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ABSTRACT 
 

Semi-evanescent and evanescent matter-waves produced by an atom wave packet 
impinging a repulsive barrier can be back-refracted and reconstructed by the application of 
negative-index “comoving” potential pulses. One shows that those collapses and revivals 
generate a matter wave confined on both sides of the barrier border (“surface matter wave”) 
and should be observable via the retardation of atom reflection from the barrier interface. This 
property, joined to the possibility recently demonstrated of inducing negative refraction of 
atom waves, makes such potentials a matter-wave counterpart of negative-index materials or 
“meta materials” well-known in light optics. 
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 With the fast development of matter-wave optics, many of the functions previously 
operated in light optics have been realised: atom diffraction and mirrors, beam splitters, atom 
lasers, atom holography, quantum reflection, etc. [1]. Specific characters of those processes 
originate in the properties of the associated particle: non-zero atom mass, vacuum dispersion 
for the “de Broglie” waves (implying longitudinal wave packet spreading), scalar character of 
the atomic wave function, influence of the internal atomic degrees of freedom, etc. Along this 
viewpoint, novel areas in the field of atom optics are presently explored, including e.g., the 
devising of non-diffracting atom nano-beams via a specially designed transverse Stern-
Gerlach interferometer [2]. Recently, we have proposed to extend the concept of “meta-
optics” (known as negative index materials, NIM-s, in light optics [3-4]) to matter waves [5]. 
The main specificity of NIM-s for atom optics is their transient character, linked to the fact 
that for matter waves the reversal of atom group velocity is operated and can be only transient 
– contrary to the equivalent process in light optics where the phase velocity is reversed. In [5], 
it was proposed to use a “comoving” potential pulse [6] to reverse the atom group velocity. 
Previously only the trajectory of the wave packet centre has been investigated and a negative 
refraction predicted. In this letter, we examine the behaviour of the wave packet itself in 
negative-index media and analyse its dynamics both in free space and classically forbidden 
regions (evanescent or semi-evanescent matter wave packets). The dynamics of matter waves 
impinging a static potential barrier is strongly altered by the comoving potential. In particular, 
we investigate here the possibility of evanescent wave-packet engineering and predict the 
generation of atom reflection replicas as well as matter waves confined in the vicinity of the 
barrier edge. 

It is commonly admitted that, in the semi-classical regime, light and matter waves 
involving a single direction of space (e.g. x), behave identically provided they are 
monochromatic, i.e. provided they involve a single value of the wave number k (or particle’s 
energy). For both kinds of waves, the evanescent wave appears, at a normal incidence with 
respect to a planar interface, as soon as the refractive index of the second medium is 
imaginary. This means for light a conducting medium (metal, plasma). For particles, a 
constant potential energy barrier V0 , extending from x = 0 to x infinite, higher than the initial 
kinetic energy E0 of the particle, or, in the case of a wave packet, higher than the kinetic-
energy distribution, provides an imaginary index since the index for matter waves in the 
region x > 0 is n = (1 – V0/E0)1/2. In a 2D geometry (x, z) with the same potential barrier, the 
motion along z is free, which leads to a total reflection in the x < 0 half plane and to an 
evanescent wave in the x > 0 side. The corresponding index is static. As shown in [5], a 
negative index for matter waves is necessarily a transient process, thus needing incident wave 
packets, i.e. some k-momentum distribution. As a consequence, light and matter evanescent 
waves behave differently. While light evanescent waves are factorized in x and t (at least in a 
non-dispersive medium), such a factorisation does not hold for evanescent matter waves, 
simply because of intrinsic vacuum dispersion: the time dependence is in exp [- ih k2 t /(2m)], 
instead of exp[- i ck t], where m is the atomic mass and c the light velocity. The existence of 
evanescent matter waves is one of the fundamental processes introduced by quantum 
mechanics and has many outstanding consequences, mainly explored, up to now, for electrons 
(like electron tunnelling, as in tunnelling microscopy [7], or Josephson Effect in 
superconductivity [8]). For atomic systems, it has not been much studied, except in molecular 
spectroscopy [9], collision physics [10] and more recently cold atom physics [11], where 
evanescent waves are commonly involved (e.g. quasi-bound states and resonances of various 
types).  
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The evolution in x and t of a partially evanescent matter-wave packet, experiencing a 
pulse of comoving potential, will be described in the following. This comoving potential has 
the general form: 
 
  V(t, x) = s(t) cos (2π x / Λ)      (1a) 
 
where s(t) is a real signal restricted to a finite time interval (0, τ1) and Λ is the spatial period. 
To really construct a “comoving” potential, it is necessary that the spectrum H(ν) of s(t) 
contains a frequency matching the atomic velocity (ν0 = h k0/(mΛ), k0 being the central 
atomic momentum. A simple - while not fully optimized - form is:  
 
  s(t) = C e+20t/τ  for t in the interval [-∞, 0] 

s(t) = C ε2 (t + ε)-2 e-t/τ     for 0 ≤ t ≤ τ1  ;  = 0   for t > τ1  (1b) 
 
where C, ε, τ, τ1 are constants. We consider here atoms the spin of which is J = 2, like argon 
metastable atoms (Ar* 3P2) having a velocity along x axis of 4 m/s (de Broglie wavelength 
λdB ≈ 2.8 nm, central momentum value k0 = 2.244 109 m-1, momentum dispersion δk = 0.005 
k0), polarized in the M = +2 Zeeman sublevel. For such atoms, a magnetic potential can be 
used, with C = gL μB Bmax M, where gL is the Landé factor, μB the Bohr magneton, Bmax the 
maximum value of the magnetic field magnitude and M the magnetic quantum number.  
Evanescent wave packets appear when k < k0 within a repulsive potential barrier of 
momentum height a = k0 (this corresponds to a magnetic field of 127 Gauss). For Ar* atoms, 
the repulsive potential barrier can be created using a static magnetic field B0 in the half-space 
x > 0 (see figure 1).   
 

B0 

y

z 

 
 RF 

pulse 
 
 
 
 
 
 
 x 
 
 
 
 
 
 
 
 
 
Figure 1. Principle scheme of an experiment on evanescent and semi-evanescent wave packets submitted to 
comoving magnetic potential pulses (see text). A static potential barrier is generated by the static magnetic field 
B0. Potential pulses, comoving in the x direction, are produced by a generator (“RF pulse”). The incident wave 
packet propagates in plane (x, z). The reflected wave packets propagate in a direction of the (x, z) plane, 
symmetric of the incident direction with respect to the x axis. 
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The magnetic potential actually takes the form (1a) – plus a constant within the barrier –, 
provided that a given value of M, e.g. +2, referred to the comoving field axis (y) is prepared 
and maintained, which implies the presence of a tiny static field (b of a few Gauss) on both 
sides of the barrier edge. The easiest way to realize this condition is to use a collinear 
configuration, i. e. to make B0 parallel to y axis. In fact, the static field cannot be abruptly 
increased from zero (or b) up to B0, which means that the barrier edge has necessarily a finite 
thickness. It should be possible to analyse in some detail the effect that it causes to the 
reflection/transmission at the barrier edge (e.g. in the case of a linear increase, by use of a 
combination of Airy functions). Nevertheless, provided that the thickness is less than the 
spatial period Λ, and owing to the fact that the comoving field starts at a given time, this 
thickness is expected to be of little importance on the dynamics of incident, reflected and 
transmitted wave packets. 
 We are dealing here with three wave functions, namely ψi (t, x), the incident wave 
packet propagating from x = - ∞ to x = 0, ψr (t, x), the reflected wave packet propagating 
backwards from x = 0 to x = - ∞, and the transmitted evanescent wave ψtr (t, x) in the region x 
> 0. For a specific value of the wave number k, i.e. a specific value E of the total incident 
energy, the three wave functions have the same time-dependence, in exp [- ih k2 t / (2m)]. In 
the absence of comoving field, the conservation of the probability flux leads to the usual 
reflection and transmission factors (in amplitude):  
 

  R(k) = 
κ+
κ−

ik
ik   ; T(k) = 

κ+ ik
k2                (2) 

 
, with κ = 22 ka − and a2 = (2m/ ) V0 > k2. As expected, the evanescent wave does not 
carry any probability flux then

2h

1=R . Similar expressions of R and T are obtained for k ≥ a 

(partial propagation through the barrier), by replacing iκ by k’= 22 ak − . Let Ψtr0(t, x) be 
the solution for x > 0 in absence of comoving potential, that is (up to a multiplicative 
constant): 
       

  ψtr 0 (t, x) =     (4a) )k,x,t()k()k(Tdk 0trφρ∫
+∞

∞−

 
ρ(k) being the momentum distribution and φtr0 the evanescent k- spectral component: 
 
  φtr 0(t, x, k) = exp(- κx) exp[- i k2 t /(2m)]    (4b) h

 
Expansions similar to (4a) are obtained for incident and reflected waves, namely: 
 

  ψi 0 (t, x) =  )k,x,t()k(dk 0iφρ∫
+∞

∞−

  ψr 0 (t, x) =     (5a) )k,x,t()k()k(Rdk 0rφρ∫
+∞

∞−

 
with spectral components : 
 
  φi 0(k, t, x) = exp(i k x) exp[- i k2 t /(2m)] h

  φr 0(k, t, x) = exp(- i k x) exp[- i k2 t /(2m)]    (5b) h
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Let us assume that the effect of the comoving potential pulse on the spectral components of 
the wave packets consists of simple multiplicative factors: 
 
  φi, r, tr = φi 0, r 0, tr 0  f i, r, tr (k, t, x)      (6) 
 
 
The time dependent Schrödinger equation in half-space x > 0 is: 
 

  tr0tr
2
x

2

trt )]x,t(VV[
m2

i Ψ++Ψ∂−=Ψ∂
h

h       (7) 

 
whereas in “free” half-space x < 0, it is : 
 

  r,ir,i
2
x

2

r,it )x,t(V
m2

i Ψ+Ψ∂−=Ψ∂
h

h      (8) 

 
Provided that the “perturbation factors” f evolve, as functions of x, much slower than the φ0-s, 
then the terms in ∂x

2 f can be neglected with respect to κ ∂x f or k ∂x f. The validity of this 
latter approximation will be verified a posteriori. It leads for the f-s to the equations:  
 

  trtrx

2

trt fVf
m

fi +∂κ+=∂
h

h       (9a) 

 

  r,ir,ix

2

r,it fVfik
m

fi +∂+=∂
h

h       (9b) 

 
Let us define two new variables, in half-space x > 0: 
 

  u = t xmi
κ

+
h

  ;  v = t xmi
κ

−
h

      (10a) 

 
and similarly in “free” half-space x < 0:      
 

  u0 = t x
k

m
h

+   ;  v0 = t x
k

m
h

−       (10b) 

 

Using (9a) it is readily verified that (∂t + 
m

i κh
∂x) = 2 ∂v. Then, using variables u, v, eq. (9a) 

becomes: 
 

  
h2
i

f
f
tr

trv −=
∂  V(u, v)       (11) 

 
where V(u, v) is the comoving potential expressed as a function of u and v. 
Setting ftr = exp[i ϕtr (u, v)], one gets from (11), ∂v ϕtr = - V /(2 ) and finally: h
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  ϕtr(u, v) = ∫−
v

'dv
2
1
h

V(u, v’) + Ftr (u)     (12) 

 
where Ftr (u) is an arbitrary function of u. 
 
For a comoving potential of the form (1a, b), setting at a given value of u, v’ = 2t’ – u, Eq. 
(12) yields: 
 

  ϕ tr =  ⎥⎦
⎤

⎢⎣
⎡ −

κ
Λ
π

− ∫ )'tu(
m

i2cos)'t(s'dt1 )t(

0

h

h
  + Ftr (u)    (13a) 

 
where the upper bound is (t) = Min [t, τ1]. Finally, the phase shift ϕtr (a complex number in 
general) depends on 3 independent variables, k (via κ), t and x (via u).  
 A similar treatment can be carried out for incident and reflected waves in the free half-
space, by setting fi = exp[i ϕi (u0)] and fr = exp[i ϕr (v0)]. One readily gets: 
 

  ϕ i =  ⎥⎦
⎤

⎢⎣
⎡ −

Λ
π

∫− )'tu(
m
k2cos)'t(s'dt1

0

)t(

0

h

h
  + Fi (u0)   (13b) 

 
and a similar expression for ϕ r, u0 being replaced by v0. The arbitrariness in the choice of the 
additional functions Fi, r, tr corresponds to all possible constraints applicable to the incident, 
reflected and transmitted waves. To define them we have to specify the problem under 
consideration, namely at infinite negative values of x and t, a well defined and unperturbed 
incoming incident wave packet impinging the barrier. Under such a condition, Fi is a constant, 
which can be assumed to be 0.  
The continuity conditions at the barrier edge (x = 0) also hold for φi, φr and φtr. The continuity 
condition for the modified wave functions is :  
 
  fi + R fr = T ftr         (14) 
 
where fi, fr, ftr are taken at x = 0. The continuity condition of the x-derivative at x = 0, [∂x]x=0 
being noted (’), is: 
 
 ik fi + fi’ +  R (- ik fr + fr’) = T (- κ ftr + ftr’)      (15) 
 
It can be noted that the previous expressions of ϕi (eq. 13b) and ϕr become identical at x = 0 
since at that point u0 = v0. It then appears as a reasonable assumption to impose ϕr = ϕi , i.e. Fr 
= Fi = 0. Under this condition, (i) one readily gets from (14) that, at x = 0, ϕtr = ϕi = ϕr., from 
which the additional function Ftr(u) can be deduced; (ii) eq. 15 becomes (fi + R fr - T ftr)’ = 0. 

At this point, it is interesting to compare these expressions of the ϕ-s to that of the 
phase shift – let us call it ϕpro – previously used in the case of a purely propagating matter 
wave (cf. Ref. [5], Eq. 8):  
 

  ϕpro(k, t) = ∫ ⎥⎦
⎤

⎢⎣
⎡

Λ
π

−
t

0
't

m
k2cos)'t(s'dt1 h

h
     (16) 
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The integral part in expressions (13a) becomes identical to (16) when iκ is replaced by k, 
provided that ⎜u ⎜can be considered as much smaller than ⎜v⎜. This also readily holds for ϕi, r. 
In other words, this equivalence holds provided that (respectively for incident and reflected 

waves) ⎜t m x
k

m
h

 ⎜ << ⎜t x
k

m
h

±  ⎜. This means that, in the case of propagation, all relevant 

values of t and x are close to those related to the propagation of the wave packet centre. Such 
an approximation, possibly valid for the incident and reflected wave packets, is clearly not 
valid for an evanescent wave packet.  

In the following calculations, time parameters in s(t) [eq. (1b)] have been chosen to be 
adapted to typical characteristics of the wave packets in the region x > 0. In the present case 
we take ε = 7.4 µs, τ = 0.37 µs, τ1 = 0.6 or 1.10 µs. The spatial period is Λ = 2 or 3 μm [12]. 
The effect of the comoving pulse on the wave functions ψi, ψr, ψtr is simply derived by 
incorporating the factors exp (iϕ i, r, tr) into the expansions of these wave functions over k. At 
this point, let us examine the validity of approximation used previously to get the simplified 
equations (9a, b). It turns out that, with the parameters used here, this approximation is quite 
good in the free half-space. Within the potential barrier (x > 0), it becomes rather poor when 
the original comoving potential in cos (2πx/Λ) is used, in the sense that the ratio │κ ∂x 

ftr│/│∂x
2 ftr│, which is zero for κ = 0 (k = k0), becomes larger than 1 only when │k – k0│> 

δk. The reason is that such a potential starts too abruptly at x = 0. The situation is greatly 
improved by slightly shifting the spatial dependence into, for instance, cos (2πx/Λ − π/10), 
which should be easily realized in an experiment. In such a case the ratio is larger than 10 as 
soon as │k – k0│> δk/20. In other words, only a narrow central slice of the spectrum violates 
the approximation. It is expected – and it has been verified – to be of little importance in so 
far as it involves large distances from the barrier edge (x > 20/δk = 1.57 μm). This modified 
spatial dependence has been adopted for semi-evanescent wave packets. For almost purely 
evanescent ones (i.e. a ≥ 1.01 k0), this correction is not useful since the questionable part of 
the spectrum (κ ≈ 0) corresponds to very low values of ⎜ψtr ⎜. 

 
The profiles in t and x of the squared modulus ⎜ψtr0 ⎜2 of unperturbed semi-evanescent 

(a ≤ k0) and almost purely evanescent (a > k0) waves are shown in figure 2. 
 
(a)                                                                      (b) 

        

t (ns) 

x (nm) 

 
 
Figure 2. Profile in t and x of the squared modulus ⎜ψtr0 ⎜2 of the unperturbed semi-evanescent wave function. (a) 
The height a (in momentum) of the potential barrier is chosen equal to central value k0 of the incident 
momentum distribution. At x = 0, the time dependence is Gaussian. For x > 0, one observes as expected the 
decay characteristic of the evanescent part together with a partial wave packet propagating at a positive group 
velocity and broadening in time. (b) Same as (a) for an almost pure evanescent wave (a = 1.1 k0). No more 
propagation is seen. 
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 In a first step, we examine the effect of the comoving potential pulse in the semi-

evanescent case. Figure 3 shows the squared moduli of the wave functions, in free space 
⎜ψi + ψr ⎜2 and within the barrier, ⎜ψtr ⎜2, for Bmax = 370 Gauss, v0 = 4 m/s, τ1 = 0.6 µs, Λ = 2 
µm, a = 0.95 k0. Within the barrier, a negative refraction effect brings the wave packet back to 
the edge. Note the (transient) narrowing of the transmitted wave packet. It is produced by the 
time-reversal property of the meta-medium [13]. In the free half-space x < 0, a rebound of the 
wave packet is seen at the same time as that observed within the barrier (t ≈ 0.2 µs), as 
expected from the continuity conditions at the boundary. As a consequence the wave packet 
finally reflected at this time is retarded with respect to that obtained in absence of comoving 
pulse. Other features appear when the pulse duration is increased.  

 
 
 
 

   

x  (nm)

t  (ns) 

 
Figure 3. Profiles  in t and x (3D surface and contour plot) of the squared modulus ⎜ψtr ⎜2 of the transmitted wave 
function (in the x > 0 half-space) and ⎜ψi + ψr ⎜2 of the total wave function in the x < 0 half-space, when a 
comoving pulse is applied. The parameters (see text) are as follows: v0 = 4 m/s, a/k0 = 0.95, Λ = 2 µm, τ1 = 0.6 
µs, Bmax = 370 Gauss. A negative refraction of the transmitted semi-evanescent wave is seen. It generates a 
rebound in the free half-space (x < 0) and a retardation of the reflected wave packet. 

 
 
 
 

Figure 4 shows the squared modulus of the wave functions on both sides of the barrier edge, 
under the following conditions: Bmax = 150 Gauss, v0 = 4 m/s, τ1 = 1.1 µs, Λ = 3 µm, a = 1.01 
k0. On the positive-x side, the rebound previously seen for semi-evanescent wave packets is 
replaced by two evanescent contributions, one appearing at t = 0, the other one at t ≈ 0.43 µs. 
In the free half-space, a real rebound connects these two times and the finally reflected wave 
packet is delayed to by the same amount of time with respect to the ordinary reflected wave 
packet.  
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x (nm) 
t (ns) 

 
Figure 4. Same as fig. 3 (3D surface), with an almost purely evanescent wave (barrier height: a = 1.01 k0). The 
comoving pulse parameters are as follows: v0 = 4 m/s, Λ = 3 µm, τ1 = 1.1 µs, Bmax = 150 Gauss. An evanescent 
“echo” delayed by 0.43 µs is generated within the barrier, whereas a rebound is seen in the free half-space 
causing a retardation of the finally reflected wave packet by the same amount of time.  
 
 
 
 
Repeated similar effects are observed when two additional pulses, delayed by 0.605 µs and 
1.210 µs, are applied (see fig. 5). This is a clear evidence for the beginning of a temporal 
series of collapses and revivals of the evanescent matter wave at the potential barrier, 
accompanied by rebounds on the negative-x side. The same type of result is obtained with 
almost purely evanescent wave packets. This behaviour of the wave packets when subsequent 
pulses of comoving potential are applied strongly suggests the existence of a sort of a surface 
matter wave, which remains confined on both sides of the barrier edge (x = 0 axis) while 
exhibiting a series of temporal rebounds or echoes along the t axis.  The related delay on the 
reflected wave packet should be a signature of the behaviour of the evanescent wave packet 
inside the barrier. Another observation mode would consist in cutting off the potential barrier 
at some distance, smaller than or equal to the evanescent decay length, and measuring the 
transmitted intensities.  
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x (nm) 

                      

barrier 
edge 

 
t (ns) 

 
Figure 5. Same profiles as in figs 3, 4 (contour plot). A sequence of three identical comoving potential pulses is 
applied. Numerical parameters are as follows: v0 = 4 m/s, a/k0 = 0.9975 (semi-evanescent transmitted wave), Λ = 
3 µm, τ1 = 0.6 µs, Bmax = 120 Gauss. Second and third pulses are delayed by 0.605 µs and 1.210 µs with respect 
to the first one. Note the difference by a factor 10 in x-scales in regions x > 0 and x < 0. 
 
 

To summarize, adequate pulsed comoving potentials have been proven not solely to 
induce a negative refraction of matter waves, but also to cause drastic effects on the dynamics 
of evanescent or semi-evanescent matter waves in a static potential barrier. It generates 
repeated enhancements, giving rise to a guided atomic “surface” wave, confined within an 
interval smaller than 1 µm on both sides of the barrier edge and resulting into a retarded 
reflection. This makes these “negative index media” a counterpart of left-handed media in 
light optics, with however important differences related to the different natures of matter and 
light waves. Various applications can be imagined for matter waves. Some of them are similar 
to those of left-handed materials in light optics, such as atom wave focusing (meta lenses and 
atom nano- lithography), cloaking, etc. Some others are specific of matter waves such as 
beam splitters and interferometers and guided matter wave along a potential barrier edge. In 
this letter, we have mainly considered the special case of atoms with spin experiencing 
magnetic comoving potential pulses. Actually any type of potential possessing the same 
spatio-temporal characteristics as the present comoving pulses would induce effects quite 
similar to those described here. As an example we could envision electric comoving potential 
pulses acting on dipolar molecules and Rydberg atoms or molecules [14]. 
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