues for planar domains[END_REF] if and only if φ is a minimal immersion of M in B n ( 1 p 1 ) such that φ(∂M ) ⊂ ∂B n ( 1 p 1 ) minimally and orthogonally (here we don't need to assume that the mean curvature vector H 1 = H of ∂M does not vanish identically).

2) If n = m, we limit ourselves to the case where M is a bounded domain of R m . In this case, if r is any integer, 0 ≤ r ≤ m -1, then

(11) p 1 ∂M H r-1 dv g 2 ≤ m Vol(M ) ∂M H 2 r dv g .
And for any r, 0 ≤ r ≤ m -1, equality holds in [START_REF] Escobar | An isoperimetric inequality and the first Steklov eigenvalue[END_REF] if and only if M is a ball.

Proof. Translating the immersion φ if necessary, we can suppose that ∂M φ dv g = 0 (in other words, ∀i ∈ {1, . . . , n} , ∂M φ i dv g = 0 ). Applying the variational characterization [START_REF] Soufi | Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds[END_REF] to the components φ i of φ and summing on i give

p 1 n i=1 ∂M φ 2 i dv g ≤ n i=1 M |∇φ i | 2 dv g = m(Vol(M)) or (12) p 1 ∂M |φ| 2 dv g ≤ m (Vol(M)).
To prove inequality [START_REF] Edward | An inequality for Steklov eigenvalues for planar domains[END_REF] of the first assertion 1) , we multiply both sides of ( 12) by the quantity ∂M |H r | 2 dv g and use the Cauchy-Schwarz inequality to obtain

p 1 ∂M < φ, H r > dv g 2 ≤ p 1 ∂M |φ||H r | dv g 2 ≤ p 1 ∂M |φ| 2 dv g ∂M |H r | 2 dv g ≤ m Vol(M ) ∂M |H r | 2 dv g (13)
and we get the desired inequality by applying the Hsiung-Minkowski formula (Lemma 2.2) to ∂M considered as a compact submanifold of R n (without boundary).

If H r = 0 (which can not be the case for r = 1) , the Hsiung-Minkowski formula gives ∂M H r-1 dv g = 0 and equality holds trivially in inequality [START_REF] Edward | An inequality for Steklov eigenvalues for planar domains[END_REF]. Now suppose that H r does not vanish identically (this is always the case for r = 1). If we have equality in [START_REF] Edward | An inequality for Steklov eigenvalues for planar domains[END_REF], then all the inequalities in ( 13) are in fact equalities. This implies that on ∂M , we have H r = λ φ for some constant λ = 0 and all the components φ i of φ are eigenfunctions associated to p 1 . Since H r is normal, φ must be also normal and thus, for any tangent vector field X on ∂M , we have X(|φ| 2 ) = 2 < ∇ X φ, φ > = 0. Therefore, |φ| and |H r | are constant on any connected component of ∂M . Thus φ maps the connected components of ∂M into hyperspheres of R n (note that, since ∇ X φ is tangent to M , the r-th mean curvature vector H r = λ φ is in fact parallel in the normal bundle). On the other hand, since the components φ i of φ are eigenfunctions associated to p 1 , the immersion φ is in fact minimal and ν = p 1 φ on ∂M . Hence, the connected components of the boundary ∂M meets orthogonally the same Euclidean hypersphere, the one of radius 1 p 1 . Now, let f = n i=1 φ 2 i . Since M is minimal in R n , a direct calculation gives ∆f = 2m. Thus, we have ( 14)

   ∆f = 2m in M, f = 1 p 1 2 on ∂M.
Therefore, using the maximum principle, we deduce that f ≤ 1

p 1 2 on M , which means φ(M ) ⊂ B n 1 p 1 .
Reciprocally, the minimality of M in R n and the fact that ∂M meets orthogonally the hypersphere ∂B n 1 p 1 means that the components φ i of φ are eigenfunctions of the Steklov problem associated to p 1 . Using, in addition, the hypothesis of proportionality of H r and φ, we obtain equality in all the inequalities of (13). To be complete, we observe that for r = 1, by Takahashi theorem (see [START_REF] Takahashi | Minimal immersions of Riemannian manifolds[END_REF]) the proportionality of H and φ means that φ is a minimal immersion in an Euclidean hypersphere. This concludes the proof of assertion 1).

The proof of the second assertion 2) of theorem 3.1 is analogous to that of the first assertion, except for the case r = 0 and the equality case. For the special case r = 0, it suffices to use instead of inequality (13) the following,

p 1 ∂M < φ, ν > dv g 2 ≤ p 1 ∂M |φ||ν|dv g 2 ≤ p 1 ∂M |φ| 2 dv g ∂M |ν| 2 dv g ≤ m Vol(M )Vol(∂M ) = m Vol(M ) ∂M |H 0 | 2 dv g . ( 15 
)
Now if the equality holds for some r ∈ {0, . . . , m -1}, then ν = p 1 φ and thus ∂M is a hypersphere of R m . In conclusion M is an Euclidean ball (recall that for a ball B m (r) of radius r, p 1 = 1 r ). Reciprocally, to verify the equality in [START_REF] Escobar | An isoperimetric inequality and the first Steklov eigenvalue[END_REF] for an Euclidean ball, by homogeneity it suffices to verify it for the unit ball. For r = 0, it is obvious and for 1 ≤ r ≤ m -1, this follows from the fact that for the unit Sphere S m-1 (1) we have H r = 1, p 1 = 1 on the unit Ball B m (1) and Vol(S m-1 (1)) = m Vol(B m (1)). Theorem 3.1 has two consequences that should be reported. The first one is the following classical isoperimetric upper bound for p 1 Corollary 3.1. Let M be a bounded domain of R m . We have [START_REF] Grosjean | Quelques estimations extrinsèques de la première valeur propre d'opérateurs elliptiques naturels définis sur des sous variétés et applications[END_REF] p 1 ≤ Vol(∂M ) m Vol(M ) .

Moreover, we have equality if and only if M is a ball.

Proof. It suffices to use the second assertion of theorem 3.1 with r = 0 after observing that | ∂M H -1 dv g | = m Vol(M ), which follows easily from Gauss divergence formula applied to the vector field X = φ on M .

Remark 3.1. In dimension 2 and when the domain has connected boundary, inequality (5) of Weinstock is better than inequality [START_REF] Grosjean | Quelques estimations extrinsèques de la première valeur propre d'opérateurs elliptiques naturels définis sur des sous variétés et applications[END_REF]. In fact, the isoperimetric inequality gives,

Vol(∂M) 2 Vol(M) ≥ 4 π,
and therefore, using the Weinstock inequality we get

p 1 ≤ 2 π Vol(∂M) = 4 π 2 Vol(∂M) ≤ Vol(∂M) 2 Vol(M)
which is inequality [START_REF] Grosjean | Quelques estimations extrinsèques de la première valeur propre d'opérateurs elliptiques naturels définis sur des sous variétés et applications[END_REF].

For the second consequence, we will just rewrite theorem 3.1 for r = 1 (i.e the Reilly inequality in terms of the mean curvature) Corollary 3.2. Let φ : (M, g) -→ (R n , can) be an isometric immersion of a compact Riemannian manifold M with boundary and denote by H the mean curvature of its this boundary ∂M in R n . We have

(17) p 1 ≤ m Vol(M ) Vol(∂M ) 2 ∂M |H| 2 dv g .

Furthermore,

i) If n > m, equality holds in [START_REF] Grosjean | Extrinsic upper bounds for the first eigenvalue of elliptic operators[END_REF] if and only if φ is a minimal immersion of M in B n ( 1 p 1 ) such that φ(∂M ) ⊂ ∂B n ( 1 p 1 ) minimally and orthogonally .

ii) If n = m and M is a domain of R m , then equality holds in [START_REF] Grosjean | Extrinsic upper bounds for the first eigenvalue of elliptic operators[END_REF] if and only if M is a ball.

Remark 3.2.

• A similar inequality for submanifolds of a sphere or a projective space can be easily deduced from inequality [START_REF] Grosjean | Extrinsic upper bounds for the first eigenvalue of elliptic operators[END_REF]. In fact, using the standard embeddings of these spaces in an Euclidean space (see for instance [START_REF] Soufi | Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds[END_REF] and the references therein), a straightforward calculation gives the following : If we denote by (N, h) the sphere S n , the real projective space RP n , the complex projective space CP n or the quaternionic projective space QP n endowed with their respective standard metrics and consider an m-dimensional immersed compact Riemannian submanifold (M, g) of (N, h) having a boundary, the Steklov eigenvalue p 1 satisfies the following inequality

(18) p 1 ≤ m Vol(M ) Vol(∂M ) 2 ∂M |H| 2 + c(m) dv g
where H is the mean curvature vector of ∂M in N and

c(m) =                  1, if N = S n 2(m + 1) m , if N = RP n 2(m + 2) m , if N = CP n 2(m + 4) m , if N = QP n .
• Even for spherical submanifolds, one can not adapt easily the inequalities involving the r-th mean curvatures for r ≥ 2. • One can express inequality [START_REF] Grosjean | Extrinsic upper bounds for the first eigenvalue of elliptic operators[END_REF] in terms of the mean curvature H ∂M of ∂M in M and the mean curvature H M of M in R n by observing that the mean curvature H of ∂M in R n satisfies

|H| 2 = |H ∂M | 2 + |H M | 2 .
• The inequality [START_REF] Escobar | An isoperimetric inequality and the first Steklov eigenvalue[END_REF], for r = 2 and m ≥ 3 gives an estimate in terms of the scalar curvature Scal ∂M of ∂M . Indeed, using Gauss equation we have Scal ∂M = (m -1) (m -2) H 2 . Therefore, the inequality [START_REF] Escobar | An isoperimetric inequality and the first Steklov eigenvalue[END_REF] becomes

p 1 ∂M Hdv g 2 ≤ m ((m -1) (m -2)) 2 Vol(M ) ∂M Scal 2 ∂M dv g .
3.2. The spherical case. In this paragraph we will show how, despite some difficulties, we succeed in extending our main theorem 3.1 obtained for Euclidean submanifolds to the spherical ones. In fact, we obtain the following Theorem 3.2. Let (M m , g) be a compact Riemannian manifold with boundary immersed isometrically by φ in (S n , can). Denote by H r the r-th mean curvatures of its boundary ∂M in S n , we have 1) If n > m and r is an odd integer, 1 ≤ r ≤ m -1, then

(19) p 1 ∂M H r-1 dv g 2 ≤ m Vol(M ) ∂M (|H r-1 | 2 + |H r | 2 )dv g .
2) If n = m, we can limit ourselves to the case where M is a bounded domain of S m . In this case, if r is any integer, 1 ≤ r ≤ m -1, then

(20) p 1 ∂M H r-1 dv g 2 ≤ m Vol(M ) ∂M (H 2 r-1 + H 2 r )dv g .
Moreover, equality in [START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF] or in [START_REF] Henrot | Some isoperimetric inequalities with application to the Stekloff problem[END_REF] can never occur unless H r = H r-1 = 0.

As observed in Remark 3.2, for r = 1 it is easy to deduce the Reilly inequality for spherical submanifolds from that of Euclidean ones. Unfortunately, for general r, this is not the case. However, following an idea of Grosjean [START_REF] Grosjean | Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds[END_REF], we will show how one can derive Theorem 3.2 from a more general result, a Reilly inequality for a general second order operator in a divergence form. We first introduce some definitions and notations. Consider an m-dimensional Riemannian manifold (M, g) (this will be ∂M in the sequel) admitting an isometric immersion in (R n , can) and denote, as before, by B its second fundamental form. We endow (M, g) with a divergence-free symmetric (0, 2)tensor T and define a normal vector field H T by

H T (x) = 1≤i,j≤m
T (e i , e j ) B(e i , e j )

where (e i ) 1≤i≤m is an orthonormal basis of T x M . Let us now introduce the following second order differential operator L T acting on C ∞ (M ) by

L T (f ) = -div M (T ♯ ∇ M f )
where ∇ M is the gradient of (M, g) and T ♯ is the symmetric (1, 1)-tensor associated to T with respect to g. If (ǫ i ) 1≤i≤n and (φ i ) i≤n denote respectively the canonical basis of R n and the components of the immersion φ, we set L T φ = n i=1 (L T φ i )ǫ i . A straightforward computation (see [START_REF] Grosjean | Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds[END_REF]) gives L T φ = -H T and 1 2 L T |φ| 2 = -< φ, H T > -tr(T ). This last identity, gives the following generalization of the Hsiung-Minkowski formulas for a closed submanifold M of R n (see [START_REF] Grosjean | Quelques estimations extrinsèques de la première valeur propre d'opérateurs elliptiques naturels définis sur des sous variétés et applications[END_REF], [START_REF] Grosjean | Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds[END_REF])

(21) 0 = 1 2 M L T |φ| 2 dv g = - M < φ, H T > dv g - M tr(T )dv g .
In fact, the Hsiung-Minkowski formulas (in Lemma 2.2) can be deduced from this one by taking T = T r after using the properties of T r given in Lemma Reporting this last equality in [START_REF] Hersch | Some inequalities for Stekloff eigenvalues[END_REF] we obtain the desired inequality.

As in the proof of theorem 3.1, if H T = 0, then equality holds trivially in [START_REF] Hersch | Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type[END_REF]. Now suppose that H T does not vanish identically, equality holds in [START_REF] Hersch | Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type[END_REF] if and only if H T is proportional to φ and the components φ i of φ are eigenfunctions associated to p 1 . If n > m, we may argue as in theorem 3.1 to conclude. In the case where M is a bounded domain of R m , the condition ν = p 1 φ implies that ∂M is in fact the hypersphere of radius 1 p 1 and thus M = B m ( 1 p 1 ). On the other hand, H T = tr(T ) ν and tr(T ) is constant. Reciprocally, it suffices to verify the equality in [START_REF] Hersch | Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type[END_REF] for the Euclidean unit Ball when tr(T ) is constant. This follows from the total umbilicity of the unit hypersphere S m-1 (1) and the fact that Vol(S m-1 (1)) = m Vol(B m (1)). Now we are able to prove theorem 3.2, Proof of theorem 3.2. We denote by B the second fundamental form of φ. Let i be the standard embedding of S n in R n+1 and denote by B ′ the second fundamental form of i • φ. As above, we introduce the normal vector field H ′ Tr associated to B ′ , which is given at x ∈ ∂M by

H ′ Tr = 1≤i,j≤m
T r (e i , e j ) B ′ (e i , e j )

where (e i ) 1≤i≤m is an orthonormal frame at x. Therefore, if we apply theorem 3.3 with i • φ we obtain 

g 2 ≤ 2 ≤

 22 m Vol(M ) ∂M |H ′ T r-1 | 2 dv g .But, B ′ = Bg ⊗ φ and thenH ′ T r-1 = H T r-1 -tr(T r-1 ) φ. Hence, |H ′ T r-1 | 2 = |H T r-1 | 2 + tr(T r-1) 2 reporting this last equality in[START_REF] Hsiung | Some integral formulas for closed hypersurfaces[END_REF], we get[START_REF] Kuttler | Inequalities for membrane and Stekloff eigenvalues[END_REF] p 1 ∂M tr(T r-1 )dv g m Vol(M ) ∂M (|H T r-1 | 2 + tr(T r-1 ) 2 )dv gand finally inequality[START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF] follows by using Lemma 2.1 which gives|H T r-1 | = k(r -1) |H r | and tr(T r-1 ) = k(r -1) H r-1 .If we assume that H r = 0 or H r-1 = 0 (which is equivalent to H ′ T r-1 = 0), we can infer from the previous proof that if equality holds, then i • φ immerses M minimally in R n+1 . This is impossible, in fact if we denote by H ′ M and by H M respectively the mean curvatures of i • φ and of φ, we must have 0= |H ′ M | 2 = |H M | 2 +1. Remark 3.3. For r = 1, Theorem 3.2 gives inequality (26) p 1 ≤ m Vol(M ) Vol(∂M ) 2 ∂M (|H| 2 + 1)dv g which was already observed in Remark 3.2.

  Moreover, if H T does not vanish identically, then we have 1) If n > m, then equality holds in[START_REF] Hersch | Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type[END_REF] if and only ifφ immerses M minimally in B n ( 1 p 1 ), such that φ(∂M ) ⊂ ∂B n ( 1 p 1 )orthogonally and H T is proportional to φ.2) If n = m and M is a bounded domain of R n , then the equality holds if and only if M is a ball and tr(T ) is constant.Proof. To prove inequality[START_REF] Hersch | Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type[END_REF], we multiply both sides of (12) by the quantity ∂M |H T | 2 and use the Cauchy-Schwarz inequality to obtain
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