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data analysis.
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Abstract. A Fourier-Bessel series solution is derived that describes the dielectrophoretic-driven
transport of nanoparticles in a microdevice. The solution assumes that the nanoparticles do not interact
and is based on a linear Fokker Planck equation that includes the effects of thermal diffusion. The
solution is applicable for a dielectrophoretic force that varies exponentially in the microdevice, such as,
in the far field of planar interdigitated arrays. Important applications of the Fourier-Bessel solution are
demonstrated that include simulation and system classification of nanoparticle movement under the
action of weak and strong dielectrophoretic forces. Methods are demonstrated for the inverse process
of estimating model parameters, such as the dielectrophoretic force, based on nanoparticle
concentration data obtained experimentally. Data decomposition into separate spatial and temporal
modes is demonstrated and Fourier transformation of the series solution yields a representation in the
frequency domain. The frequency response predicted by transforming the time dependent Fourier-
Bessel solution indicates the presence of a DEP modulation bandwidth that concurs with observations
of preliminary experiments.
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1. Introduction
Dielectrophoresis (DEP) is a versatile noncontact electrokinetic method for controlling the movement of
nanosize biomolecules and colloids in micro-environments. DEP nanoparticle transport processes have been
intensely researched for lab-on-chip (LOC) type fabricated microdevices [1, 2], and for other diverse scientific
and technological applications, including textile fabrics, scanning probe microscopes, biological manipulation
tools, quantum dots, nano-circuit assembly and optical fluidics [3-13]. DEP is the movement of polarisable
nanoparticles arising from the action of nonuniform electric fields [14]. It is often achieved by applying radio
frequency electrical potentials to microfabricated electrodes immersed in low conductivity electrolyte. The
application of DEP electrokinetics in micro-technologies means nanoscale nanoparticle movement needs to be
modeled and measured quantitatively. Quantitative measurements of the DEP driven nanoscale transport by
us [15-17] identified a number of time constants that raised questions about the theoretical basis of their origin
and subsequently motivated this work on modelling.

The spatial-temporal distribution of nanosize nanoparticles moving under the action of a deterministic
DEP force and stochastic Brownian thermal motion can be described by a linear, second order partial
differential equation known as the modified diffusion equation or Fokker-Planck equation (FPE). The FPE is
applicable for describing the trajectory of a single nanoparticle in an ensemble of identical microdevices, or an
ensemble of non-interacting, mono-disperse nanoparticles in a microdevice. Integration over space and time
of DEP-driven nanoparticle transport, using values for relevant dielectric and fluid parameters, is usually
achieved by numerical methods, such as, Finite Element methods (FEMs). Considerable research has
developed mathematical solutions that predict the electric field and DEP force in a microenvironment using
methods that solve for the electric potential using Laplace’s equation. These methods include Green’s
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functions, conformal mapping, Fourier series, etc., [18-20]. Expressions for the spatially dependent DEP
force are then typically applied to FEM simulations to predict nanoparticle position, often focusing on quasi-
steady states of the DEP transport process when the system has reached equilibrium.

The drawbacks of current methods, such as, FEMs are inaccuracy where the electric field is extremely
inhomogeneous. In addition, although FEMs offer flexible simulation capabilities, they offer little insight into
the mathematical structure of a FPE solution that is often useful for the development of new applications.
Approximations for predicting DEP nanoparticle transport have also been developed, such as, the ‘collection
rate’ [17, 21, 22]. The approximation considers DEP nanoparticle capture initially after the force has been
switched ‘on’ when nanoparticle flux arising from thermally driven diffusion is considered to be negligible.
Although these approximations have considerable utility, they are limited to using data for short time intervals
and incur experimental error. To our knowledge there is very little research reported that considers DEP-
driven nanoparticle transport in terms of mathematical models where integration in time yields generalised
analytical, or closed-form, solutions.

This paper reports the development of a mathematical model for predicting DEP nanoparticle
transport that enables analysis of the DEP-driven electrokinetic process, particularly with respect to time as a
independent variable. Time-dependent DEP nanoparticle collection and release (after the DEP is switched off)
from a surface is evaluated for strong and weak DEP forces. It is a major technical advance from a briefer
report [23]. In that work a three dimensional (3D) chamber was simplified to 1D, and an infinite Fourier-
Bessel (FB) series solution to the FPE was found that described nanoparticle movement under the action of
DEP. The DEP force was assumed to be generated by a horizontal planar electrode array and spatially
decayed hyperbolically, i.e. a force that decreased with height above the array according to an inverse law. In
this paper, nanoparticle transport in the far field of an array is considered where the DEP force decreases with
height according to a spatial exponential profile. Planar arrays are common in LOC devices and it has been
shown experimentally and theoretically that the DEP force in the far field, at least from an interdigitated
planar array, decays exponentially [20, 24]. The exponential spatial profile of DEP force is more challenging
than earlier work because values for the general solution exist over the complex number field.

In addition to the prediction of the spatial-temporal evolution of nanoparticle concentration, figure
1(a), the paper is also a fundamental advance from previous work [23] in that it considers the ‘inverse’ process
to simulation, i.e. estimation of transport model coefficients from experimental data, as shown in figure 1(b).
The estimation process and exploitation of the FB series properties yields five important applications:

• classification of simulated or experimental data
• development of approximations for simulations, or data from experiments
• decomposition of experimental data into independent spatial and temporal components
• transformation of simulated or experimental data in space and time into alternative domains, e.g. from the

time domain to the frequency domain
• representation of simulated or experimental data with functional elements that are familiar to engineers

and physicists, e.g. low-pass filters.

The third application of combined estimation and decomposition is demonstrated using pseudo-experimental
data. Given that estimation can be achieved, the other four applications are demonstrated using simulated
data. The applications are described after the theory of nanoparticle transport is introduced and FB series
solutions to the FPE model are developed.
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2. Theory: nanoparticle transport model
A suspension of nanosize nanoparticles moving under the action of deterministic positive DEP (pDEP) force
acting downwards in a microdevice is illustrated in Figure 2(a). The electric far-field approximation enables
electrode end effects to be ignored for long and wide planar arrays so that the 3D nanoparticle transport is
simplified to 1D, as illustrated in figure 2(a).

2.1 DEP force

The DEP force arising from a planar array with side view shown in figure 2(a) is approximated as,

1 2( ) exp( ) ,depF y k k y a y b= − − ≤ ≤ (2.1)

where the constant 2 2 ( )k w gπ= + is dependent on the electrode dimensions with (transverse) width, w, and

inter-electrode gap, g. The force coefficient k1 expresses the magnitude of the DEP force at the surface of the
electrode plane. This means that if the lower boundary is set to the origin on the y axis, 0a = , then at y a=

the spatial maximum is, 1(0)depF k= − . Using the same convention as previous work [20] the minus sign in

front of k1 indicates the force in this arrangement acts downwards towards the lower boundary for positive
DEP (pDEP) where the numerical value is positive, k1 > 0. Conversely, the force in figure 2(a) acts upwards
for negative DEP (nDEP), so that k1 < 0. The DEP force arising from a planar array with side view show in
figure 2(a) is significantly stronger than the resultant force from gravity and buoyancy (sedimentation) for
most of y so the latter is ignored.

Theoretical values for k1 are typically predicted by Maxwell-Wagner interfacial polarisation for
spherical objects and are evaluated using the product of the Clausius-Mossotti factor, fcm, nanoparticle volume,

and the gradient of the magnitude of the electric field-squared,
2

E∇
r r

[14]. However, more recent work that

compared DEP experimental data showed that the actual values of the DEP force, i.e. k1, can be much less
than predicted from simple interfacial theory [16]. The reasons for the DEP nanoparticle movement being
compromised have not been fully elucidated although a number of effects have been investigated including
fluid motion arising from AC electro-osmosis and other electrohydrodynamic effects [25]. There are other
additional effects, e.g. the electric field needed for evaluating the DEP force was based on Laplace’s equation.
This is a simplification to Poisson’s equation that takes into account the density of free charges, such as, ions

Figure 1. Application of Fourier-Bessel (FB) series for (a)
prediction or simulation of spatial-temporal concentration
c(y, t), and (b) estimation parameter values from
experiments. Applications are as listed, see text for details.
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in solution. Consequently, to accommodate the disparity between simple theory and experiment, k1 is assigned
as the effective DEP force coefficient that for the purposes of this paper can either be assigned, or estimated

experimentally, 1k̂ , where ‘^’ denotes estimate. This distinguishes k1 from the all other coefficients, such as,

k2 that are assigned known values.

2.2 Dielectrophoretic nanoparticle transport towards and away from a planar array

The distribution of nanoparticles is over space and time is described by the nanoparticle concentration, c(y, t)
and the total number of nanoparticles, N, within the system remains constant throughout the course of the
experiment, i.e. no nanoparticles enter or escape. The corresponding time-dependent nanoparticle
concentration near the electrode array at y a= is shown in figure 2(b). The size of the nanoparticles is on the

nanoscale but they can be much larger; the key feature being that the stochastic effect of Brownian thermal
motion is significant.

Before switching on the DEP force at t < ton, figure 2(a)(i), the nanoparticles are uniformly distributed

with concentration, ic . After applying an AC potential to the electrodes, the action of the pDEP force causes

downward nanoparticle movement, particularly near the electrode array where the DEP force is strong, figure
2(a)(ii). This rate of nanoparticle accumulation is often measured experimentally as the ‘collection rate’ that
is usually measured up to a designated time, tc, in figure 2(b) [17, 26]. As the concentration further increases
near the array, DEP accumulation near the lower boundary results in a depletion layer that steadily rises
towards the cap at y b= , as shown. The cap is located at height h b a= − above the array, as shown.

Eventually the DEP nanoparticle flux becomes balanced by thermally-driven diffusion, figure 2(a)(iii), and

approaches steady state (SS), sst t= with concentration, ssc . Switching off the AC potential releases the

nanoparticles since there is no longer any pDEP force to trap them, and they diffuse into the bulk medium,
figure 2(a)(iv). On-off switching can be repeated, as reported for pDEP of DNA [16]. The difference

between the SS and initial concentration is shown as ss ic c c∆ = − .

It is convenient to predict or simulate DEP nanoparticle transport using concentration normalised
with respect to N in the closed system. The normalised concentration is the probability density function (pdf)

( , )p y t (per unit length),

( , ) ( , ) /p y t c y t N= (2.2)

and the axiomatic condition applies, ( , ) 1 , ( , ) 0
b

a
p y t dy t p y t= ∀ ≥∫ . In the following sections reference is

made to the pdf or ‘density’.

Experimental measurements of DEP process are subject to variation in the observed concentration
between experiments. In later sections the process is considered in a systems context, therefore the relative
change between the SS and initial density is introduced. It is the probability (or concentration) amplitude,

( ) ( , ) ( ,0) ( , )
( ) 1

( ,0) ( ,0) ( ,0)

p y c y c y c y
A y

p y c y c y

∆ ∞ − ∞= = = − (2.3). 

The relative quantity, A, can be determined using concentration data estimated from each DEP collection
experiment and without requiring explicit knowledge of N.
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2.3 Fokker Planck equation

The evolution of the density p(y, t) is described by the forward FPE that combines nanoparticle flux
contributions from DEP and thermal diffusion,

2

2

( ( , ) ( ))( , ) ( , ) 1 ( , )DEP B

DEP Diffusion

p y t F y k Tp y t J y t p y t

t y y yζ ζ
∂∂ ∂ ∂= − = − +

∂ ∂ ∂ ∂14444244443 1442443

(2.4)

The ‘pdf flux’ is
( , ) ( ) ( , )( , ) DEP Bp y t F y k T p y t

y
J y t ζ ζ

∂
∂= − , kBT is the Boltzmann temperature, and ζ is the

dynamic drag coefficient. Eq. (2.4) does not lead to a stationary solution for deterministic forces, such as
DEP, that markedly increase towards the surface. The DEP force, or potential, requires boundary conditions
(BCs) and contrasts, for example, with nanoparticle movement in a parabolic potential [27] that yields a
stationary solution without needing external BCs to be added. The FPE can be derived by considering mass
continuity and applying Fick’s first and second laws of diffusion. It is also derived by modelling single
nanoparticle movement with a Langevin equation and considering this in an ensemble of microdevices, or as
an ensemble of point-wise nanoparticles that are non-interacting and sufficiently dilute, e.g. below 1:1000
dilution of 1% solids. The ensemble of nanoparticle trajectories predicted by the Langevin equation can be
integrated stochastically, or by other methods, to yield an FPE [27, 28].

2.4 Boundary conditions (BCs) and initial condition (IC)

The magnitude of positive DEP force is very large near the electrode array (or boundary), thereby strongly
attracting nearby nanoparticles towards it, as shown in figure 2(a). The actual electrode array surface,
however, is impenetrable to nanoparticles; so although the nanoparticles are increasingly attracted as they
approach the boundary, their movement is ultimately reversed. Thus, the electrode array forms the lower,
reflecting Boundary Condition (BC) at y = a. The upper, reflecting BC is formed by the chamber cap at y = b,

Figure 2. Nanoparticle collection under the action of pDEP force
and release after the DEP force is switched off (a) cartoon showing
nanoparticle distribution (side view) (b) pdf at the array as a
function of time, p(a, t), showing nanoparticle collection and
release with corresponding times. See text for details.
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as shown. The two impenetrable barriers mean the nanoparticle flux J defined in (2.4) is zero at y = a and y =
b. This yields two BCs for the 1D model,

( , ) 0 ( , )J a t J b t t= = ∀ (2.5)

Since most biological nanoparticles of interest exhibit a mass density similar to the electrolyte so that gravity
can be neglected, a useful Initial Condition (IC) at the start of a DEP nanoparticle collection experiment is the
uniform distribution. Applying (2.1), the IC is

1 1
( , ) 1, at 0 ( ,0)

b

a
p y t dy t p y

b a h
= = ⇒ = =

−∫ (2.6)

3. Solutions to the FPE model
The FPE given by (2.4), combined with the BCs and IC, is integrated this section to obtain the steady state and
time dependent densities.

3.1 FPE steady state solution

Setting the lhs to zero in the FPE (2.4), integrating and applying the zero fluz BCs (2.5) and axiomatic relation
(2.2), yields the SS solution for the density,

2

2 2

2 exp( )
, 0

( ) ( )( )
1

, 0

k y

k a k b

ss

k e

Ei e Ei ep y

b a

λ λ
λ λ

λ

−

− −

 
≠ 

 −=  
 = − 

(3.1)

where 1

2 B

k
k k T

λ = , Ei denotes the exponential integral function defined in terms of the Cauchy Principle Value

(CPV) that is readily calculated in MatlabTM 7.8 (Mathworks Inc., MA, USA), and other remaining symbols
have been previously defined. As expected, the SS solution shows dependence on the ratio of the DEP force
coefficient with respect to the thermal temperature, 1 Bk k T and it is understood ( ) ( , )ssp y p y t= → ∞ .

The relationship between density and DEP force is important for characterising DEP transport. Four
plots of the pdf amplitude, A, at the lower boundary, y = a, versus k1 are shown in figure 3. The amplitude
was calculated from equations (2.3) and (3.1). The four plots correspond to combinations of narrow and wide
electrode widths, w g+ = 10 µm and 40 µm, and low and high chamber heights, h = 40 µm and 200 µm. The

four trends of A(k1) show a linear relationship on a log-log scale for weak DEP forces up to about k1 = 1 fN.
Above this value a transition occurs as stronger DEP force is responsible for accumulating almost all
nanoparticles, that were initially uniformly distributed within the chamber, against the lower boundary. There
occurs an almost exponential increase until about k1 = 10 fN and the trends return to a linear trend. The
proximity of the A(k1) plots to each other arises from the fact that N is constant across all four simulations and
shows expected characteristics. Experimentally this corresponds to diluting the suspension by adding medium
(e.g. water) to fill the volume as the height is increased from 40 µm to 200 µm. That is, for k1 up to 1 fN, the
plots are shown to pair according to the array geometry: w g+ = 10 µm plots practically overlap and the 40 µm

pair likewise. This is because the localised DEP force has a dominant effect for weak DEP forces and the
height has little influence. Conversely, at strong DEP forces above k1 = 20 fN, the plots pair according to the
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chamber height, i.e. h = 40 µm and 200 µm are paired. This is due to the strong DEP forces causing large-
scale nanoparticle transport from the top to the bottom of the chamber, hence, collecting nearly all of the
nanoparticles. The key point is the transition of the pairing at about 20 fN that distinguishes weak from strong
DEP regimes, as shown.

3.2 FPE time dependent general solution: Fourier-Bessel series

Expanding the density p(y, t) in a series product of separate functions g(y) and h(t) ,

0

( , ) ( ) ( )m m
m

p y t g y h t
∞

=
= ∑ (3.2)

Substituting (3.2) into (2.5) yields two separate, linear Ordinary Differential Equations (ODEs). The first ODE
has unity order with a General Solution (GS) for each eigenmode m,

2

( )
t

m mt
mh t e e τρ −−= ≡ (3.3)

where mρ is an arbitrary, real, integration constant. The re-scaled, reciprocal of the eigenvalue squared is

often used interchangeably, and is the eigenmode time constant, 21/m mτ ρ= . The second ODE is

2( ) ( ) ( ) ( ( )) ( ) 0
B B

m m m mk T k T
g y g y v y v y g yζ ζρ′′ ′ ′− + − = (3.4)

where the primes denote derivatives with respect to y, and ( ) ( ) /DEPv y F y ζ= is the DEP drift velocity. A GS

to (3.4) is found using listed formulae [29] or MapleTM 13 (Waterloo, Canada),

( ) † †
1 2( ) [ ( , ( )) ( , ( ))]

m m

c y
m m mg y e C I y C K yα κ α κ= + (3.5)

Figure 3. Relative probability density increase log10(A)
versus log10( k1) plots show the transition between weak
DEP and strong DEP regimes.
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where †( , ( )) ( , ( )) ( , ( ))m m mI y I y I yα κ α κ α κ∗= + − and †( , ( )) ( , ( )) ( , ( ))m m mK y K y K yα κ α κ α κ∗= − are

linearly independent combinations of modified Bessel functions of the first and second kind. In (3.5)

2

1

2
m

m
i

k

βα = + , m m
Bk T

ζβ ρ= denotes complex order,
2

21

2

( )
2 2

k y
k y

B

k e
y e

k k T

λκ
−

−= = is the real argument, 1i = −

, and * denotes complex conjugate. Modified Bessel functions with complex order are not always supported in
some computing languages, such as, MatlabTM 7.8, however, they can be numerically evaluated using
established algorithms [30]. The function common to both modified Bessel functions and independent of the

eigenmode, m, is
2

1 2 2

2

( ) ( )
2 2 2

k y

B

k e k y k y
c y y

k k T
κ

−
= − = − ; mρ , 1m

C and 2m
C are arbitrary integration constants.

Our interest lies in the real parts of the solution that are sufficient to describe the translational motion

of nanoparticle transport within the chamber. Further, †Re{ } 0K = where Re{..} 0= denotes Real part. Hence

(3.5) is re-cast ansatz,

( ) † †

( )

( ) [Re{ ( , ( ))} Im{ ( , ( ))}]

m

c y
m m m m m

g y

g y C e I y D K yα κ α κ= −
%

1444444442444444443
(3.6)

where Im{..} 0= denotes Imaginary part, and the integration constants are real and imaginary, mC R∈ and

mD I∈ . To evaluate the three sets of integration constants, two BCs and an IC are imposed. The probability

flux in (2.4) and (2.5) is written as an eigenfunction expansion and the derivatives of the modified Bessel
functions in (3.6) with respect to y are readily evaluated using recursion formulae [29]. Mathematical

expressions can be verified by ‘pencil-and-paper’ and simplified by recognising, 1α α ∗− = − . The zero flux

BCs are applied to the GS, thus yielding two simultaneous equations in matrix form,

Re{ ( , )} Im{ ( , )} 1 0
, 0, 0

0Re{ ( , )} Im{ ( , )}

m m
m m

mm m

I a K a
C

DI b K b

ρ ρ
ρ

ρ ρ

    
  = ≠ ≠     −    

% %

% %
 (3.7)

where ( )( , ) [ ( , ) ( , )]c y
m m m mI y i e I Iρ β α κ α κ∗= − −% , ( ) *( , ) [ ( , ) ( , )]c y

m m m mK y i e K Kρ β α κ α κ= + −% and it is

understood ( )m mα α ρ≡ and ( )yκ κ≡ defined in (3.5). Finding the roots of the matrix determinant, ∆, that is

a nonlinear function,

{ : ( ) Re{ ( , )}Im{ ( , )} Re{ ( , )}Im{ ( , )} 0}m I b K a I a K bρ ρ ρ ρ ρ ρ∆ = − =% % % %  (3.8)

yields the eigenvalues, ρm. Evaluation of this first set of m integration constants enables evaluation of the
second set of integration constants given by,

Re{ ( , )}

Im{ ( , )}
m

m
m

I b
D

K b

ρ
ρ

≡
%

% (3.9).

To evaluate the remaining set of integration constants, mC , an orthogonal basis over the interval { : }y a y b≤ ≤

is established using the backward FPE and techniques [27] that use the SS condition (3.1). Applying the IC
(2.6) and steps in Appendix A leads to
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22

2 2

( )( )

2 ( ) 2 2 ( ) 2

1
( )( ,0) ( )

( ) ( )

k yk y

k y k y

bb c y ec y e
mm aa

m b bc y e c y e
m ma a

e g y e dyp y e g y e dy
b aC

e g y e dy e g y e dy

λλ

λ λ

−−

− −

−−

− −
−= =
∫∫

∫ ∫

%%

% %
 (3.10)

where ( )mg y% defined in (3.4) is evaluated in terms of Dm and ρm. An example plot of the Bessel matrix

determinant (3.7) that is solved to yield eigenvalues is shown in figure 4. The determinant exhibits an
oscillatory behaviour with near-periodic roots that are numerically evaluated using the root finding algorithm
in MatlabTM 7.8.

The eigenvalues are re-scaled as the modal time constants defined in (3.3). The dependence of the
time constants on the DEP force k1 is plotted in figure 5. They exhibit only a gradual change as the DEP
force ranges over many orders of magnitude up to about 1 femto-Newton (fN). For higher DEP forces
ranging from 1 to 100 fN, the eigenmodal time constants increase then decrease, particularly the first mode,

1m = . Simplifying the Bessel functions for asymptotically small values of the arguments as 1 0k → , the

eigenvalues can be shown to converge to limiting values that correspond to the case of diffusive transport, i.e.
absence of DEP force,

B
m

k Tm

h

πρ
ζ

= (3.11).

where all symbols have been previously defined. These values were used to initialize the determinant root
finding algorithm for generating eigenvalues for collections with a wide range of DEP forces. Combining
(3.3) and (3.11) confirms the general relation that the average time t for a nanoparticle to diffuse over a length

l is proportional to the square of that length, 2t l∝ .
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3.3 FPE predictions of DEP nanoparticle collection followed by release.

A typical DEP nanoparticle response experiment often involves nanoparticle collections onto the electrodes
until the system is at quasi-SS. The DEP process is then switched off and the nanoparticles move away from
the electrode boundary under the action of thermal diffusion, and are released into the bulk medium.

3.3.1 DEP nanoparticle collection assuming initial uniform concentration

The particular solution (PS) for nanoparticle collection is found by substituting the (3.3), (3.6) and integration
constants ρm, Dm and Cm, into (3.2). The density is described by a Fourier-Bessel series, [31-33] and it is
verified in Appendix B that the m = 0 term of the eigenfunction expansion is the DEP SS term given by (3.1).
Therefore, the spatial-temporal density for DEP nanoparticle collection is written

( )

1

( , ) ( ) ( ) ( ) ( )m

t

c y
ss m m

m temporalsteady state spatial

p y t p y u t C e g y e u tτ
−∞

=
= + ∑ %

1424314243 1442443 (3.12)

where † †( ) Re{ ( , ( ))} Im{ ( , ( ))}m m m mg y I y D K yα κ α κ= −% , u(t) is the Heaviside unit step function [34] that

invokes causality. Typically, the spatial and temporal terms are convergent and the infinite FB series is
evaluated by truncating m to a finite integer, mc, where the subscript c denotes collection process. Truncation
of the series will yield a computational error so the selection of mc is a trade-off between computation time,
accuracy needed for the application and convergent properties of the series. Hence,

( )

1

( , ) ( ) ( ) ( ) ( )
c

m

tm
c y

ss m m
m

p y t p y u t C e g y e u tτ
−

=
≅ + ∑ % (3.13)

Typically, values of mc, ranging from 15 to 40, gave a satisfactory computation time and accuracy trade-off.
An example surface plot of the collection pdf, p(y, t), is shown in figure 6 for parameter values k1 = 1

fN, w g+ = 20 µm, 0a = µm, 100h = µm, and kBT/ζ = 2.24×10-12 m2 s-1 with a uniform distribution for the

IC. The value of the thermal temperature and dynamic drag coefficients correspond to experimental values
for 216 nm diameter spheres collecting in water at 25 oC. These values were used in experiments [17, 26] and
are used for all simulations in this paper unless otherwise stated. The simulation used 40 eigenvalues, mc = 40,
starting at t = 0 seconds. A consequence of truncating the series to 40 terms is that ( , 0)p y was not exactly

uniform near the lower boundary, so it remedied by setting ( , 0) 1/p y h= . Elsewhere the error arising from the

series truncation was found to be negligible.
In figure 6, the density, p(y,t), shows a progressive increase near the lower impenetrable barrier at

0y a= = µm in response to the pDEP force that attracts the nanoparticles towards the boundary. As the

nanoparticles move towards the lower boundary from above, a region of nanoparticle depletion occurs that

progressively widens and shifts towards the upper boundary at 100 µm, as shown. The nanoparticle
accumulation near the lower boundary is initially rapid due to the DEP driven nanoparticle flux that dominates
over diffusion. The decreasing rate of accumulation after the DEP force is applied is typical of a diffusion-
limited transport process that tends to SS. The plot was independently checked with a numerical FEM
platform FlexPDETM 2.15 (PDE Solutions, USA) and showed very good agreement (see publisher’s website
for supplementary data).
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3.3.2 Nanoparticle release following collection at steady state

Switching off the DEP force causes the release of the nanoparticles from the array under the action of
diffusion. Mathematically, setting 1 0k = allows the second order ODE (3.4) to be simplified. Using the
similar methods described above for the FB series yields an infinite trigonometric Fourier series solution that
can be truncated for computation,

2

1

1 2 ( ) ( )
( , ) ( ,0)cos cos

r
m

m
b t

r ra
m

m y a m y a
p y t p y dy e

h h h h
ρπ π −

=

 − −   = +     
    

∑ ∫ (3.14)

It is understood
2 2

2
2

B
m

k Tm

h

πρ
ζ

= for the case of diffusion that exhibits a square-law dependence on m. To

avoid ambiguity with (3.13), the ‘r’ subscript is introduced for the density and maximum summation integer,
mr, to denote the process of nanoparticle release. As with the nanoparticle collections, the selection of mr is a
trade-off between computation time, accuracy needed for the application and convergence properties of the
series. Typically, mr = 200 eigenvalues yielded an acceptable performance. Assuming that the IC is the
previous SS condition given by (3.1), ( , 0) ( , )rp y p y= ∞ , enables evaluation of the PS, (3.14). The integral in

(3.14) was calculated numerically and integrating-by-parts and using cosine and sine integral functions [29]
also gave the same results.

4 Applications of the Fourier-Bessel series
The Fourier-Bessel series enables decomposition of the nanoparticle concentration into separate, orthogonal
temporal and spatial modes. These properties are used to develop and demonstate five key applications:
classification, approximation, parameter estimation and decomposition of experimental data, transformation
and representation.

Figure 6. Probability density p(y,t) in 100 µm chamber showing DEP
driven nanoparticle collection at array surface and depletion zone that
disperses with time. A higher resolution in colour is available as
supplementary data.
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4.1 Classification

The temporal DEP response predicted by the FB series can used to classify nanoparticle transport process.
Simulations of nanoparticle collections generated by the FB series, are shown in figure 7(a) for weak DEP
forces (k1 = 0.1 fN) and strong DEP force (k1 = 10 fN). They are also plotted for cases of low and high
chamber heights, h = 20 and 100 µm. Since the probability densities vary over two orders of magnitude with
respect to k1, the time profiles of the pdfs have been normalised (denoted by subscript ‘n’),

0 0( ) [ ( , ) ] /[ ]n ssp t p a t p p p= − − (4.1)

where 0 ( ,0)p p a= and ( , )ssp p a≡ ∞ . Consequently, irrespective of k1, k2 and h values, 0 ( ) 1np t≤ ≤ so that

all the densities time profiles can be compared in one figure. As with the SS characteristics described in
section 3.1, N is constant across all four simulations. A single point parameter to quantify the response is the
DEP ‘on’ time constant, τon, which is defined as the time to reach 63% final SS with respect to initial value.
Values corresponding to each of four time profiles are listed in Table 1. After the collection process has
reached SS (or quasi-SS) the DEP force is switched off. Figure 7(b) shows the simulated time dependent
nanoparticle release. Associated times, τoff are defined as the time to reach 63% final SS and the nanoparticles
become uniformly distributed – equibrating to the IC for collection.

Table 1. Dependency of nanoparticle concentration response times on microdevice height and DEP strength.

DEP force (fN) Height h (µm) τon (s) τoff (s)
Weak 0.1 20 3.6 3.2

0.1 100 6.4 5.8
Strong 10 20 17 0.12

10 100 > 150 0.14

Keeping in mind the trends predicted SS in section 3.1, the results in Table I and figure 7(a) and 7(b)
distinguish microdevice nanoparticle transport behaviour under different DEP strengths. They indicate that
weak effective DEP forces collect only a minor proportion of the nanoparticles in short time durations,

on offτ τ≅ with h not being very influential, and represent a system perturbation. Conversely, strong effective

DEP forces collect a major proportion of the nanoparticles where almost all of the nanoparticles have
collected on the electrode array, thus leaving elsewhere in the chamber depleted. The process takes longer to

Figure 7. Nanoparticle time profiles for (a) DEP collection onto lower boundary (electrode array) at y = a, (b)
nanoparticle release solely by diffusion into bulk solution. The profiles were independently verified with
numerical simulations.
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collect with the nanoparticle transport strongly dependent on h, on offτ τ>> , and therefore represents a state

transition.

4.2 Approximations

Evaluations of the spatial and temporal terms show that for the weak DEP force, ( ) ( )
rm mg a g a−� and

rm mτ τ� . This means that, to a good approximation, the time response profiles complement each other and

this is evident by both plots for the case, k1 = 0.1 fN, as shown in figure 7(a) and 7(b). Hence, the temporal
relationship of nanoparticle collections and release can be approximated,

( , ) ( , ) 1
rn np a t p a t T+ + ≅ for 0 t T≤ ≤ (4.2)

where T denotes the period the DEP force is switched ‘on’. In this example, T is the same as the ‘off’ period
(150 seconds). This approximation is useful for system functional block evaluation and representation
described later in section 4.5.

Variations in the DEP force, given by small perturbations δk1 give rise to changes in the density and
these variations in nanoparticle concentrations are observed experimentally. In contrast, the plots of
eigenmode time constants in figure 5, with respect to k1, shows they remain essentially constant for low DEP
forces. Rewriting the FB series (3.13) in terms of signal amplitude, the temporal terms can be approximated,

( ) ( , ) ( , ) exp( / )m m m m mh t h t h t tρ δρ ρ τ= + ≅ = − , so that

1 1 1 1 1 1
10

1
( , , ) ( , ) ( , ) m

t

ss m
m

A y t k k A y k k g y k k e
p

τδ δ δ
∞ −

=

+ ≅ + + +∑ (4.3).

Where, as before, the subscript ‘ss’ denotes SS and 0
1

p
b a

=
−

is the IC for collection. Applying a first order

Taylor series approximation

11 1 1 1( , ) ( , )ss ss k ss A ssA y k k A y k k A s Aδ δ+ ≅ + ∂ ≅ (4.4)

where it can be shown

2

1

1 1 2

( ) ( ) ( )( )k y
ss

k ss
B

A p b p a e p y b a
A

k k k T k

− ∂ − −∂ = = + ∂  
 (4.5)

and the amplitude scaling function is
111 /A k ss sss k A Aδ= + ∂ . It is understood 1( , )ss ssA A y k= and the

approximation is valid provided
1

/k ss ssA A∂ is relatively smooth and well behaved. Suppose nanoparticle

collection at the array is considered, y a= , and the series terms 1 1 1( , ) ( , )m p mg a k k s g a kδ+ ≅ are also

approximated in the same way, then
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1 1 1 1
1

1

( , , ) ( , ) ( , )

( , , )

m

t

A ss A m
m

A

A a t k k s A a k s g a k e

s A a t k

τδ
∞ −

=

+ ≅ +

≅

∑ (4.6)

That is the time profile for the density due to the perturbed DEP force can be rescaled. An example time
profile is shown in figure 8(a) for the case a = 0 µm, electrode dimensions w + g = 20 µm, h = 100 µm with k1

= 1 fN. The original time profile is labelled, 1( , , )A a t k . Comparing the perturbed 1 1( , , )A a t k kδ+ and the

approximation 1( , , )As A a t k shows they agree very closely. That is, the profile for the incremented DEP force

can be obtained simply by rescaling or stretching the original; in this case by 14%. Examination of the spatial
eigenmode functions in figure 8(b) shows that 1 1 1( , ) ( , )m A mg a k k s g a kδ+ ≅ is generally valid for all

eigenvalues shown, though the approximation for the first few could be further improved.
The plots of eigenvalue time constants in figure 5 at stronger DEP forces above k1 > 1 fN shows that

several, including the first dominant eigenmode, m = 1, increase before decreasing. The overall time response
tends to be slower and is expected since the stronger force is transporting a large proportion of nanoparticles
towards the electrodes in the chamber volume. Increases in k1 in this moderately strong operation regime
causes practically all nanoparticles to accumulate towards the electrodes. Further increases represent very
strong DEP forces that consequently take less time to transport the nanoparticles, so the overall time response
is faster. The dependence of the series with respect to the eigenvalues is likely to make an approximation in
this higher DEP force regime more complicated, albeit the changes are shown to be less than an order of
magnitude.

4.3 DEP force estimation and decomposition of time response

The FB solution (3.13) is a composite model entailing a sum of products of spatial and temporal components.

Since the product of each FB series mode is explicit, in terms of using the FB series for simulation,

decomposition is trivial. However, the inverse process of estimating parameter values, e.g. k1, from

nanoparticle concentration data, c(y, t), and decomposing the spatial and temporal components is nontrivial

and is important for analysis and understanding. In this section estimation and decomposition are combined

and the principles are demonstrated using DEP collection data that mimics experiment. In terms of

technological applications, the concentration data would be obtained from experiments or, conceivably, as

surveillance measurements of an in situ DEP microdevice. Since decomposition of data with unknown

parameter values itself, requires initial starting values for parameters, such as, k1, there are two approaches.
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4.3.1 Multiple eigenmode estimation and decomposition

The first approach is a straightforward fit of the FB composite time profile (3.13) to the data using initial

estimates of the parameter values. The fit is optimised, and the evaluated eigenmode terms can be displayed,

thus decomposing imputed data. To demonstrate the principle of estimation, an algorithm was developed for

finding an initial estimate of k1 from the IC and SS (initial step), then refined with data from the FB time

profile to obtain an improved estimation (refinement step). The two-step estimation scheme is shown in figure

9 and the time profile example of noisy data is shown in figure 10. The noisy data comprises the FB

simulation (3.13) added with Gaussian noise that typified measurements of DEP collection experiments,

( , ) ( , ) ( ) ( )d

true noisedata

p a t p a t p a tχη= + ∆
123 1424314243

(4.7)

where the subscript ‘d’ denotes ‘data’, 0( ) ( )ssp a p a p∆ = − , is the difference between SS and IC for DEP

collection, χ is an attenuation constant and ( ) (0,1)t Nη = is a Gaussian (normal) random variable with zero

mean and unit variance. The attenuation was set to 5% which corresponds the range of noise typically

observed in reports by us [16, 17] so that it mimics experimental measurements.

Parameter values used to simulate data were a = 0 µm, w + g = 20 µm, h = 100 µm, k1 = 1 fN. The initial
estimation step used two time points, or samples, corresponding to initial and quasi-SS, as shown in figure 10.
The algorithm was the inverse, nonlinear solution to the SS pdf (3.1) and the two sample estimate was
evaluated using the Newton-Raphson root finding method that solved with a nominal starting value, 1 0k = .

The details are given in Appendix C; the initial estimate, corresponding to figure 10 was 1̂ 0.945
d

k = fN where

sub-subscript ‘d’ denotes the initial double sample estimate. The second refinement step used the initial

estimate 1̂d
k and other parameter values as before. The FB series generated the time profile and the

difference between noisy data was minimised using method of Least Squares Error (LSE). LSE minimisation
was performed using Nelder-Mead (NM) optimisation in MatlabTM 7.8 with the Sum of the Squares of Errors
(SSE) criteria for the ith iteration,

2
1

1

ˆ[ ( , ) ( , , )]
xs

i
i d s s

s

SSE p a t p k a t
=

= −∑ (4.8)

Figure 9. Schematic of simulation, two-step estimation and decomposition.
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where sx is the maximum integer for the multiple point sample index, s. In (4.8) st denotes the discrete time

point and it is understood 1
ˆik is the ith iterative estimate of 1k . Minimising the SSE yielded estimates that were

close to the true (simulation without noise) value. The multi-sample estimate, sx = 150 for the noisy data

example depicted in figure 10 was 1
ˆ 0.998k = fN. The profile generated by the FB series using the multi-

sample estimate practically overlays the true profile (generated using k1). The reason for underestimation in
the double sample case is due to the time profile not completely reaching SS at 150 s, i.e. the value taken from
the time profile at 150 s is less than the actual SS, ( ,150) ( )ssp a p a< . A colour view and higher magnification

showing the plots is available at the publisher’s website.
The utility of the two-step estimation method was confirmed by repeating the estimation procedure a

hundred times, i.e. Monte Carlo (MC) simulations. The NM optimisation routine required multiple evaluations
of the FB series so the linear approximation (4.6) was used to hasten multi-sample estimation and LSE
evaluation. Despite the limitations of the approximation in terms of accuracy, the advantages of multi-sample
estimation, which incurred little extra computation time, is shown by the histograms of the k1 estimates in

figure 11. The histogram of k1 using MC exhibits a mean, 1̂( ) 0.98kµ = and standard deviation (s.t.d),

1̂( ) 0.021kσ = fN, is narrow and close to the true value, 1 1k = fN. On the other hand, the histogram of double

sample estimates is broader and the mean, 1̂( ) 0.91
d

kµ = fN, is further away from the true value and s.t.d

wider, 1̂( ) 0.081
d

kσ = . These trends are in accordance with the central limit theorem where smaller samples

lead to estimates that will vary about the true value [35]. The results demonstrate that the DEP force can be

estimated, 1
ˆ 1k = fN, that is very close to the true value solely from the experimental data and without needing

an informed starting guess. The results also show that temporal information can be used by the FB series to
refine the initial estimate from SS data.

Accomplishing a best-fit time profile by using the multi-sample estimate, 1
ˆ 1k = fN, immediately allows

eigenmode decomposition, as shown, in figure 12. All spatial eigenmode terms are shown to be negative for

this case y = 0 and clearly shows that the first (m = 1) term being the greatest in magnitude, followed by the

second, third, and so forth. This ordering follows as the DEP force is varied – data not shown, particularly for
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the transition from weak to strong DEP. This means that the series can be safely truncated and that there is

negligible loss of information.

4.3.2 Single eigenmode decomposition

One of the features of the time profile fitting method is that that it inherently combines all the eigenmode
terms together, uses all the temporal data, and only the spatial data at a single position, y. In an envisaged
operational system not all of the data may be available so a complementary approach would be useful. An
instructive alternative is to select one of eigenmode terms, use data from a single time instant, and all of the
spatial data. A conceptual schematic of the spatial data decomposition process is shown in figure 13.
Experimental concentration data, ( , )c y t from a DEP collection experiment at a time instant, it t= is

normalised using (2.2) to obtain the density, ( , )ip y t . It is then filtered to retain the mode of interest, m n= ,

and remove all the other unwanted eigenmodes, m n≠ . This results in a numerical value corresponding to
the strength of the selected mode.

To achieve filtering a particular mode, a suitable spatial function, ( )nw y , is devised that weights the ( , )ip y t

in such a way that their product integrated over the entire chamber height selects a single eigenmode n, and
automatically excludes the other terms in the series. The spatial variable, y, is eliminated by integration.
Hence, at a particular time, it t= , an integral operator nI achieves a theoretical value,

Figure 13. Adaptive filter uses spatial nanoparticle collection information (figure 6
cross-section of surface at time ti = 5 s) to extract selected eigenmode n. 
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( ) ( , ) ( )
i

n

t
b

n i i n mna
I t p y t w y dy e τδ

−
= =∫ (4.9).

In (4.9) the Kronecker delta function signifies unity for the m n= th mode and the remaining, m n≠ are zero.
The modal index, m arises from the probability density given by (3.13). Recalling the orthogonal basis
established in Appendix A, suggests a suitable normalised Bessel weight function that is capable of selecting
the nth eigenmode as,

2

2

( )

( )

( )
( )

( )

k y

k y

c y e
n

n b c y e
n

a

e g y e
w y

e g y e dy

λ

λ

−

−

−

−
=

∫
%

%

(4.10).

Algebraic simplifications, for example, for the SS eigenmode, n = 0, show that 0 ( ) 1w y = thus concurring with

the axiomatic condition (2.2). Numerical evaluation of the weight function requires an initial estimate of k1, in
addition to the others (e.g. k2) so that the filter is adaptive. Once the initial parameters are assigned, the time
exponential in (4.9) can provide an iterative method for estimating k1 from experimental data c(y,t) with
unknown parameter values. An error criteria for iterative feedback for estimating k1, or as a evaluation
performance measure, is

/| ( ) / 1|i nt
n n iI t e τε −= − (4.11).

Ideally, the cross-sectional spatial information is inputted into the filtering operation given by (4.10)
and (4.11) and yields a real number equalling the temporal value, as shown in figure 13. However, there is
some numerical error arising from the numerical integrations performed in MatlabTM 8. Decompositions of
simulated data p(y, t) using (4.9-4.11) have shown the relative error of the numerically evaluated integral,

( )n iI t , compared with the theoretical value /i nte τ− concurs to within less than 1 % for the first three

eigenvalues (n = 1,..,3). To illustrate the error with an example, reference is made to figure 13 where the plot
on the left hand side is the cross-section of the surface, p(y, t) illustrated in figure 6 at 5it = s. Recall that the

simulated nanoparticle collection used k1 = 1 fN and other parameters as previously stated, and a simple
normalization implies 1N = . Selecting the second eigenmode, n = 2, for example, with eigenvalue,

2 0.091876ρ = or mode time constant 2 118.47τ = s resulted in a numerical value for the left hand integral in

(4.9), 2 (5) = 0.95447I and was evaluated using adaptive Lobatto quadrature in MatlabTM 7.8. The right hand

side of (4.9) yields a theoretical value, 5 / 118.47 0.95867e− = hence, from (4.11), -3= 4.4×10ε . Other numerical
integrations show that the remaining m ≠ n modes were extremely low compared with the selected mode,
typically seven orders of magnitude higher. This means that not only is there capability for decomposing
inputted data in time (along the time axis) at a selected point in space, as shown in (4.3.1), but capability for
decomposing data in space (along the positional y axis) at a instant in time.

4.4 Domain evaluation and representation

The solution demonstrates that a systematic analysis of DEP nanoparticle transport combined with diffusion
results in a series of exponential time responses with Bessel function amplitudes predicting the DEP force
strength associated with each mode. Nanoparticle collection and release in a DEP microdevice shown in
figure 2 has a temporal response predicted by the exponential time decay terms in (3.13) and (3.14). Since
DEP as an electrokinetic transport driver shows considerable promise the time response will be important for
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monitoring, control and other purposes. It is foreseeable that representation in alternative domains could be
an important tool for the development of these microdevices so an example is given for the frequency domain.

To find the frequency response, the time derivative of the solution (3.11) is evaluated and the
expression is Fourier transformed [36]. Since the distributional derivative of the step input is an impulse
function, the output can be said to be an ‘impulse response’ provided certain assumptions are kept in mind –
as discussed later. The derivative of the series (3.12) is,

( ) ( )1

1 1

( , ) [ ( ) ( )] ( ) ( ) e ( )
t
m

m

c y c y
s m m m m

m m

p y t p y C e g y t C e g y u tτ
τδ

∞ ∞ −

= =
= + −∑ ∑& % %  (4.12)

where the dot, ‘.’ denotes the time derivative and ( )tδ is the Dirac delta function. Our interest lies in the sum

of exponential decay terms shown in the second term in (4.12). Both (3.12) and (4.12) are causal, hence the
Fourier transform is

1

( , ) { ( , )} ( , ) ( ) ( )
cm

i t
c m m

m

P y f F p y t p y t e dt g y H fω∞ −
−∞

=
= = =− ∑∫& &  (4.13)

where the angular frequency is 2 fω π= and
1

( )
1 m

H f
iωτ

=
+

is the Fourier transform of the derivative of

the mth exponential decay term in the series. As for the time domain for the collection process, the infinite
series is evaluated by truncating to mc and is a trade-off between computation time, accuracy needed for the
application and convergent properties of the series. Similarly, the frequency response of a single eigenmode
can be evaluated, for example, by Fourier transforming the Bessel filter given by (4.9). Combining both
weighting and transform operations, the integral is Fourier-Bessel (FB) operator with subscript ‘n’ signifying
the nth mode
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{ ( , )} ( , ) ( )

1

b i ft
n na

n

FB p y t p y t w y e dy dt
i

π
ωτ

∞ −
−∞

−= =
+∫ ∫  (4.14).

The frequency spectrum of DEP time dependent transport is rapidly evaluated and is shown in figure
14. The parameter values are for the perturbation case, k1 = 1 fN, a = 0 µm, electrode dimensions w + g = 20
µm, h = 100 µm with the spatial point of interest set at the lower boundary, y = a. The series (4.13) converged
less rapidly that the time domain form (3.13) but sufficient accuracy was obtained using mc = 40. The plot for
the multiple eigenmode sum given by (4.13) exhibits rounded roll-off due compared with a single, first
eigenmode term in the series, also plotted in figure 14. It illustrates the very slow time response of the first,
main, eigenmode, with 1 478τ � s, that is also apparent in the time domain decomposition, shown in figure 12.

The ultra-low frequency roll-off arises from the diffusion over the 100 µm chamber height that acts to dampen
high frequencies arising from the DEP step-force. Note that a normalised version of the first eigenmode term
plotted in figure 14, without the spatial term 1( )g a , could have been evaluated from (4.14) rather than (4.13).

It is important to be careful interpreting the frequency spectrum plotted in figure 14; it is not expected to be
the same as the classical impulse response associated with linear time invariant (LTI) systems [36]. The
reason (3.13) is not LTI is because the nanoparticle density is spatially distributed, as shown by the
propagating depletion zone in figure 6. That is, the assumption of a uniform spatial distribution of
nanoparticles for the IC used to evaluate (3.13) is not entirely valid, rather it is an approximation. However,
under weak DEP forces that merely perturb the system, is expected to be quasi-LTI so the frequency response
is not exact but a useful indication of the DEP driven nanoparticle transport in a microdevice.
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Ultra-low time modulated DEP causes nanoparticles to be cyclically drawn to, and released from, the
electrode surface. As the modulation frequency is increased, however, there occurs a frequency when the
nanoparticles barely move. No sooner are the nanoparticles attracted to the electrode surface by DEP, they are
released into the bulk under the action of diffusion as the force decreases in the cycle. The frequency response
in figure 14 indicates that if the DEP force is modulated in time with frequency of the order of tens of Hertz or
higher, there would be little modulation of nanoparticles observed - apart from the time averaged DC level
that results in a partial SS ‘on’ response. The time-averaged DC level arises from the fact that the DEP force is
proportional to the square of the applied voltage and the phenomenon is identifiable by laboratory modulation
experiments. Under these caveats, it is possible to suggest a new parameter in investigations as the ‘DEP
modulation bandwidth’, although the topic strictly awaits a more detailed investigation. This includes a
definition for the cut-off frequency, fc, that should be capable of being observed experimentally. If a constant
{ : 0 1}c ck k< < is assigned as the proportion of the maximum, then

max
: ( , ) ( , )c c c cf P y f k P y f= (4.15). 

 
For example, 1 2ck = is defined as the half-power frequency for resistor-capacitor LPF circuits [36]. Due to a

rounded roll-off and that a sensible laboratory criterion is that ‘almost all’ of the nanoparticles are not being

modulated, then 0.05ck = . Applying this criterion to the figure 14 yields about 7cf = milliHertz (mHz) for

the first eigenmode and for the entire density 1cf = Hz. Laboratory DEP modulation experiments using

nanospheres with the same 216 nm diameter as the simulation indicate this value of the order of 1 Hz is
reasonable and, hence, supports the predictions by the FB model.

4.5 Representation

Each of the modal frequency terms in (4.13) is identifiable with a Low-Pass Filter (LPF) equivalent circuit so
that the expression for the sum is represented by the schematic shown in figure 15. In the schematic, each of
the active-LPFs (A-LPFs) entails a resistor-capacitor filter with values that govern each eigenmode time
constant, τm, and an active operational amplifier (op-amp) that compensates any resistive losses thus
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between the multiple eigenmode and single eigenmode
(n = 1) with a less rounded cut-off.
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representing each spatial ( )mg y term. The Fourier transform of the nanoparticle release process can also be

represented by a similar frequency domain approach. For weak DEP with k1 = 0.1 fN at the lower boundary at
y = a it was shown that the time profiles are complementary, as given by (4.2). Hence, in this case, the
absolute value of the frequency response of the release should be the same as the collection and the schematic
representation will include a sum of A-LPFs similar to figure 15.

5 Discussion and concluding remarks
A Fourier-Bessel series solution to a 1D linear FPE, or modified diffusion, equation has been developed to
predict nanoparticle concentration as a function of position and time. The model is applicable for non-
interacting nanoparticles transported by a spatial DEP force that varies exponentially in a microdevice, as
arises from a planar interdigitated array. The model allows DEP to be switched on then off in time and
classifies the collection and release dynamics of nanoparticle transport as a microdevice system perturbation
for weak DEP force coefficients up to 1 fN. This is responsible for small proportions of nanoparticles
collecting under the action of positive DEP near the array and being released when the force is switched off.
The perturbation classification contrasts with state transition where much stronger DEP forces significantly
concentrate nanoparticles in regions close to the array, and depletion occurs elsewhere in the microdevice
chamber. The classifications in sections 3.1 and 4.1, based on both SS and time responses, are as expected for
a system that combines DEP and thermal diffusion.

Assuming weak DEP forces where the nanoparticle concentration is perturbed, the FB model was
used to develop and demonstrate four other key applications areas: approximation, estimation and
decomposition, transformation and representation. There is considerable opportunity for further work. The
approximations that saved computation time, particularly for the estimation and decomposition application,
could be generalised to include other positions above the array. Of interest are the eigenmode time constants
in figure 5 that were shown to remain relatively constant so that the nanoparticle collection time profile at the
array could be rescaled for small increases in the DEP force. The two-stage estimation process for the DEP
time response that successfully estimated the DEP force coefficient could be developed further for other
parameters, e.g. the electrode dimension coefficient, k2. Although k2 was assigned as ‘known’, our interest
also lies the inferring its value from experimental data, i.e. its effective value. Clearly, the single eigenmode
adaptive filter that used of all spatial information and only one time point for a chosen eigenmode, could be
developed further for robustness against noise that typifies quantitative laboratory measurements using
fluorescence microscopy. The A-LPF equivalent representation could also be investigated for positions away
from the array, e.g. at 20 µm, that become temporarily depleted of nanoparticles, as shown in figure 6.
Preliminary results suggest nanoparticle depletion could be represented by adding circuit elements that
introduce 1800 phase shift, such as inductors, to the resistor-capacitor A-LPFs or by inverting the gain of the

Figure 15. Nanoparticle DEP collection process for a DEP step input
at y = a can be considered as sum of active low pass filters, each
with its own gain and cut-off frequency. For low DEP forces, the
representation is applicable for nanoparticle release.

A-LPF 1

+A-LPF 2

A-LPF mInput Output
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op-amps. As with many of the applications, there is scope also for representation that considers high DEP
force collection of nanoparticles followed by their release into the bulk solution.

The time response of the first decomposed and dominant eigenmode of about eight minutes for a
typical DEP collection experiment indicates a possible benchmark for future experiments involving ultra-low
frequency time modulated DEP. Currently, sinusoidal and square wave ‘on/off’ switched DEP is being
investigated in our laboratory and suggests a low frequency DEP modulation bandwidth of the order of one
Hertz and this concurs with the FB series that predicts a nanoparticle transport process damped by diffusion.
This is a preliminary finding and the prediction is for a 1D system whereas experiments occur in 3D micro-
chamber. This motivates further development of a 3D software tool for analysing quantitatively measured
time data of DEP nanoparticle collection experiments and the separation of variables method can be readily
extended to 2D and 3D. All numerical evaluations were performed in MatlabTM 7.8 and were verified by
independent FEM simulations using FlexPDETM 2.15. Computing environments, such as, MatlabTM 7.8, that
are based on matrix calculus are suited to evaluating series. In general, the FB series took longer to compute
than FlexPDETM 2.15. This was attributed to the high accuracy needed for computing the integration
constants, particularly the eigenvalues that involved root evaluation and spatial integration that used
quadrature methods. However, once the eigenvalues and FB spatial terms had been evaluated for a set of
parameter values, re-evaluation on different time scales was very fast compared with FlexPDETM 2.15 that
needed to be re-run. Importantly, evaluation in alternative domains, such as, the frequency domain was easily
achieved with the FB model and computation time could be reduced by coding mathematical algorithms in
other languages, such as, C++ or Fortran 90. Applications are anticipated to be integrated and developed into
an information software tool with a user-friendly interface, e.g. Matlab™ 7.8, and to be made freely available.

The development of applications, particularly that involve time responses, is important for the
development of DEP-based LOC and novel technologies, such as, scanning probe microscopes, quantum dots
and optical devices [5-8, 10, 12, 13]. Fourier transformations of experimental data, for example, are routine in
today’s electronics industry for frequency domain analysis and testing, and Laplace and z-transforms are used
for automatic control stability analysis and design. Further work also includes the development of a nonlinear
FPE that could take into account the effect the nanoparticles have on the electric field and influence of other
electrokinetic effects, such as, electro-osmosis. In this respect the linear FB model will provide an important
framework for analysis and comparison. Applications of the Fourier-Bessel series for modelling nanoparticle
transport appear to be the first of its kind in the literature on DEP and engenders a microdevice systems
approach. It shows considerable promise as a development tool for understanding and advancing DEP
applications for transporting nanoparticles.
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Appendix A

The third set of integration constants is evaluated by finding an orthogonal basis. A suitable weighting
function is defined

2

( )
( ) ( ) / ( ) , 0

exp( )
n

n n ss k y
c

g y
q y g y p y

p e
λ

λ −= = ≠ (A.1)

where ( )sp y is the SS solution given by (3.1),
2 2

2

( ) ( )
c k a k b

k
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Ei e Ei eλ λ− −=
−

and the general case, 0λ ≠ is

given. In (A.1) ( )ng y is a spatial eigenmode term given in (3.6) and n is an eigenmode index. Setting 0t = in
the series pdf (3.2) removes time dependence. Multiplying the right hand side (rhs) of (3.2) by weight (A.1)
and integrating over the interval from y a= to y b=
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Summing the left hand side (lhs) of (A.2) over the n indices,
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By definition an orthogonal function has properties,
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where cn is a normalisation constant and mnδ is the Kronecker delta function.

Applying (A.4) to (A.3) and substituting (A.1)
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From (3.8) ( )( ) ( )c y
m m mg y C e g y= % hence each lhs and rhs term in (A.5) becomes,
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and (3.10) follows.
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Appendix B

The m = 0 term of the series is verified by setting 0 0ρ = so that from (3.3)

0 ( ) 1h t = (B.1)

and from expressions in (3.5), † ( ) †1 1 2 1
2 2 ( ) 2

, ( , ( )) and ( , ( )) 0y
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and λ is defined in (3.1). The numerator of the integration constant C0 defined in (3.10) is
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Similarly the denominator of the integration constant C0 is
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where the exponential integral identity is found by change of variable. Thus,
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Substituting (B.5) into (B.2) and using the relations in (3.5)

2
2

2 2

2
0 ( )

[ ( ) ( )]

k y
k ye

e
ck a k b

k e
g y p e

Ei e Ei e

λ
λ

λ λ

−
−

− −= ≡
−

(B.6)

Combining (B.1) and (B.5), the first term is

2
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which is the relation for the collection SS in (3.1) and (3.12) follows. Note that the IC in the integrals of B.3
are arbitrary. Also, it can be shown that in the case when the DEP force is switched is off, the limiting values

1 0k → and 0λ → , enables the denominator in (B.6) to simplify

2 2
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0
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→
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using series expansions for the Ei functions [34]. Hence the above argument applies for nanoparticle release
and (3.12) follows.
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Appendix C

The value for the DEP force coefficient k1 is found from initial and final experimental measured
concentrations of collection profiles and evaluated using the relative amplitude parameter, A(y), defined in
(2.3). Inverting (2.3) and (3.1) yields k1. Since (3.1) is nonlinear, k1 is found iteratively by establishing a
general function depending on k1,
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B B

k kk y k a k b
B k k T k k T
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Let the superscript, ‘i’, denote the ith iteration. The root, 1( ) 0f k = , is found using Newton’s method [34],
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where ' denotes derivative with respect to k1. For convenience, let
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Hence, differentiating (C.1) using the chain rule,
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The exponential integral function given by the CPV properties yields [34],
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Combining (C.1), (C.4), (C.5) and (C.2) enables a good approximation of the root and hence estimate for k1.
Noting that the series expansions for the Ei and exponential functions [34]

1
1 20

( ) ( )
k

Ei k k b a→∆ = − (C.6)

and

2 2

1
1 20

k a k b

Bk

d Ei e e

dk k k T

− −

→

∆ −=

enables use of a default starting value, 1 0k = , for the starting, i = 0th, iteration.
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