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ABSTRACT 

 
Maxwell’s methodology, developed to estimate the effective electrical conductivity of isotropic particulate 

composites, is used with a far-field elasticity result of Eshelby to derive closed-form formulae for effective 

transversely isotropic elastic properties of multi-phase composites comprising aligned transversely isotropic 

spheroidal inclusions embedded in an isotropic matrix.  Very simple expressions are derived for the effective 

shear moduli. Closed-form analytical results for all elastic constants are shown, using exact numerical methods, 

to be identical to more complex results derived by Qiu and Weng on applying Mori-Tanaka theory to spheroidal 

reinforcements. This is a contradictory result as Maxwell’s approach neglects inclusion interactions while Mori-

Tanaka theory is designed, to some extent, to take such interactions into account.  The rational conclusion is that 

inclusion interaction effects for volume fractions of practical relevance do not affect the far-field to any 

significant degree so that Maxwell’s methodology, when combined with Eshelby’s analysis, has much wider 

applicability than expected.  

 

Results for isotropic composites having distributions of spherical particles, and transversely isotropic 

composites having distributions of aligned fibres, correspond with known expressions, and can coincide with, or 

lie between, variational bounds for all volume fractions.  A new simple expression having a ‘mixtures’ structure 

is obtained for the axial modulus of multi-phase fibre reinforced composites that reduces to concentric cylinders 

estimates when there are just two phases.  To demonstrate accuracy, property results for a variety of composites 

are compared with accurate numerical results in the literature for two-phase composites having reinforcement 

volume fractions in the range 0 to 0.7.     

 

 
Keywords: Maxwell methodology, Eshelby analysis, elastic properties, particulate composites,  

spheroidal inclusions, multi-phase. 
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1. Introduction 

 
This paper, which is a tribute to Professor Anthony Kelly, CBE, FRS, marking his 80

th
 

birthday, revisits a classical problem of composite science by presenting a new analysis that 

indicates how effective elastic properties can be estimated approximately for isotropic 

matrices that are reinforced by aligned multi-phase transversely isotropic spheroids which all 

have the same aspect ratio.  Discussion of key issues and formulae will, in effect, review 

many results that have already been given in the literature. 

 

The development of methods to estimate the effective properties of multi-phase 

composites reinforced by spheroidal reinforcements has a long history.  For example, Mori-

Tanaka theory [1], estimating the average stress and elastic energy for composites reinforced 

with mis-fitting inclusions, has been applied by Weng [2] to develop an approximate method 

of estimating effective elastic properties of general multi-phase anisotropic composites 

reinforced with arbitrarily oriented anisotropic inclusions.  Explicit formulae for effective 

elastic properties were derived for suspensions of uniformly distributed, multi-phase isotropic 

spherical particles in an isotropic matrix. Norris [3] emphasised the relationship of effective 

properties, estimated using Mori-Tanaka theory, to general bounds, showing that predicted 

properties for two-phase composites always satisfy the Hashin-Shtrikman bounds [4], a result 

that does not generalise to multi-phase composites so that caution should be used in this case.  

Weng [5] reformulated Mori-Tanaka theory so that it is recast into a form that has an identical 

structure to that used when deriving the Hashin-Shtrikman bounds, and he uses a notation 

based on the treatment of fourth order tensors for elastic constants developed and used by 

Walpole [6]-[9].  Qiu and Weng [10] apply the modified Mori-Tanaka theory to composites 

having transversely isotropic spheroidal inclusions and derive explicit but complex formulae 

that can be used to estimate all elastic properties.  Benveniste et al [11] investigate the 

diagonal and elastic symmetry of the fourth order effective elastic property tensor for 

heterogeneous media and show that the Mori-Tanaka and self-consistent methods lead to 

diagonal and symmetric property tensors for all two-phase composites.  If, however, all the 

inclusions have a similar shape and are aligned, then they show that the symmetry properties 

apply also to multi-phase composites.  Chen et al [12] have applied the Mori-Tanaka method 

to estimate explicit formulae for the effective elastic properties of composites reinforced with 

aligned or randomly oriented, transversely isotropic fibres or platelets, and for fibrous 

composites reinforced with cylindrical orthotropic fibres.  For the general case of transversely 

isotropic spheroidal inclusions embedded in an isotropic matrix, the effective elastic 

properties presented as formulae for fourth order tensors are very difficult to interpret in terms 

of the five independent elastic constants, as shown by Qiu and Weng [10].  This has meant 

that the practical application in an engineering context of the valuable results has been 

difficult.   

 

As a result of collaborating with Professor Anthony Kelly in recent years, regarding methods 

of estimating the effective thermo-elastic constants and conductivities of composite materials, 

the author was introduced to the pioneering work of James Clerk Maxwell [13] who provided 

an ingenious method of estimating the effective electrical conductivity of a cluster of 

spherical particles, having the same size and embedded in an infinite medium, by considering 

the effect of the cluster on the far-field, when the system is subject to a uniform electrical 

field.  Maxwell modestly asserted that the sizes and distribution of the particles must be such 

that particle interaction effects may be neglected, and he infers that his result will be valid 

only for small volume fractions of reinforcing particles.  A result for effective permittivity 

that is analogous to Maxwell’s result for electrical conductivity is known as the ‘Maxwell-
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Garnett mixing formula’, and it has a microscopic analogue that is known as the ‘Clausius-

Mossotti’ (or ‘Lorentz-Lorenz’) formula, which has been related to effective elastic property 

estimation by Felderhof and Iske [14] and Cohen and Bergman [15], [16].   

 

More recently McCartney and Kelly [17] studied the method used by Maxwell and 

demonstrated that his methodology, focusing only on the far-field, can also be applied to the 

estimation of other properties of composite materials. The principal objective was to show 

how Maxwell’s methodology could be used to estimate explicit formulae for the effective 

bulk modulus, shear modulus and thermal expansion coefficient of multi-phase isotropic 

composites reinforced with homogeneous spherical particles. The methodology of Maxwell 

was naturally extended so that assemblies of multi-phase spherical particles having a range of 

radii and/or properties could be considered.  A second objective was to show that Maxwell’s 

methodology is one reliable technique that provides closed-form estimates of effective 

properties and is not necessarily restricted to low volume fractions of particulate 

reinforcement as has often been claimed in the literature.   

 

More recent unpublished work has shown that, when Maxwell’s methodology is 

applied to clusters of aligned transversely isotropic cylindrical fibres of different types, 

embedded in an infinite isotropic matrix material, a similar situation arises to that described 

in [17].  For the fibre case, the effective thermo-elastic properties of the composite are 

transversely isotropic but it is not known how to estimate the axial Young’s modulus and 

axial thermal expansion coefficient for multi-phase fibre reinforced composites.  This leads 

on to the idea of considering clusters of aligned spheroidal inclusions having various sizes and 

properties that can represent aligned short fibres and particulate composites of various types, 

and of making use of a classical analysis due to Eshelby [18], [19].  He considers the elastic 

field for isolated ellipsoidal inclusions (both isotropic and anisotropic) that are embedded in 

an infinite isotropic matrix and subjected to loading that would in a homogenous material lead 

to uniform stress and strain fields.  Of particular relevance is an expression for the far-field 

displacement field that provides a very convenient method of extending Maxwell’s 

methodology for spheres to the case of aligned transversely isotropic spheroids and fibres 

embedded in an isotropic matrix, the investigation of which is the principal objective here. It 

is noted that Torquato [20] has observed: i) this correspondence for the case of isotropic 

ellipsoidal inclusions when using a formulation based on the fourth order elastic constants 

described above, and ii) that the Mori and Tanaka results, and hence those in this paper based 

on Maxwell’s methodology, coincide with one of the bounds due to Willis [21] depending on 

whether the matrix is stiffer or more compliant than all of the inclusions, as shown by Weng 

[22]. 

 

This paper first steps back in time combining the pioneering work of both 

Maxwell [13] and Eshelby [18] to develop a new method of estimating explicit closed-form 

formulae for the effective elastic properties of composites reinforced by aligned transversely 

isotropic spheroidal inclusions embedded in an isotropic matrix.  The new approach will be 

shown to generate very simple expressions for the shear moduli, and lead to a new result for 

the effective axial Young’s modulus for a multi-phase composite reinforced with aligned 

fibres.  The approach will be shown capable of generating many of the well-known results for 

effective properties that have been derived in the literature using a variety of other methods.  

It is thought that the new method of estimating effective properties will enable engineers to 

understand more readily, and calculate more efficiently, the transversely isotropic effective 

properties of composites reinforced with aligned spheroidal inclusions.   
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The paper is organised so that a general description is first given in Section 2 of the 

application of Maxwell’s methodology to a uniform distribution of aligned spheroidal 

inclusions, and in Section 3 relations are given defining the transformation tensor for a 

transversely isotropic inclusion.  The far-field relations for the displacement field derived by 

Eshelby [18] are then given in Section 4.  The effective shear properties of the composite are 

derived in Section 5, and the corresponding non-shear effective properties are derived in 

Sections 6-8.  The resulting effective properties for spherical and fibre reinforcements are 

given in Sections 9 and 10 respectively.  A comparison is made in Section 10 between the 

predicted effective properties of two-phase composites and various accurate numerical results 

that are available in the literature.  Results obtained are discussed in Section 11 and 

conclusions are drawn in Section 12.  

 

2. General description of Maxwell’s methodology applied to spheroidal inclusions 

 
The following description is based on Maxwell’s [13] far-field approach, when estimating the 

electrical conductivity of a cluster of isotropic spherical particles embedded in an infinite 

isotropic matrix.  The methodology is generalised here so that multi-phase composites having 

aligned transversely isotropic spheroidal inclusions of various types can be considered.   

 

2.1  Description of geometry 

 

In a well-mixed cluster of N types of aligned spheroidal reinforcement embedded in and 

perfectly bonded to an infinite isotropic matrix, there are in  spheroidal inclusions having 

major axes ia  and minor axes ib , i = 1 … N.  The centres of the spheroids representing the 

inclusions are assumed to be homogeneously and isotropically distributed within the cluster.  

Inclusion properties of type i, which may differ from those of other types, are denoted by a 

subscript or superscript i, and they are assumed to be transversely isotropic with the principal 

direction aligned with the major axes of the spheroids.  The cluster of all inclusion types may 

be just enclosed by a spheroid of major axis a  and minor axes b  having the same alignment 

as the inclusions. The homogeneous inclusion distribution leads to transversely isotropic 

effective properties of the composite formed by the cluster of aligned transversely isotropic 

spheroidal inclusions and isotropic matrix lying within this enclosing spheroid.  The volume 

fractions of inclusions of type i within the enclosing spheroid of radii a  and b  are given by 
 

2
i i i i
p 2

n a b
V

a b
= ,  i = 1, … , N ,      such that      

N
i

m p

i 1

V V 1
=

+ =∑  ,                (2.1) 

 

where mV  is the volume fraction of matrix.  For just one type of inclusion, as shown in 

Figure 1, with n inclusions having major axis a and minor axis b, the particulate volume 

fraction Vp is such that 
2

p m2

n a b
V 1 V

a b
= = − .                                                (2.2) 

 

Whatever the nature and arrangement of the aligned spheroidal transversely isotropic 

inclusions in the cluster, Maxwell’s methodology considers the far-field when replacing the 

discrete particulate composite, that can be enclosed by a spheroid having axes a  and b , by a 

homogeneous effective composite spheroid having the same axes a  and b  embedded in the 

matrix.  There is no restriction on sizes, properties and locations of inclusions provided that 
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the equivalent effective medium is homogeneous and transversely isotropic.  Composites 

having statistical distributions of both inclusion size and properties can clearly be analysed, 

but they must all be aligned in the same direction. 
 

 
Figure 1:  Diagrams illustrating (a) discrete model and (b) effective medium model of a 

particulate composite having aligned spheroidal reinforcements embedded  

in an infinite isotropic matrix material. 

 

2.2  Maxwell’s methodology for estimating elastic constants 

 

The first step considers the effect of embedding in the infinite matrix, an isolated cluster of 

aligned spheroidal transversely isotropic inclusions of different types that can be just 

contained within the spheroid having the same alignment.  At infinity a stress is applied that 

would lead in matrix material alone to uniform stress and strain fields.  For a single isolated 

inclusion embedded in an infinite matrix, the matrix displacement distribution is perturbed by 

the presence of the inclusion, and the perturbation from the uniform strain field depends on 

inclusion geometry and properties. The analysis of Eshelby [18], [19] enables the 

perturbations of the matrix displacement field to be determined at large distances from the 

inclusion.  According to Maxwell’s methodology (see [17]), the perturbing effect in the 

matrix at large distances from all the inclusions in the cluster is estimated by superimposing 

the perturbations caused by each inclusion, regarded as being isolated. The second step 

recognises that, at very large distances from the cluster, all the inclusions can be considered to 

be located at the origin that is chosen to be situated at the centre of one of the inclusions in the 

cluster.  The third step replaces the composite having discrete inclusions lying within the 

bounding spheroid by the homogeneous spheroidal effective medium having axes a  and b , 

and having the transversely isotropic effective elastic properties of the composite.    

 

Maxwell’s methodology [13] will now be combined with that of Eshelby [18], [19] so 

that a method can be developed that enables the estimation of the transversely isotropic 

effective elastic properties of a multi-phase particulate composite reinforced with aligned 

spheroidal transversely isotropic inclusions having different sizes. An additional assumption 
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is now made where it is assumed that the aspect ratios i ia / b , i = 1 … N, of the spheroidal 

inclusions, and that of the enclosing spheroid a / b , all have the same value.  The principal 

reasons for this assumption are that it is useful to simplify the analysis that will be rather 

complex, and as it is one objective of this paper to apply the methodology to aligned 

cylindrical fibres,  these can be enclosed only by a surface having a similar geometry.   

 

3. Isolated spheroidal inclusion 
 

Eshelby [18] considered the elastic field outside an isolated ellipsoidal inclusion embedded in 

and perfectly bonded to an infinite matrix for the case where the inclusion and the matrix are 

isotropic materials.  Eshelby [18] stated how the case of an anisotropic inclusion in an 

isotropic matrix could be solved.  The application of Maxwell’s methodology to a system of 

aligned spheroidal inclusions embedded in an infinite isotropic matrix will be considered in 

this paper, which requires a knowledge of the stress or displacement distribution at large 

distances from a transversely isotropic spheroidal inclusion.  

 

From Eshelby [18] the relation determining the transformation strain tensor T
ijε  within 

the inclusion in terms of the strain tensor A
ijε  applied to the matrix at infinity is  

( ) ( ) ( )C A C A T C A T
ijkl kl kl kk kk kk ij ij ij ijC 2ε + ε = λ ε + ε − ε δ + µ ε + ε − ε  ,                    (3.1) 

 

where ijklC  are the anisotropic elastic constants for the inclusion, λ  and µ  (the shear 

modulus) are Lamé’s constants for the isotropic matrix, and where C
ijε  is the ‘constrained 

strain’ within the inclusion when it transforms while embedded in the matrix. From 

Eshelby [18] 
 

C T
ij ijkl klSε = ε  ,                                                         (3.2) 

 

where the Eshelby tensor ijklS  has dimensionless components depending only on Poisson’s 

ratio of the isotropic matrix and the aspect ratio of the ellipsoid.  The elastic constants ijklC  

are such that ijkl jikl ijlk jilkC C C C= = = .  The substitution of (3.2) in (3.1) leads to 

 

( ) ( ) ( )T A T T A T T A
ijkl klmn mn kl kkmn mn kk kk ij ijkl kl ij ijC S S 2 Sε + ε = λ ε − ε + ε δ + µ ε − ε + ε  .       (3.3) 

 

For a transversely isotropic solid, where the axial direction corresponds to the direction of the 

x1-axis, the stress-strain relations defining the elastic coefficients 
ijkl

C  for the inclusion have 

the explicit form 
 

 ( )2
11 A T A 11 A T 22 A T 33E 4k 2 k 2 kσ = + ν ε + ν ε + ν ε ,                              (3.4) 

 

 ( ) ( )22 A T 11 T T 22 T T 332 k k kσ = ν ε + + µ ε + − µ ε  ,                                (3.5) 
 

( ) ( )33 A T 11 T T 22 T T 332 k k kσ = ν ε + − µ ε + + µ ε  ,                               (3.6) 
 

12 A 122σ = µ ε  ,    13 A 132σ = µ ε  ,    23 T 232σ = µ ε  ,                                (3.7)    
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where AE  is the axial Young’s modulus, Aν  is the axial Poisson’s ratio, Tk  is the plane 

strain bulk modulus, and where Aµ  and Tµ  are respectively the axial and transverse shear 

moduli.  The corresponding transverse Young’s modulus TE  and transverse Poisson’s ratio 

Tν  are obtained using the following relations 
 

2
A

T T T A

44 1 1

E k E

ν
= + +

µ
 ,          T

T

T

E
1

2
ν = −

µ
.                           (3.8) 

 

The stress-strain relations (3.4)-(3.7) are used to characterise both the reinforcing inclusions 

and the effective medium representing the composite.  For the isotropic matrix the elastic 

constants are the Young’s modulus E , Poisson’s ratio ν , the shear modulus µ  and the bulk 

modulus k , which satisfy the relations 
 

( )
( )

2
3

E
E 2 1 , k

3 1 2
= µ + ν = λ + µ =

− ν
 .                              (3.9) 

 

It is assumed that the major axes of the various spheroids in the composite are aligned with 

the x1 axis.  It should be noted that for spheroidal inclusions the tensor 
ijkl

S  are such that 
 

( )
2222 3333 2211 3311 1212 2121 1313 3131 2323 3232

2222 2233 2323 2211 1122 2222 2233 1111 1122

S S , S S , S S S S , S S ,

S S 2S , S S S S S S .

= = = = = =

− = − = ν + − −
           (3.10) 

 

Expanding (3.3) using (3.4)-(3.7) leads to the following six linear equations that 

determine the components of the strain tensor T
ijε  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )

2 T
A T A 1111 A T 2211 A T 3311 11

2 T
A T A 1122 A T 2222 A T 3322 22

2 T
A T A 1133 A T 2233 A T 3333 33

T T T T
11 22 33 11

2
A T A

E 4k 2 S 2 k S 2 k S

E 4k 2 S 2 k S 2 k S

E 4k 2 S 2 k S 2 k S

2

E 4k 2

 + ν − λ − µ + ν − λ + ν − λ ε 

 + + ν − λ − µ + ν − λ + ν − λ ε 

 + + ν − λ − µ + ν − λ + ν − λ ε 

+ λ ε + ε + ε + µε

= − + ν − λ − µ ( ) ( )A A A
11 A T 22 A T 332 k 2 k ,ε − ν − λ ε − ν − λ ε

          (3.11) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

T
A T 1111 T T 2211 T T 3311 11

T
A T 1122 T T 2222 T T 3322 22

T
A T 1133 T T 2233 T T 3333 33

T T T T
11 22 33 22

A A
A T 11 T T 22

2 k S k 2 S k S

2 k S k 2 S k S

2 k S k 2 S k S

2

2 k k 2

ν − λ + + µ − λ − µ + − µ − λ ε  

+ ν − λ + + µ − λ − µ + − µ − λ ε  

+ ν − λ + + µ − λ − µ + − µ − λ ε  

+ λ ε + ε + ε + µε

= − ν − λ ε − + µ − λ − µ ε ( ) A
T T 33k ,− − µ − λ ε

                (3.12) 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

T
A T 1111 T T 2211 T T 3311 11

T
A T 1122 T T 2222 T T 3322 22

T
A T 1133 T T 2233 T T 3333 33

T T T T
11 22 33 33

A A
A T 11 T T 22 T

2 k S k S k 2 S

2 k S k S k 2 S

2 k S k S k 2 S

2

2 k k k

ν − λ + − µ − λ + + µ − λ − µ ε  

+ ν − λ + − µ − λ + + µ − λ − µ ε  

+ ν − λ + − µ − λ + + µ − λ − µ ε  

+ λ ε + ε + ε + µε

= − ν − λ ε − − µ − λ ε − ( ) A
T 332 ,+ µ − λ − µ ε

                (3.13) 

 
A

T 12
12

1212

A

2S

ε
ε =

µ
−

µ − µ

,      
A

T 13
13

1313

A

2S

ε
ε =

µ
−

µ − µ

,      
A

T 23
23

2323

T

2S

ε
ε =

µ
−

µ − µ

 .         (3.14) 

 

 

4. Far-field displacement distribution 
 

Consider an isolated ellipsoidal inclusion having axes a, b, c perfectly bonded to an infinite 

isotropic matrix having elastic properties ,λ µ .  Eshelby [18] derived the following 

expression for the perturbation displacement field at large distances from the ellipsoidal 

inclusion 
 

( ) ( )C T T T T
i ik k ki k kk i jk i j k 2

a bc 1
u 1 2 l l l 3 l l l

6(1 ) r
 = − ν ε + ε − ε + ε − ν

 ,             (4.1) 

 

where 1
2

/ ( )ν = λ λ + µ  is Poisson’s ratio for the matrix and where 
i

l  are direction cosines of 

the point ( )1 2 3
x , x , x=r  relative to the origin of spherical coordinates (r, , )θ φ  defined by 

 

1 2 3l sin cos , l sin sin , l cos .= θ φ = θ φ = θ                            (4.2) 
 

Eshelby [18] justified the use of (4.1) for the case of anisotropic inclusions embedded in an 

isotropic matrix.  For the case where T T T
11 22 33, ,ε ε ε  are the only non-zero strains, (4.1) may be 

written, for k = 1, 2, 3, (no summation over repeated suffices) 
 

( ) ( )C T T T T T 2 T 2 T 2 k
k kk 11 22 33 11 1 22 2 33 3 2

la b c
u 1 2 2 3 l 3 l 3 l

6 (1 ) r
 = − ν ε − ε − ε − ε + ε + ε + ε − ν

.        (4.3) 

 

For the case when T
12ε  is the only non-zero strain, (4.1) may be written 

 

C 2 T 2
1 1 12 2

la b c
u 1 2 3l

3(1 ) r
 = − ν + ε − ν

, C 2 T 1
2 2 12 2

la b c
u 1 2 3l

3(1 ) r
 = − ν + ε − ν

, C T 1 2 3
3 12 2

l l la b c
u

1 r
= ε

− ν
. (4.4) 

 

For the case when T
13ε  is the only non-zero strain 

 

C 2 T 3
1 1 13 2

la b c
u 1 2 3l

3(1 ) r
 = − ν + ε − ν

, C T 1 2 3
2 13 2

l l la b c
u

1 r
= ε

− ν
, C 2 T 1

3 3 13 2

la b c
u 1 2 3l

3(1 ) r
 = − ν + ε − ν

, (4.5) 

 

and for the case when T
23ε  is the only non-zero strain 
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C T 1 2 3
1 23 2

l l la b c
u

1 r
= ε

− ν
, C 2 T 3

2 2 23 2

la b c
u 1 2 3l

3(1 ) r
 = − ν + ε − ν

, C 2 T 2
3 3 23 2

la b c
u 1 2 3l

3(1 ) r
 = − ν + ε − ν

. (4.6) 

 

The subsequent analysis in this paper assumes that b = c so that the inclusions are spheroidal.  

Also, matrix properties will be denoted by a suffix m as there will not now be confusion with 

the tensor notation. 

 

 

5. Estimating shear properties  
 

On combining (3.14)1 with (4.4), it follows that, for a strain field A
12ε  applied to a single 

transversely isotropic spheroid of type i embedded in an infinite isotropic matrix, the far-field 

displacement distribution has the form 
 

  
2 A

C 2i i 12 2
1 m 1 2

mm
1212i

m A

a b l
u 1 2 3l

3(1 ) r2S

ε = − ν +  µ− ν −
µ − µ

 ,                      (5.1) 

 

2 A
C 2i i 12 1
2 m 2 2

mm
1212i

m A

a b l
u 1 2 3l

3(1 ) r2S

ε = − ν +  µ− ν −
µ − µ

 ,                      (5.2) 

 

2 A
C i i 12 1 2 3
3 2

mm
1212i

m A

a b l l l
u

1 r2S

ε
=

µ− ν −
µ − µ

 .                                                 (5.3) 

 

            As it is assumed that the aspect ratios of all types of spheroid in the cluster are 

identical and equal to that for the enclosing spheroid, Maxwell’s methodology asserts that the 

far-field displacement distribution for a cluster of N spheroidal inclusions is given by 
 

  
2 2N

C Am 1 2 i i i
1 122

mm i 1
1212i

m A

1 2 3l l n a b
u

3(1 ) r 2S=

− ν +
= ε

µ− ν −
µ − µ

∑ ,                               (5.4) 

2 2N
C Am 2 1 i i i
2 122

mm i 1
1212i

m A

1 2 3l l n a b
u

3(1 ) r 2S=

− ν +
= ε

µ− ν −
µ − µ

∑  ,                                 (5.5) 

 

A 2N
C 12 1 2 3 i i i
3 2

mm i 1
1212i

m A

l l l n a b
u

1 r 2S=

ε
=

µ− ν −
µ − µ

∑  .                                             (5.6) 

 

When the equivalent single spheroidal transversely isotropic inclusion representing the cluster 

of aligned spheroids in the matrix is subject to the same applied strain field, the far-field 

displacement distribution will have the form 
 

  
2 2

C Am 1 2
1 122

mm
1212eff

m A

1 2 3l l a b
u

3(1 ) r 2S

− ν +
= ε

µ− ν −
µ − µ

 ,                             (5.7) 
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2 2
C Am 2 1
2 122

mm
1212eff

m A

1 2 3l l a b
u

3(1 ) r 2S

− ν +
= ε

µ− ν −
µ − µ

 ,                             (5.8) 

 

A 2
C 1 2 312
3 2

mm
1212eff

m A

l l l a b
u

1 r 2S

ε
=

µ− ν −
µ − µ

 .                                          (5.9) 

 

The application of Maxwell’s methodology demands that the far-field displacements 

defined by (5.4)-(5.6) and (5.7)-(5.9) are identical, and this is leads to the following simple 

relationship that can be used to estimate the effective axial modulus eff
Aµ  of the composite 

 

iN
p

m mi 1
1212 1212eff i

A m A m

V1

2S 2S=

=
µ µ

+ +
µ − µ µ − µ

∑   ,                              (5.10) 

 

where the inclusion volume fractions i
pV  have been introduced using (2.1).  As 1212 1313S S= , 

it follows that (5.10) can be obtained also from the relations (3.14)2 and (4.5) which are 

relevant when the applied strain field is given by A
13ε .  However, on using (3.14)3 in 

conjunction with (4.6), it can be shown that, when the applied strain field is given by A
23ε , the 

effective transverse shear modulus eff
Tµ  may be found from the simple relation 

 

iN
p

m mi 1
2323 2323eff i

T m T m

V1

2S 2S=

=
µ µ

+ +
µ − µ µ − µ

∑  .                             (5.11) 

 

It can be shown, on using (2.1), that the results (5.10) and (5.11) may be also be expressed as 

the following simple ‘mixtures’ relationships 
 

iN
p m

eff * i * *
i 1A A A A m A

V V1

=

= +
µ + µ µ +µ µ + µ

∑  ,    where   *
A m

1212

1
1

2S

 
µ = − µ 

 
,         (5.12) 

iN
p m

eff * i * *
i 1T T T T m T

V V1

=

= +
µ + µ µ + µ µ + µ

∑  ,      where   *
T m

2323

1
1

2S

 
µ = − µ 

 
.         (5.13) 

 

 

6. Far-field solution for non-shear case 
 

For a strain field A
11ε , A

22ε , A
33ε  applied to a single transversely isotropic spheroidal inclusion 

of type i embedded in an infinite matrix, it follows from (4.1) that the far-field displacement 

distribution has the form, for k = 1, 2, 3, (no summation over repeated suffices) 
 

( )
( ) ( )T(i) T(i) T(i) T(i)2

m kk 11 22 33C i i k
k 2

T(i) 2 T(i) 2 T(i) 2
m

11 1 22 2 33 3

1 2 2a b l
u

6 1 r3 l 3 l 3 l

 − ν ε − ε − ε − ε
 =

− ν  + ε + ε + ε 
.        (6.1) 
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Maxwell’s methodology asserts that the far-field displacement field for the various sets of 

spheroidal inclusions in the cluster are then given by, for k = 1, 2, 3, 
 

( )
( ) ( )T(i) T(i) T(i) T(i)N

m kk 11 22 33C 2k
k i i2 T(i) 2 T(i) 2 T(i) 2

i 1m 11 1 22 2 33 3

1 2 2l
u a b

6 1 r 3 l 3 l 3 l=

 − ν ε − ε − ε − ε
 =

− ν  + ε + ε + ε 
∑  .      (6.2) 

 

When the equivalent single spheroidal transversely isotropic inclusion representing the cluster 

of aligned spheroids is subject to the same applied strain field, the far-field displacement 

distribution will have the form, for k = 1, 2, 3, 
 

( )
( )( )T T T T2

m kk 11 22 33C k
k 2 T 2 T 2 T 2

m 11 1 22 2 33 3

1 2 2l a b
u

6 1 r 3 l 3 l 3 l

 − ν ε − ε − ε − ε
 =

− ν  + ε + ε + ε 

 .            (6.3) 

 

The application of Maxwell’s methodology demands that the far-field displacements defined 

by (6.2) and (6.3) are identical, and this leads to the following relationships that will be used 

to estimate the effective non-shear effective elastic constants of the composite 
N N N

2 T 2 T(i) 2 T 2 T(i) 2 T 2 T(i)
11 i i 11 22 i i 22 33 i i 33

i 1 i 1 i 1

a b a b , a b a b , a b a b
= = =

ε = ε ε = ε ε = ε∑ ∑ ∑ .       (6.4) 

 

On using (2.1) these relationships may be written 
 

N N N
T i T(i) T i T(i) T i T(i)

11 p 11 22 p 22 33 p 33

i 1 i 1 i 1

V , V , V
= = =

ε = ε ε = ε ε = ε∑ ∑ ∑ .                   (6.5) 

 

It is thus first necessary to determine the transformation strains T(i)
11ε , T(i)

22ε  and T(i)
33ε  

associated with the applied strain field A
11ε , A

22ε , A
33ε  for each type of inclusion in the cluster, 

and the strains T
11ε , T

22ε  and T
33ε  associated with the equivalent single inclusion. 

 

       Consider the linear equations (3.11)-(3.13) for a single inclusion that must be solved for 

the transformation strains T
11ε , T

22ε  and T
33ε  in each inclusion of the cluster and in the effective 

medium representing the cluster.  It can be shown that 

 

    when A A
33 22ε = ε : 

( )( ) ( )

( ) ( )

( ) ( )

( ) ( )

A
T 11
11 2222 2233 m m m

A
22

1122 m m m

A
T 113
22 2211 m m m2

A
T22

1111 m m m 33

QR PS S S 3k P Q

2 PS QR S 3k R S ,

PS QR S k P Q

QR PS S 3k 2 R 2 S ,

ε
 ε = − + − + µ − µ  ∆

ε
 + − − + µ − µ  ∆

ε ε = − + − µ − µ  ∆

ε
 + − + − µ − µ = ε  ∆

                       (6.6) 

 

    when A A
33 22ε = − ε : 
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( ) ( ) ( )

( ) ( )

( ) ( )

A
T 11
11 2222 2233 m m m

A A
T 11 221
22 2211 m m m2

A A
T 11 221
33 2211 m m m2

QR PS S S 3k P Q ,

PS QR S 3k 2 P Q ,

PS QR S 3k 2 P Q ,

ε
ε =  − + − + µ − µ   ∆

ε ε
ε = − + − µ − µ −   ∆ Λ

ε ε
ε = − + − µ − µ +   ∆ Λ

                     (6.7) 

where 

( )

( )

A A A T

A T

A T

T

P E 2 2 1 k 2 ,

Q 6 k 3k 2 ,

R 2 1 k ,

S 3k 3k Q 3R ,

= + ν ν − − µ

= ν − + µ

= ν − + µ

= − − µ = −

                                         (6.8) 

 

2222 2233

T

S S
µ

Λ = − +
µ − µ

 ,                                               (6.9) 

 

            ( )1 2 3 m mL P L Q L R QR PS 9k∆ = + + + Ψ − + µ ,                           (6.10) 
 

and where 

( ) ( )
( )

( ) ( )( )
( )

1 m m 1111 m m 1122

2 1111 1122 2211 2222 2233 m

3 m m 2211 m m 2222 2233

1122 2211 1111 2222 2233

L 3k S 3k 2 S ,

L S 2 S S S S ,

L 2 3k 2 S 3k 4 S S ,

2S S S S S .

= + µ − − µ

 = + + + + µ 

= − µ − + µ +

Ψ = − +

                      (6.11) 

 

7. Solving for parameters defining properties of the effective medium 
 

It is useful to consider two special loading cases, which reduce the complexity of the 

approach.  The first case is for uniaxial axial applied strains while the second considers plane 

strain equi-biaxial transverse loading. 

 

7.1  Uniaxial axial loading 

 

For the special case when A
11ε  is the only non-vanishing applied strain it follows from (6.6) or 

(6.7) that the strains T(i)
11ε , T(i)

22ε  and T(i)
33ε  appearing in (6.5) are given by 

 

( ) ( ) ( )

( ) ( )

A
T(i) 11
11 i i i i 2222 2233 m m i m i

i

A
T(i) T111
22 i i i i 2211 m m i m i 332

i

Q R PS S S 3k P Q ,

PS Q R S 3k 2 P Q ,

ε
ε =  − + − + µ − µ   ∆

ε
ε = − + − µ − µ = ε   ∆

              (7.1) 

where 
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( )

( )

i i i i
i A A A T m

i i
i A T m m

i i
i A T m

i
i T m m i i

P E 2 2 1 k 2 ,

Q 6 k 3k 2 ,

R 2 1 k ,

S 3k 3k Q 3R ,

= + ν ν − − µ

= ν − + µ

= ν − + µ

= − − µ = −

                                         (7.2) 

 
 

( )i 1 i 2 i 3 i i i i i m mL P L Q L R Q R PS 9k∆ = + + + Ψ − + µ .                       (7.3)     

                

Similarly for the effective composite 
 

( ) ( ) ( )

( ) ( )

A
T 11

11 2222 2233 m m m

A
T T111
22 2211 m m m 332

QR PS S S 3k P Q ,

PS QR S 3k 2 P Q ,

ε ε = − + − + µ − µ  ∆

ε ε = − + − µ − µ = ε  ∆

                (7.4) 

 

where                                      

( )

( )

eff eff eff eff
A A A T m

eff eff
A T m m

eff eff
A T m

eff
T m m

P E 2 2 1 k 2 ,

Q 6 k 3k 2 ,

R 2 1 k ,

S 3k 3k Q 3R ,

= + ν ν − − µ

= ν − + µ

= ν − + µ

= − − µ = −

                                   (7.5) 

 

( )1 2 3 m mL P L Q L R QR PS 9k .∆ = + + + Ψ − + µ                           (7.6) 
 

It then follows from (6.5) that 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2222 2233 m m m

iN
p

i i i i 2222 2233 m m i m i

ii 1

1
2211 m m m2

iN
p1

i i i i 2211 m m i m i2
ii 1

1
QR PS S S 3k P Q A

V
Q R PS S S 3k P Q ,

1
QR PS S 3k 2 P Q B

V
Q R PS S 3k 2 P Q .

=

=

 − + − + µ − µ =  ∆

=  − + − + µ − µ   ∆

 − − − µ + µ =  ∆

= − − − µ + µ   ∆

∑

∑

(7.7) 

 

The values of the dimensionless parameters A and B are known as they can be calculated 

from inclusion and matrix parameters, and the volume fractions. 

 

7.2 Plane-strain equi-biaxial transverse loading 

 

For the special case when A
11 0ε =  and A A

22 33ε = ε , it follows from (6.6) that the strains T(i)
11ε , 

T(i)
22ε  and T(i)

33ε  appearing in (6.5) are given by 
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( ) ( )

( ) ( )

A
T(i) 22
11 i i i i 1122 m m i m i

i

A
T(i) T22
22 i i i i 1111 m m i m i 33

i

2 PS Q R S 3k R S ,

Q R PS S 3k 2 R 2 S .

ε
ε = − − + µ − µ   ∆

ε
ε = − + − µ − µ = ε   ∆

             (7.8) 

 

Similarly for the effective composite 
 

( ) ( )

( ) ( )

A
T 22

11 1122 m m m

A
T T22
22 1111 m m m 33

2 PS QR S 3k R S ,

QR PS S 3k 2 R 2 S .

ε ε = − − + µ − µ  ∆

ε ε = − + − µ − µ = ε  ∆

                     (7.9) 

 

Since i i iS Q 3R= −  and S Q 3R= − , it then follows on using (6.5) that 
 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1122 m m m

iN
p

i i i i 1122 m i m m i

ii 1

1111 m m m

iN
p

i i i i 1111 m i m m i

ii 1

1
QR PS S Q 3k 2 R C

V
Q R PS S Q 3k 2 R ,

1
QR PS S 2 Q 3k 4 R D

V
Q R PS S 2 Q 3k 4 R .

=

=

 − + µ + − µ =  ∆

= − + µ + − µ   ∆

 − − µ + + µ =  ∆

= − − µ + + µ   ∆

∑

∑

      (7.10) 

 

The values of the dimensionless parameters C and D are again known as they can be 

calculated from inclusion and matrix parameters, and the volume fractions.  It is worth noting 

that if the relation (6.7) is used for shear states then no new information is provided as results 

obtained correspond exactly to results already given in Section 4. 

 

7.3 Defining a soluble set of non-linear algebraic equations 

 

The problem that now remains is to find values of P, Q, R and S Q 3R= −  satisfying the 

non-linear relations (7.7) and (7.10), which are written 
 

( ) ( )2222 2233 m m mS S 3k P Q A ,+ Ω − +µ − µ = ∆                       (7.11) 
 

( )1
2211 m m m2

S 3k 2 P Q B ,Ω − − µ + µ = ∆                                 (7.12) 
 

( )1122 m m mS Q 3k 2 R C ,Ω + µ + − µ = ∆                                   (7.13) 
 

( )1111 m m mS 2 Q 3k 4 R D ,Ω − µ + + µ = ∆                                  (7.14) 

where 

QR PS QR PQ 3PRΩ = − = − + ,                                      (7.15) 
 

and where from (7.6) 

1 2 3 m mL P L Q L R 9k∆ = + + + ΨΩ + µ .                               (7.16) 
 

It can be shown that 
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( ) ( ) ( ) ( )m m m m m m m m3k 2 A 2 3k B 3k 4 C 3k 2 D 0− µ − + µ + + µ − − µ ≡ ,           (7.17) 

 
 

( )( ) ( )
( ) ( )

m m 2222 2233 m m 2211

m m 1122 m m 1111

3k 2 S S 2 3k S

3k 4 S 3k 2 S 0 ,

− µ + − + µ

+ + µ − − µ ≡
         (7.18) 

 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
m m m m m m m m m m2

m m m m m m m m m m

3k 2 3k P Q 2 3k 3k 2 P Q

3k 4 Q 3k 2 R 3k 2 2 Q 3k 4 R 0 .

− µ − + µ − µ − + µ − − µ + µ      

+ + µ µ + − µ − − µ − µ + + µ ≡      
(7.19) 

 
 

The relations (7.17)-(7.19) show that the four equations (7.11)-(7.14) are linearly dependent.  

It should be noted that (7.18) is an alternative to the last of the relations (3.10).  The following 

three independent equations are derived from (7.12)-(7.14) and (7.16), which are then to be 

solved for the unknowns P, Q and R  in terms of Ω  defined by (7.15), which is a non-linear 

functions of  P, Q and R , 
 

m m m 2211
1 2 3 m m

3k 2 S
L P L Q L R 9k ,

2B B B

− µ µ     + + − + = − Ψ − Ω − µ     
     

       (7.20) 

 

m m m 1122
1 2 3 m m

3k 2 S
L P L Q L R 9k ,

C C C

µ − µ     + − + − = − Ψ − Ω − µ     
     

        (7.21) 

 

m m m 1111
1 2 3 m m

2 3k 4 S
L P L Q L R 9k .

D D D

µ + µ     + + + − = − Ψ − Ω − µ     
     

        (7.22) 

 

It follows from (7.7) and (7.10) that 
 

( ) ( )
( )

( )
( )

2222 2233 m m m

1
2211 m m m2

1122 m m m

1111 m m m

A S S W 3k X Y ,

B S W 3k 2 X Y ,

C S W Y 3k 2 Z ,

D S W 2 Y 3k 4 Z ,

= + − + µ − µ

= − − µ + µ

= + µ + − µ

= − µ + + µ

                           (7.23) 

 

where W, X, Y and Z are known constants defined by 
 

     
N N N N

i i i ii i i i i i i
p p p p

i i i ii 1 i 1 i 1 i 1

Q R PS P Q R
W V , X V , Y V , Z V

= = = =

−
= = = =

∆ ∆ ∆ ∆∑ ∑ ∑ ∑ .    (7.24) 

 

Following a great deal of complex and laborious algebra (see supplementary 

information A for details), the equations (7.20)-(7.22) may be expressed 
 

( )1 1 1
ˆPΦ = β Ψ + α Ω − β ,                                         (7.25) 

 

( )2 2 2
ˆQΦ = β Ψ + α Ω − β ,                                        (7.26) 

 

( )3 3 3
ˆRΦ = β Ψ + α Ω − β  ,                                        (7.27) 

 

where                          1 2 3L X L Y L Z 2 W 1Φ = + + + Ψ − ,                                  (7.28) 
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and where the dimensionless constant Ψ  is given by (6.11).  Using (7.15), Ω̂  is defined by  

m m m m

QR PQ 3PRˆ
9k 9k

Ω − +
Ω = =

µ µ
,                                      (7.29) 

 

and the remaining coefficients in (7.25)-(7.27) are defined by 
 

( )
( )

( )
( )

1 m 2211 2222 2233

1 m m m 2211 2222 2233

2

2 m m

3 m 1111 1122

3 m m m 1111 1122

2 S S S ,

9k X 2 S S S W ,

,

9k Y W ,

S 2S ,

9k Z S 2S W ,

α = µ + + Φ

β = µ − µ + +

α = − λΦ

β = µ + λ

α = − µ + Φ

β = µ + µ +

                        (7.30) 

 

with                 
( ) ( )

( ) ( )( )
m m 1122 m m 1111

m m 2211 m m 2222 2233

3k 4 S 3k 2 S

2 3k S 3k 2 S S .

λ = + µ − − µ

= + µ − − µ +
      (7.31) 

 

 

8. Determination of effective composite properties 
 

The elimination of the parameters P, Q and R  using (7.25)-(7.27) and (7.29) leads to the 

following quadratic equation for Ω̂  
 

2ˆ ˆ 0αΩ − βΩ − γ =  ,                                               (8.1) 
 

where                 
( ) ( ) ( ){ }

( )

2

1 2 2 1 2 3 3 2 1 3 3 1

1 2 2 3 1 3

1 2 2 3 1 3

,

3

3 / 2 ,

3 .

 α = Ψβ + Ψ γ


β = − α β + α β + α β + α β + α β + α β


+ −α α + α α + α α Ψ − Ψ γ
 γ = β β − β β − β β

                       (8.2) 

 

 

The solutions of (8.1) are given by 
 

2

m m

1ˆ 4
9k 2

Ω  Ω = = β ± β + αγ  µ α
.                                 (8.3) 

 

It has been noted from numerical calculations that the solutions for Ω̂  are either equal or they 

differ in value such that one of the roots leads to a zero value for ∆ , indicating that the 

solutions (7.4) and (7.9) for special cases break down when applied to the single effective 

spheroid that represents the composite.   When one of the roots leads to the result 0∆ = , the 

required value of Ω̂  is that value given by the other root of (8.3).  It has also been observed 

numerically that the root leading to the result 0∆ =  does not depend on any of the elastic 

properties of the inclusions.  For the case of cylinders it has been observed that the roots of 

(8.3) are always equal.  These characteristics of the solution strongly suggest that simpler 

analytical solutions should exist.   
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It can be shown that 
 

( ) ( )1 1 2 2 3 3 m m
ˆL L L 9k 1 Φ∆ = β + β + β − µ Φ Ψ Ω −   ,                      (8.4) 

indicating that the solution Ω̂  that leads to the situation 0∆ =  is simply 
 

m m

1ˆ
9k

Ω
Ω = =

µ Ψ
 .                                                (8.5) 

 

From (6.11) it is clear that Ψ  is independent of inclusion elastic properties, as observed 

numerically. It can then be shown that the required solution of (8.1) such that 0∆ ≠  is given 

by 

m m

1ˆ
9k

Ω Ψ γ β
Ω = = − = −

µ α α Ψ
 .                                      (8.6) 

 

It should be noted that the quantity Φ  defined by (7.28) may also be expressed in the form 
 

1 3 1 2 2 3

m m

3

9k

α α − α α + α α
Φ =

µ Ψ
.                                       (8.7) 

 

It follows from (7.26) and (7.27) and the relation S Q 3R= −  that 
 

( ) ( ) ( )2 3 2 3 2 3
ˆS Q 3R 3 3 3 Φ = Φ − = β − β Ψ + α − α Ω − β − β   .           (8.8) 

 

It is now possible to calculate the required solution P, Q, R and S  of the non-linear 

algebraic equations (7.20)-(7.22) and (7.15) using (7.25)-(7.27), (8.6) and (8.8).  The relations 

(7.5) are then used to derive the following relationships for the effective non-shear properties 

of the composite 
 

( )

( )

eff 1
T m m3

eff m m m
A eff eff

T T

eff eff eff eff
A A A T m

k S 3k ,

1 R Q 3k 2
1 ,

2 k 6k

E P 2 1 2 k 2 .

= + + µ

 − µ + − µ
ν = + = 

 

= + ν − ν + µ

                          (8.9) 

 

The corresponding shear properties eff
Aµ  and eff

Tµ  have already been obtained and are given 

by (5.12) and (5.13).  The corresponding values of the transverse Young’s modulus eff
TE  and 

transverse Poisson’s ratio eff
Tν  are obtained using (3.8). 

 

It has thus been shown that it is possible to apply the analysis of Eshelby [18], [19]  

together with Maxwell’s methodology [13] to develop a method of estimating the effective 

elastic properties of a multi-phase distribution of aligned spheroidal transversely isotropic 

inclusions having the same aspect ratio that reinforce an isotropic matrix.  The effective 

elastic properties may be estimated using the results (5.12), (5.13) and (8.9), and the various 

associated relationships that have been derived. 
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9. Composites reinforced with isotropic spherical inclusions 

 
It is useful to consider the special case when the reinforcing inclusions are spherical and 

isotropic, and distributed so that the composite is also isotropic.  Rather than developing the 

required solution using (7.25)-(7.27), it is simpler to derive the results using the following 

method.  When the inclusions are isotropic 

( )
( )

i i i i i i i i i i i
A T p p p A T p A T p

eff eff eff eff eff eff eff eff eff eff eff
A T p p p A T p A T p

E E E 2 1 , , ,

E E E 2 1 , , .

= = = µ + ν µ = µ = µ ν = ν = ν

= = = µ + ν µ = µ = µ ν = ν = ν
       (9.1) 

 

The bulk modulus pk  and plane strain bulk modulus 
T

k  are now introduced defined by 
 

( )
( )

( )
p pp

p

p p

2 1E
k

3 1 2 3 1 2

µ + ν
= =

− ν − ν
 ,        

( )
p p 1

T p p3
p p

3k
k k

1 2 2 1

µ
= = = + µ

− ν + ν
.          (9.2) 

 

It then follows from (7.2) and (7.5) that 
 

( )
( ) ( )
( )
( ) ( )

i
i p m

i i
i p m p m

i
i p m

i i
i p m p m i i

P 2 ,

Q 3 k k 2 ,

R ,

S 3 k k Q 3R ,

= µ − µ

= − − µ − µ

= − µ − µ

= − + µ − µ = −

    

( )
( ) ( )
( )
( ) ( )

eff
p m

eff eff
p m p m

eff
p m

eff eff
p m p m

P 2 ,

Q 3 k k 2 ,

R ,

S 3 k k Q 3R .

= µ − µ

= − − µ − µ

= − µ − µ

= − + µ − µ = −

  (9.3) 

 

It can be shown from (6.11) that 
 

( ) m m
1122 2211 1111 2222 2233

m m

8 10 1
2S S S S S

15(1 ) 3(1 )

− ν + ν
Ψ = − + = −

− ν − ν
,                (9.4) 

 

and it follows from (7.3) and (7.6) that 
 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

i i
i m p m m m p m m2

m

eff eff
m p m m m p m m2

m

1
1 k 2 1 2 k 8 10 7 5 ,

5 1

1
1 k 2 1 2 k 8 10 7 5 ,

5 1

   ∆ = + ν + − ν − ν µ + − ν µ   − ν

   ∆ = + ν + − ν − ν µ + − ν µ   − ν

      (9.5) 

 

and from (6.6) that 

( )
( )

( ) ( )

( )
( )

( ) ( )

i
p mT(i) T(i) T(i) i

11 22 33 m p m m

m i

eff
p mT T T eff

11 22 33 m p m m

m

3 k k
8 10 7 5 ,

5 1

3 k k
8 10 7 5 ,

5 1

− ε ε = ε = ε = − − ν µ + − ν µ − ν ∆

− ε ε = ε = ε = − − ν µ + − ν µ − ν ∆

        (9.6) 

where ε  is the equi-axial applied strain.  The substitution of (9.5) in (9.6), using the relation 

( ) ( )2
m m m m3

1 2 k 1− ν = + ν µ , leads to  
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i
p mT(i) T(i) T(i) m

11 22 33 i 4
m p m3

eff
p mT T T m

11 22 33 eff 4
m p m3

k k1
3 ,

1 k

k k1
3 .

1 k

−− ν
ε = ε = ε = − ε

+ ν + µ

−− ν
ε = ε = ε = − ε

+ ν + µ

                             (9.7) 

 

On substituting (9.7) in (6.5), the bulk modulus of an isotropic particulate composite is 

obtained (see for example [17]), namely, 
 

 

iN
p m

eff i4 4 4
i 1p m p m m m3 3 3

V V1

k k k=

= +
+ µ + µ + µ∑ . (9.8) 

 

The corresponding expression for the shear modulus is obtained from (5.12) or (5.13), leading 

to the following result 

 

( )

iN
p *m m m m

m m meff * i * *
i 1 m m mp m p m m m

V V 7 5 9k 81
, where

8 10 6 k 2=

− ν + µ
= + µ = µ = µ

− ν + µµ + µ µ + µ µ + µ
∑ .  (9.9) 

 

The results (9.8) and (9.9) have been shown [17] to predict effective properties that are in 

close agreement with accurate results that have been given in the literature for volume 

fractions of practical interest.  It was shown that the f.c.c. and b.c.c. packing configurations 

considered by Arridge [23] lead to bulk moduli that are very close together for particulate 

volume fractions in the range 0 < Vp < 0.6 (see [17], Fig.3).  Furthermore, the results for 

spherical isotropic particles obtained using Maxwell’s methodology lie between the f.c.c. and 

b.c.c. estimates for volume fractions in the range 0 < Vp < 0.4.   For the case of a simple cubic 

array of spherical particles with volume fractions in the range 0 < Vp < 0.4, it was shown that 

bounds for shear modulus, obtained by Cohen and Bergman ([15], see Fig. 4) using a Fourier 

representation of an integro-differential equation for the displacement field, are very close to 
results obtained using Maxwell’s methodology. 

 

         Further evidence that Maxwell’s methodology can provide useful predictions for the 

bulk and shear moduli of isotropic composites reinforced with isotropic spherical particles is 

provided by the results of Sangani and Mo [24] for the extreme cases where the particles are 

either rigid for behave as cavities.  Tables 1 and 2 compare the results of Sangani and Mo 

(labelled Accurate) with those based on the formulae (9.8) and (9.9) (labelled Maxwell).  It is 

seen from Table 1 that predictions for the effective bulk modulus based on Maxwell’s 

methodology applied to the extreme case of rigid particles become more accurate as the 

matrix Poisson’s ratio increases and becomes exact when Poisson’s ratio is 0.5 (i.e. an 

incompressible matrix) for all particle volume fractions considered, whereas predictions for 

the effective shear modulus become much less accurate, especially as Poisson’s ratio for the 

matrix tends to the incompressible value 0.5.  Significant differences in shear modulus are 

seen for this extreme case when the volume fraction has the value 0.6.  As to be expected at 

low volume fractions there is good agreement for all values of the matrix Poisson’s 

ratio 0.4.≤    
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Table 1:  Effective properties for random distributions of rigid isotropic spherical particles. 

 

pV  m
ν  

eff m
k / k  

Accurate 

eff m
k / k  

Maxwell 

eff m
k / k  

Dipole 

eff m
/µ µ  

Accurate 

eff m
/µ µ  

Maxwell 

eff m
/µ µ  

Dipole 

0.1 0.2 1.23 1.222 1.226 1.236 1.222 1.228 

0.1 0.3 1.183 1.179 1.18 1.242 1.233 1.234 

0.1 0.4 1.145 1.143 1.143 1.257 1.25 1.249 

0.1 0.5 1.111 1.111 1.111 1.311 1.278 1.291 

0.45 0.2 2.93 2.636 - 3.21 2.636 - 

0.45 0.3 2.55 2.322 - 3.43 2.718 - 

0.45 0.4 2.18 2.052 - 3.9 2.841 - 

0.45 0.5 1.818 1.818 - 5.7 3.045 - 

0.6 0.2 5.28 4 - 6 4 - 

0.6 0.3 4.4 3.423 - 6.7 4.15 - 

0.6 0.4 3.59 2.929 - 8.2 4.375 - 

0.6 0.5 2.502 2.5 - 17.6 4.75 - 

 

 

Table 2:  Effective properties for random distributions of spherical cavities. 

 

p
V  

m
ν  

eff m
k / k  

Accurate 

eff m
k / k  

Maxwell 

eff m
k / k  

Dipole 

eff m
/µ µ  

Accurate 

eff m
/µ µ  

Maxwell 

eff m
/µ µ  

Dipole 

0.1 0.2 0.8156 0.818 0.8169 0.813 0.818 0.816 

0.1 0.3 0.771 0.774 0.772 0.82 0.825 0.823 

0.1 0.4 0.662 0.667 0.664 0.829 0.833 0.832 

0.1 0.5 0 0 0 0.856 0.844 0.859 

0.45 0.2 0.362 0.379 0.377 0.346 0.379 0.379 

0.45 0.3 0.299 0.3177 0.3143 0.355 0.39 0.391 

0.45 0.4 0.1971 0.2136 0.2106 0.367 0.4044 0.405 

0.45 0.5 0 0 0 0.399 0.423 0.427 

0.6 0.2 0.223 0.25 - 0.198 0.25 - 

0.6 0.3 0.177 0.2025 - 0.205 0.259 - 

0.6 0.4 0.11 0.129 - 0.212 0.27 - 

0.6 0.5 0 0 - 0.337 0.286 - 

 

 

From Table 2 it is seen that predictions for the effective bulk modulus based on Maxwell’s 

methodology applied to the other extreme case of cavities become more accurate as the matrix 

Poisson’s ratio increases and becomes the exact value 0 when Poisson’s ratio is 0.5 for all 

particle volume fractions considered, whereas predictions for the effective shear modulus 

become much less accurate.  At low volume fractions there is again good agreement for all 

values of the matrix Poisson’s ratio 0.4.≤   From Tables 1 and 2 it is clear that estimates of 

properties based on Maxwell’s methodology are more accurate for cavities than they are for 

the case of rigid particles.  Also shown in Tables 1 and 2 are predictions based on a dipole 

approximation that was considered by Sangani and Mo [24].  It is observed that 

corresponding predictions of effective elastic properties agree very closely with those 

obtained using Maxwell’s methodology. This agreement suggests that, although particle 
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interactions are neglected when using Maxwell’s methodology, the approach appears to take 

account of dipole interactions at least. 

 

        Kushch [25] has developed a numerical method of estimating accurately the effective 

elastic properties of regular arrays of aligned spheroidal particles having the same geometry.  

Simple cubic arrays have been considered for isotropic particles and matrix for the case when 

the particle volume fraction is 0.1 such that the centroids of the particles are distributed on a 

cubic lattice. Extreme values of the particle shear modulus are considered and Poisson’s ratio 

for both the particles and matrix has the value 0.3.  It is useful to compare in Tables 3 and 4 

the predictions of the elastic constants 
1111

C  and 
3333

C  given by Kushch [25] with those 

obtained using the values calculated using the methodology described in this paper.  It follows 

from (3.4) and (3.6) that these elastic constants are defined by 

 
2

1111 A T A 3333 T T 2222
C E 4k , C k C= + ν = + µ = . 

 

When the particle shear modulus ratio 
p m/ 0µ µ =  (a cavity-like spheroid), and for all values 

0.25 b / a 2.25≤ ≤ , the results for 
1111

C  based on Maxwell’s methodology differ from those of 

Kushch by less than 9%.  Differences less than 1.7% are found when 
p m

/ 10µ µ =  and 

differences less than 2.4% when p m/ 1000µ µ = .   

 

Table 3:  Predictions for C1111 for distributions of spheroidal particles. 

 

 Random 

(Maxwell) 

Simple 

cubic 

Random 

(Maxwell) 

Simple 

cubic 

Random 

(Maxwell) 

Simple 

cubic 

           
p m/µ µ  

a / b  

0 0 10 10 1000 1000 

0.25 2.963 2.856 4.691 4.645 5.590 5.482 

0.5 2.913 2.877 4.297 4.267 4.589 4.536 

0.75 2.849 2.839 4.148 4.155 4.320 4.336 

1.0 2.777 2.799 4.071 4.102 4.199 4.248 

1.25 2.703 2.762 4.025 4.070 4.130 4.199 

1.5 2.629 2.732 3.995 4.049 4.086 4.167 

1.75 2.556 2.705 3.973 4.035 4.056 4.145 

2.0 2.485 2.681 3.957 4.023 4.033 4.128 

2.25 2.417 2.653 3.944 4.012 4.016 4.113 
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Table 4:  Predictions for C3333 for distributions of spheroidal particles. 

 

 Random 

(Maxwell) 

Simple 

cubic 

Random 

(Maxwell) 

Simple 

cubic 

Random 

(Maxwell) 

Simple 

cubic 

           
p m/µ µ  

a / b  

0 0 10 10 1000 1000 

0.25 2.611 1.843 3.991 3.889 4.081 3.944 

0.5 2.678 2.474 4.015 3.956 4.116 4.032 

0.75 2.735 2.693 4.043 4.026 4.156 4.132 

1.0 2.777 2.799 4.071 4.102 4.199 4.248 

1.25 2.809 2.859 4.100 4.185 4.243 4.388 

1.5 2.8315 2.897 4.129 4.281 4.289 4.565 

1.75 2.848 2.923 4.157 4.397 4.335 4.810 

2.0 2.859 2.941 4.184 4.555 4.3814 5.225 

2.25 2.867 2.954 4.211 4.868 4.428 6.765 

 

 

        For the effective property 
3333

C  differences are less than 42% when 
p m

/ 0µ µ = , less 

than 14%  when p m/ 10µ µ =  and less than 35% when p m/ 1000µ µ = .  However, if spheroids 

are considered such that 0.5 b / a 2≤ ≤  the differences for 
1111C  are less than 7.4% and those 

for 
3333

C  are less than 16.2%.  A contribution to the largest differences at the extreme values 

of the aspect ratio b/a will certainly be due to differences in the properties of composites 

reinforced with random and simple cubic arrays of particles.   It is concluded from the results 

given in Tables 3 and 4 that there is reasonable agreement between the results of Kushch [25] 

for simple cubic arrays of spheroidal particles and those based on Maxwell’s methodology for 

random distributions of aligned particles for cases of practical relevance (e.g. 
p m

/ 10µ µ ≈  

including cavities having low volume fractions).   

 

 

10. Composites reinforced with aligned transversely isotropic cylindrical fibres 
 

For the case of transversely isotropic cylindrical fibres, rather than developing the required 

solution using (7.25)-(7.27), it is again simpler to derive the results using another method that 

involves less laborious algebra (see supplementary information B for details). The principal 

results are given by 
 

i
T m

i m m m
T m

k
9k

k

+ µ
∆ = µ

+ µ
 ,                                            (10.1) 

eff
T m

m m m
T m

k
9k

k

+ µ
∆ = µ

+ µ
,                                              (10.2) 
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iN
p m

eff i m
i 1T m T m T m

V1 V

k k k=

= +
+ µ + µ + µ

∑ ,                                    (10.3) 

eff eff i i mN
iA T A T m T
p meff i m

i 1T m T m T m

k k k
V V

k k k=

ν ν ν
= +

+ µ + µ + µ
∑  ,                            (10.4) 

 

( ) ( )2 2
eff eff i i m 2N
T A m T A meff i i T m m

A p A m meff i m
i 1T m T m T m

4k 4k 4k
E V E V E

k k k=

 ν µ ν µ  ν µ + = + + +  + µ + µ + µ   
 

∑ ,   (10.5) 

 

where                                                        m 1
T m m3

k k= + µ .                                                 (10.6) 

 

The results (10.3) and (10.4) can also be derived using similar methods to those described for 

spherical inclusions in [17].   The result (10.5)  for the axial Young’s modulus for multi-phase 

unidirectional composite is thought to be a new formula.  It follows from (5.12) and (5.13) 

that the corresponding effective shear moduli are given by 
 

iN
p m

eff i
i 1 m mA m A m

V V1

=

= +
µ + µµ + µ µ + µ

∑  ,                                 (10.7) 

 

iN
p m

eff * i * *
i 1T T T T m T

V V1

=

= +
µ + µ µ + µ µ + µ

∑  ,    where   
m

* T m
T m

T m

k

k 2

µ
µ =

+ µ
 .            (10.8) 

 

Five independent effective elastic properties can thus be estimated, namely, 
eff eff eff eff

T T A Ak , , ,µ µ ν  and eff

AE .  The transverse Young’s modulus eff

TE  and Poisson’s ratio eff

Tν  

can be estimated using the relations (3.8).  For fibre reinforced composites subject to plane 

strain deformations so that the axial displacement and strain are everywhere zero, two other 

elastic constants *

T
E  and *

T
ν  are relevant defined by the relations 

eff eff
* T T
T* eff eff eff eff

T T T T T

k4 1 1
,

E k k

− µ
= + ν =

µ + µ
.                                     (10.9) 

The constant *

TE  is the transverse Young’s modulus for plane strain conditions in the axial 

direction, while *

T
ν  is the corresponding transverse Poisson’s ratio.  It is useful to note that 

 

( )* eff *

T T TE 2 1= µ + ν .                                                   (10.10) 

 

    Predictions of effective properties for fibre reinforced composites will now be 

compared with those in the literature for two phases obtained using numerical methods, and 

which are expected to be accurate.  Eischen and Torquato [26] have considered, using a 

boundary element method, the estimation of elastic constants for hexagonal arrays of aligned 

fibres subject to plane strain conditions. Three different materials systems were included 

having isotropic fibres and matrix properties given by f m/ 135, 22.5, 6.75µ µ = , 

f f/ k 0.75µ = , m m/ k 0.33µ = , 
m

0.35ν = , 
f

0.2ν = , and the value m
m T/ k 0.3µ =  is also 

given.  The matrix values m m/ k 0.33µ = , 
m

0.35ν =  and m
m T/ k 0.3µ =  are not consistent 

with the relation (10.6) due to rounding errors.  To avoid this problem the matrix values 
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assumed here are m m/ k 1/ 3µ = , 
m

0.35ν =  and m
m T/ k 0.3µ =  which are consistent with the 

relation (10.6). 
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 Figure 2 : Comparison of results for normalised effective plane strain bulk eff

T
k  modulus 

obtained using Maxwell’s methodology with those of Eischen and Torquato [26] 

for three different materials. 

 

 

    Figure 2 shows a comparison of the effective plane strain bulk modulus eff

T
k , obtained 

using the relation (10.3) resulting from Maxwell’s methodology, with the accurate boundary 

element results [26].  The normalised plane strain bulk modulus is defined by eff m
T Tk / k  where 

m

T
k  is defined by (10.6).  For fibre volume fractions in the range 

f
0 V 0.7,≤ ≤  the results 

predicted using Maxwell’s methodology agree exceedingly well (errors less than 1.4%) with 

the results of Eischen and Torquato.  For larger volume fractions significant differences arise 

especially when the fibres have a much larger shear modulus than the matrix. 

 

   Figure 3 shows a comparison of transverse shear modulus eff
Tµ , obtained using the 

relation (10.8) resulting from Maxwell’s methodology, with results of Eischen and 

Torquato [26].  The normalised effective transverse shear modulus is defined by eff
T m/µ µ .  

For fibre volume fractions in the range 
f

0 V 0.4,≤ ≤  the results predicted using Maxwell’s 

methodology agree well (errors less than 2.3%) with the results of Eischen and Torquato.  For 

larger volume fractions significant differences arise especially when the fibres have a much 

larger shear modulus than the matrix. 
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Figure 3 : Comparison of results for normalised effective transverse shear modulus eff

Tµ  

obtained using Maxwell’s methodology with those of Eischen and Torquato [26] 

 for three different materials. 
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Figure 4 : Comparison of results for the effective plane strain transverse Poisson’s ratio *

T
ν  

obtained using Maxwell’s methodology with those of Eischen and Torquato [26] 

for three different materials. 
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   Figure 4 shows a comparison of the plane strain transverse Poisson’s ratio *
Tν , defined 

by (10.9) and obtained from the relations (10.3) and (10.8) resulting from Maxwell’s 

methodology, with the results of Eischen and Torquato [26].   For fibre volume fractions in 

the range 
f

0 V 0.4,≤ ≤  the results predicted using Maxwell’s methodology agree well (errors 

less than 1.8%) with the results of Eischen and Torquato.  For larger volume fractions 

significant differences arise especially when the fibres have a much larger shear modulus than 

the matrix. 

 

  Figure 5 shows a comparison of the plane strain transverse Young’s modulus *
TE , 

defined by (10.9) and obtained from the relations (10.3) and (10.8) resulting from Maxwell’s 

methodology, with the results of Eischen and Torquato [26].  For fibre volume fractions in the 

range 
f

0 V 0.4,≤ ≤  the results predicted using Maxwell’s methodology agree well (errors less 

than 2.1%) with the results of Eischen and Torquato.  For larger volume fractions significant 

differences arise especially when the fibres have a much larger shear modulus than the matrix. 
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Figure 5 : Comparison of results for the normalised effective plane strain transverse Young’s 

modulus *

T
E  obtained using Maxwell’s methodology with those of  

Eischen and Torquato [26] for three different materials. 

 

 

  Figure 6 shows a comparison of axial shear modulus eff

Aµ , obtained using the relation 

(10.7) resulting from Maxwell’s methodology, with the results of Symm [27].  The 

normalised effective axial shear modulus is defined by eff
A m/µ µ , and the four materials 

considered are for isotropic fibres and matrix such that f m/ 6, 20, 120,µ µ = ∞ .  For fibre 
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volume fractions in the range 
f

0 V 0.7,≤ ≤  the results predicted using Maxwell’s 

methodology agree very well (errors less than 2.6%) with the results of Symm [27].  For 

larger volume fractions significant differences arise especially when the fibres have a much 

larger shear modulus than the matrix. 
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 Figure 6 : Comparison of results for normalised effective axial shear modulus eff

Aµ  obtained 

using Maxwell’s methodology with those of Symm [27] for four different materials. 

 

 

    The above results have not tested the validity of the values of the elastic constants eff

AE  

and eff

A
ν  that can be estimated using the Equations (10.4) and (10.5).  In reference [28], values 

were given for all the elastic constants calculated using a finite element analysis (Private 

communication, Li and Zou (2001)) for the two cases of hexagonal arrays of aligned carbon 

and glass fibres embedded in an isotropic epoxy matrix.  The volume fraction for both types 

of fibre was taken to be 0.6.  The fibre and matrix properties are given in Tables 1 and 3 of 

reference [28].  The carbon fibres were transversely isotropic while the glass fibres were 

assumed to be isotropic.  Table 5 compares the finite element results to the various properties 

of two-phase composites that can be estimated using the results given in Section 10.   It is 

seen that the effective properties eff

A
E , eff

A
ν , eff

A
µ  and  eff

T
k  are estimated very accurately (errors 

less 0.5%) using Maxwell’s methodology for both carbon and glass fibre composites.  For the 

effective properties eff

T
E , eff

T
ν  and eff

T
µ , the percentage errors for the carbon fibre composite 

are less than 3.7% while those for the glass fibre composite are less than 9.6%.  These trends 

are consistent with those observed when comparing in Figures 2-6 predictions of results based 

on Maxwell’s methodology with the boundary element results given by Eischen and 

Torquato [26] and by Symm [27].   
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Table 5 : Comparison of effective properties estimated using Maxwell’s methodology with 

finite element results for carbon and glass fibre reinforced composites  

having a volume fraction of 0.6.  

  

Property CFRP 

(FEA) 

CFRP 

(Maxwell) 

% Error GRP 

(FEA) 

GRP 

(Maxwell) 

% Error 

eff

A
E  136.70 136.7032 0.0023 45.76 45.7625 0.0055 

eff

TE  8.901 8.7564 1.62 11.80 11.0193 6.62 

eff

A
ν  0.2526 0.2526 0 0.2515 0.2517 0.08 

eff

T
ν  0.3082 0.3194 3.63 0.4020 0.4405 9.58 

eff

Aµ  4.550 4.5365 0.30 4.339 4.3179 0.49 

eff

T
µ  3.4020 3.3184 2.46 4.2083 3.8249 9.11 

eff

Tk  6.5114 6.5110 0.0066 10.4355 10.4146 0.20 

 

 

 

11.  Discussion of results 
 

It is first noted that the Mori-Tanaka mean field result for the fourth order effective elastic 

property tensor L may be obtained (see for example [5]), in terms of those for the matrix 
m

L  

and the N phases of inclusion having properties 
r

, NL , r 1, ...= , using a relation of the form 
 

( )

( )

N 1
* r 1

m m p r m r m

r 1

N 1
r 1

m p m r m

r 1

L L V V L I SL L L

. V I V I SL L L ,

−−

=

−−

=

 
 = + + −  

 

 
 + + −  

 

∑

∑
−1−1−1−1

            (11.1) 

 

where S is the fourth order tensor derived by Eshelby [18] and where I is the fourth order unit 

tensor.   When a fourth order tensor *

mL  is defined by the relation 
 

( )* 1

m mL L S I−= −  ,                                                   (11.2) 

 

it can be shown that the relation (11.1) may be expressed in the following form that exhibits a 

mixtures structure for a fourth order tensor of the form ( ) 1
* *

mL L
−

+  

 ( ) ( ) ( )
N1 1 1

* * * r *
m m m m p r m

r 1

L L V L L V L L
− − −

=

+ = + + +∑  .                 (11.3) 

 

The relation (11.3) follows directly from relations given in the literature (e.g. Norris [3], 

Weng [5], Walpole [6], [7],  Qiu and Weng [10], and Benveniste et al [11]).  Its form is 

indicative of many of the results that have been derived in this paper (see Eqns. (5.12), (5.13), 

(9.8), (9.9), (10.7) and (10.8)).  
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When using Maxwell’s methodology combined with Eshelby’s far-field solution for 

the displacement in the matrix, the results (5.12) and (5.13) for the effective axial and shear 

moduli are easily derived for a composite having uniform distributions of aligned transversely 

isotropic spheroidal inclusions embedded in an isotropic matrix.  These results are very 

simple in form showing that the effective shear moduli can be estimated using a mixtures 

relationship.  It is noted that their form is a scalar equivalent of the result (11.3) defining the 

fourth order tensor *L  that is based on Mori-Tanaka theory.  The situation regarding the non-

shear elastic constants is far more complex.  The analysis in Sections 7 and 8 leads to the 

results (8.9) for the effective elastic constants of the composite that depend on the parameters 

P, Q, R  and S Q 3R= − , which are complicated functions of the properties and volume 

fractions of the inclusions, and of matrix properties.   

 

For the case when the aspect ratios of all types of spheroidal inclusion are the same, 

Qiu and Weng [10] derived explicit and very complex expressions for the independent 

effective elastic constants p, m, k, l, and n describing the properties of a transversely isotropic 

composite, such that 
 

2

A T T A T A T A
p , m , k k , l 2 k , n E 4k≡ µ ≡ µ ≡ ≡ ν ≡ + ν .                   (11.4) 

 

The complexity of the expressions for the effective elastic constants arises because twelve 

different summations over the phases have to be performed.  The approach derived in this 

paper involves only single summations when estimating the elastic constants 
A

µ  and 
T

µ  as 

seen from very simple results (5.12) and (5.13), and the four summations given by (7.24) 

when estimating the remaining elastic constants 
AE , 

Aν  and 
Tk  using (8.9), i.e. six 

summations in total.   In spite of their complexity, the results (8.9) and associated relations 

are, however, simpler than those given by Qiu and Weng [10].  

 

As comparing algebraically the possible equivalence of the results of Qiu and 

Weng [10] for the elastic constants (11.4) with the corresponding results of this paper would 

be very laborious, values have been compared using exact numerical methods provided by the 

open source algebraic programming system REDUCE [29].  Exact agreement has been 

obtained for a wide range of parameter values.  The numerical methods are based on the 

representation of the values of physical quantities and values of associated expressions by 

rational numbers having integer denominators and numerators.  When performing the 

comparison, rational values are assumed for the tensor components 
1111 2222 1122 2233

S , S , S , S  and 

1212
S .  The remaining components of the 

ijkl
S  tensor are then calculated using (3.10).  It has 

been shown using these methods (based on the application of supplementary information C 

for a large range of values) that the results of this paper are exactly equivalent to the more 

complex results arising from the analysis of Qiu and Weng [10] based on Mori and 

Tanaka [1] theory.  The principal result of this paper is thus obtained, namely, that the 

approximate Mori-Tanaka model, as implemented by Qiu and Weng [10] when estimating 

effective elastic properties, leads to results that are identical to the approximate relations 

obtained using Maxwell’s methodology combined with Eshelby’s far-field result for the 

displacement field.   It is now useful to discuss other relevant results from the literature.   

For the case of distributions of various types of isotropic spherical particles uniformly 

distributed in a matrix, having properties that are less than those of all reinforcements, it was 

shown [17] that the predictions of effective properties based on Maxwell’s methodology were 

identical to the lower Hashin-Shtrikman bound [4], and that this bound was very close to 
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accurate effective properties estimated by other methods.  For the case of multi-phase fibre 

reinforced composites there is a similar situation.  The lower bounds for the plane strain 

transverse bulk modulus and both the transverse and axial shear moduli of multi-phase 

composites derived by Hashin [30] can be manipulated so that they correspond exactly to the 

relations (10.3), (10.7) and (10.8) derived in this paper.   

 

For two-phase composites, predictions of many of the effective properties based on 

Maxwell’s methodology are identical to those generated by the composite sphere assemblage 

and composite cylinder models, and they also correspond exactly to one of the variational 

bounds.   These results strongly suggest that Maxwell’s methodology is not restricted to dilute 

distributions of reinforcing inclusions.  It can be shown for two-phase fibre reinforced 

composites that the relation (10.5) for the axial Young’s modulus is identical to that which is 

obtained when using the concentric cylinders model of a unidirectional composite (Hashin 

and Rosen [31] for isotropic constituents, Hashin [32] for anisotropic constituents).   While 

the comparisons of results shown in Figs. 2-6 indicate that estimates based on Maxwell’s 

methodology become less accurate as the volume fraction of reinforcement increases, it is 

worth noting that as the volume fraction tends to unity, so that the system becomes almost 

homogenous without any matrix, the general relations (5.12), (5.13) for shear, and the specific 

relations (9.8), (9.9), (10.3)-(10.5), (10.7) and (10.8) all predict the expected result that the 

effective properties tend to the properties of the reinforcement.  Distributions of very small 

inclusions would of course be needed to realise this limit in practice.    

 

For the special case where the matrix and spherical inclusions are isotropic and have 

the same shear modulus, the effective bulk modulus of an isotropic composite based on Mori-

Tanaka theory [1] was shown by Weng [2] to correspond to the exact solution of Hill [33].  

As Maxwell’s methodology has been shown to predict elastic moduli that correspond exactly 

with Mori-Tanaka results, it follows that for this special case the results given in this paper for 

the effective bulk modulus must be exact for all volume fractions.  For the special case where 

transversely isotropic spheroids have the form of aligned very thin circular discs, Weng [5] 

has shown that the Mori-Tanaka moduli are exact, implying that corresponding results 

derived for this limit using Maxwell’s methodology will also be exact for all volume 

fractions.   

 

It is indeed remarkable that the pioneering methodology developed by Maxwell [13], 

for predicting the effective properties of a composite, when combined with Eshelby’s method 

[18] for predicting the far-field in the matrix for an isolated ellipsoid, are capable of 

predicting formulae for effective elastic properties that have been shown to correspond with 

many of those derived subsequently in the literature using alternative methods.  A key 

characteristic of the approach is that a single method can be used to generate estimates for all 

the elastic constants of multi-phase composites having an isotropic matrix and reinforced with 

aligned transversely isotropic inclusions of the same aspect ratio, or with aligned fibres, or 

with spherical particles.  The nature of the methodology is such that it has good potential for 

application to other situations of practical interest.  For example, composites reinforced with 

inclusions having imperfect interfaces or one or more coatings of uniform thickness could 

easily be treated provided that the solution for an isolated inclusion is available. In the field of 

nano-composites, nano-inclusions (e.g. nano-particles and carbon nanotubes) are associated 

with interphase matrix regions adjacent to the inclusions having different properties to those 

of the bulk matrix. The interphase regions of these systems, which form due to nanoscale 

interactions between the embedded nano-inclusions and adjacent polymer chains, can occupy 

a substantial portion of the volume fraction of the composite due to the very large surface area 
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of nano-inclusion per unit volume available for interaction with local polymer chains.  This 

effect results in significant changes to the effective properties of the polymer composite when 

compared to those of the bulk polymer (see for example Fisher et al [34] who consider nano-

tubes with adjacent interphase layers using the Mori-Tanaka method).  Surface tension effects 

(see for example Duan et al [35], Mogilevskaya et al [36], [37]), which lead to discontinuities 

in the normal traction distributions at the nano-inclusion boundaries, can also modify the 

effective properties of the nano-composite. 

 

A common, and in fact incorrect, view of Maxwell’s methodology is that it is expected 

to yield results valid only for very dilute concentrations of inclusions.  However, it has been 

shown in this paper that, for spherical, fibrous and spheroidal inclusions, results based on 

Maxwell’s methodology are in fact valid for a much wider range of volume fractions.  An 

apparent contradiction has thus been identified.  Maxwell’s methodology implicitly neglects 

interactions between inclusions and yet it predicts accurate values (sometimes exact) for 

effective elastic constants for a wide range of volume fractions, up to 0.7 for some properties 

of fibre composites.   In addition, for the case of spheroidal inclusions having the same aspect 

ratio, Maxwell’s methodology has been shown to lead to expressions for all elastic constants 

that are apparently identical to the more complex results derived by Qiu and Weng [10], 

which are based on a mean field method of taking inclusion interactions into account.  The 

only rational conclusion is that inclusion interaction effects for volume fractions of practical 

interest may not affect the far-field to any significant degree with the result that Maxwell’s 

methodology, when combined with Eshelby’s analysis, has much wider applicability than 

expected.   Interesting questions beyond the scope of this paper are: why is this the case, and 

can a method be found of proving that the Maxwell procedure retains vital information 

concerning the effect of inclusion interactions?  

 

It is noted from the discussion in [17] that Bonnecaze and Brady [38] use a method of 

estimating the conductivity of a composite reinforced with cubic arrays of spherical particles 

that captures both far-field and near-field particle interactions.  They compare their results 

with those of Sangani and Acrivos [39] providing numerical values of results in various 

tables.  One type of estimate takes account only of dipole interactions, ignoring higher order 

terms, and it leads to results that appear coincident with results obtained using Maxwell’s 

formula (agreement to 3 significant figures in most cases) for all volume fractions up to 

closest packing.  This agreement was not noticed in the paper.  They may have discovered a 

method that is showing why Maxwell’s methodology works so well as the effect of a 

distribution of interacting dipoles at large distances may be identical to that for the case when 

they are all located at the same point, as assumed by Maxwell.  As already mentioned above, 

further support of this idea is given in this paper for the case of rigid spherical particles and 

cavities (see Tables 1 and 2). It is noted that for the case of aligned cylindrical fibres, 

Mogilevskaya and Crouch [40]-[42] have developed a complex variable technique that can be 

used to investigate numerically the effect of fibre interactions at large distances from a cluster 

of fibres in an infinite matrix, including cases for homogeneously imperfect interfaces and 

uniform interphases.  
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12.   Conclusions 
 

From the analysis presented in this paper the following conclusions may be drawn: 

 

(1) The methodology of Maxwell [13], which involves the use of the far-field deformation 

associated with a cluster of reinforcing inclusions, when combined with the far-field 

displacement result for an isolated inclusion of Eshelby [18], leads to a new method of 

estimating explicit formulae for all the elastic moduli of a multi-phase composite having 

an isotropic matrix that is reinforced by a uniform distribution of aligned transversely 

isotropic spheroidal inclusions having the same aspect ratio.   

 

(2) The use of the classical results of Maxwell and Eshelby has been shown capable of 

generating most of the explicit formulae that have been derived in the literature for the 

effective properties of composites having an isotropic matrix reinforced with aligned 

spheroidal inclusions, fibres or spherical particles.  The results in this paper for the elastic 

moduli have been shown to correspond exactly to corresponding results based on a 

reformulation by Qiu and Weng [10] of Mori-Tanaka [1] mean field theory, and they have 

a simpler form. For the case of multi-phase composites reinforced with aligned 

transversely isotropic fibres and isotropic spherical particles, the Maxwell-Eshelby 

methodology leads to closed-form formulae for the relevant bulk modulus and shear 

moduli that correspond exactly with one of the Hashin bounds.  A new relatively simple 

expression is derived for the effective axial modulus of a multi-phase fibre reinforced 

composite that reduces to the well-known composite cylinders assembly results when 

there are just two phases.  The methodology leads to exact results for all volume fractions 

in two particular non-trivial cases. 

 

(3) Further research is needed to identify why Maxwell’s methodology, which neglects 

inclusion interactions, is able to predict reasonably accurate effective properties for a 

range of volume fractions of reinforcement having practical relevance.  
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Figure captions 
 

Fig.1 :  Diagrams illustrating a) discrete model and b) effective medium model of a particulate  

             composite having spherical reinforcements embedded in infinite isotropic matrix     

             material. 

 

Fig.2 :  Comparison of results for normalised effective plane strain bulk modulus obtained 

             using Maxwell’s methodology with those of Eischen and Torquato [26] for three 

             different materials. 

 

Fig.3 :  Comparison of results for normalised effective transverse shear modulus obtained 

             using Maxwell’s methodology with those of Eischen and Torquato [26] for three 

             different materials. 

 

Fig.4 :  Comparison of results for the effective plane strain transverse Poisson’s ratio obtained 

             using Maxwell’s methodology with those of Eischen and Torquato [26] for three 

             different materials. 

 

Fig.5 :  Comparison of results for the normalised effective plane strain transverse Young’s 

             modulus obtained using Maxwell’s methodology with those of Eischen and 

             Torquato [26] for three different materials. 

 

Fig.6 :  Comparison of results for normalised effective axial shear modulus obtained using 

             Maxwell’s methodology with those of Symm [27] for four different materials. 

 

 

Table captions 
 

Table 1:  Effective properties for random distributions of rigid isotropic spherical particles. 

 

Table 2:  Effective properties for random distributions of spherical cavities. 

 

Table 3:  Predictions for C1111 for distributions of spheroidal particles. 

 

Table 4:  Predictions for C3333 for distributions of spheroidal particles. 

 

Table 5 : Comparison of effective properties estimated using Maxwell’s methodology with 

               finite element results for carbon and glass fibre reinforced composites having a 

               volume fraction of 0.6.  
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  Figure 6 shows a comparison of axial shear modulus eff

Aµ , obtained using the 

relation (10.7) resulting from Maxwell’s methodology, with the results of Symm [18].  

The normalised effective axial shear modulus is defined by eff
A m/µ µ , and the four 

materials considered are for isotropic fibres and matrix such that f m/ 6, 20, 120,µ µ = ∞ .  

For fibre volume fractions in the range f0 V 0.7,≤ ≤  the results predicted using 

Maxwell’s methodology agree very well (errors less than 2.6%) with the results of 

Symm [18].  For larger volume fractions significant differences arise especially when the 

fibres have a much larger shear modulus than the matrix. 
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As establishing algebraically, using (11.4), the equivalence of the Qui and Weng 

[10] results for the elastic constants k, l and n to the corresponding results of this paper is 

very laborious, a comparison has again been undertaken using exact numerical methods 

available in REDUCE [20, see supplementary information C].  Exact agreement has been 

obtained for a wide range of parameter values.  When performing the comparison in this 

case, rational values are first assumed for the tensor components 1111 2222 1122 2233S , S , S , S  

and 1212S .  The remaining components of the tensor are then calculated using (3.10).  This 

approach avoids introducing irrational numbers, such as π , square roots and logarithmic 

terms, which slow down computations and can require too much memory.  It has been 

shown using these methods that the results for k, l and n, and thus all effective elastic 

constants derived in this paper, are exactly equivalent to the more complex results arising 
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from the analysis of Qui and Weng [10] that is based on the approach of Mori and 

Tanaka [1].   
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It is noted that Torquato [21] has observed: i) this correspondence for the case of 

isotropic ellipsoidal inclusions when using a formulation based on the fourth order elastic 

constants described above, and ii) that the Mori and Tanaka results, and hence those in 

this paper based on Maxwell’s methodology, coincide with one of the bounds due to 

Willis [22] depending on whether the matrix is stiffer or more compliant than all of the 

inclusions, as shown by Weng [23].   
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It has been shown that the general results for multi-phase spheroidal inclusions, 

derived in Sections 5 and 8 based on Maxwell’s methodology and Eshelby’s far-field 

results, reduce to the results, for homogeneous distributions of spherical particles leading 

to isotropic effective elastic properties, which have been given in [14].  These equations 

determine the isotropic bulk and shear moduli and they have exactly the same form as the 

mixtures relation (11.3) that determines the fourth order elastic constants.  Comparisons 

in [14] with other methods of estimating effective properties indicate that the bulk 

modulus predictions are expected to be more accurate than those for the shear modulus.  

  

For the special case when the spheroidal inclusions are aligned cylindrical fibres, 

relatively simple results can be obtained, although the analysis remains complex.  The 

key non-shear results, which have a mixtures form, are given by the relations (10.3) for 

the effective transverse bulk modulus eff

Tk  (i.e. plane strain modulus), (10.4) determining 

the effective axial Poisson’s ratio eff

Aν , and the relation (10.5) determining the effective 

axial Young’s modulus eff

AE . The results (10.3) and (10.4) can also be derived using 

similar methods to those described for spherical inclusions in [14], and their structure is 

identical to the mixtures relation (11.3) for the fourth order effective elastic constants.   

The result (10.5)  for the axial Young’s modulus for multi-phase unidirectional composite 

is thought to be a new formula. Comparisons in Section 10 with other methods of 

estimating effective properties indicate that predictions of the properties eff

AE , eff

Aν , eff

Aµ  

and  eff

Tk  are expected to be more accurate than those for the properties eff

TE , eff

Tν  and 

eff

Tµ .  
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SUPPLEMENTARY INFORMATION FOR ON-LINE VERSION 

 

A:  Derivation of solution of non-linear equations 
 

In the paper it is required to solve the equations (7.20)-(7.22), which may be written in the 

form 

 

m m m 2211
1 2 3 m m

3k 2 S
L P L Q L R 9k P Q ,

2B B B

− µ µ
+ + + ΨΩ + µ + − = Ω                 (A1) 

 

m m m 1122
1 2 3 m m

3k 2 S
L P L Q L R 9k Q R ,

C C C

µ − µ
+ + + ΨΩ + µ − − = Ω                  (A2) 

 

m m m 1111
1 2 3 m m

2 3k 4 S
L P L Q L R 9k Q R

D D D

µ + µ
+ + +ΨΩ+ µ + − = Ω  ,                (A3) 

 

where Ω  is defined by (7.15).  On subtracting (A1) and (A2) 

 

m m m m 2211 1122
m

3k 2 1 1 3k 2 S S
P Q R

2B C B C B C

− µ − µ   + − µ + = − Ω   
   

 .                 (A4) 

 

On subtracting (A1) and (A3) 

 

m m m m 1111 2211
m

3k 2 1 2 3k 4 S S
P Q R

2B B D D D B

− µ + µ   − + µ + = − − Ω   
   

 .             (A5) 

 

On subtracting (A2) and (A3) 

 

m m m m 1111 1122
m

1 2 3k 2 3k 4 S S
Q R

C D C D D C

− µ + µ     + µ + − = − Ω     
     

 .                  (A6) 

 

The relations (A4)-(A6) are now written 

 

( ) ( ) ( ) ( )m m m m m 2211 11223k 2 CP 2 B C Q 2 3k 2 BR 2 CS BS− µ + µ − + − µ = − Ω  ,       (A7)        

 

( ) ( ) ( ) ( )m m m m m 1111 22113k 2 DP 2 2B D Q 2 3k 4 BR 2 BS DS− µ − µ + + + µ = − − Ω  .       (A8) 

 

( ) ( ) ( ) ( )m m m m m 1111 11222C D Q 3k 2 D 3k 4 C R CS DS+ µ + − µ − + µ = − Ω    .        (A9) 

 

The elimination of R in (A7) and (A8) leads to the relation 

 

( ) ( ) ( )

( ) ( )

( ) ( ){ }
( ) ( ){ }

m m m m m m

m m m m m m

m m m m 2211

m m 1122 m m 1111

3k 2 3k 4 C 3k 2 D P

9k B 3k 4 C 3k 2 D 2 Q

3k 4 C 3k 2 D S
2 .

3k 4 S 3k 2 S B

− µ + µ − − µ  

+ − + µ + − µ µ  

 + µ − − µ
 = Ω
 − + µ − − µ 

    (A10) 
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Using equations (7.17) and (7.18) of the paper, define parameters Γ  and λ  such that 

 

( ) ( ) ( ) ( )m m m m m m m m3k 4 C 3k 2 D 2 3k B 3k 2 AΓ = + µ − − µ = +µ − − µ ,           (A11) 

and 

( ) ( )
( ) ( ) ( )

m m 1122 m m 1111

m m 2211 m m 2222 2233

3k 4 S 3k 2 S

2 3k S 3k 2 S S .

λ = + µ − − µ

= +µ − − µ +
             (A12) 

 

Substitution in (A10) then leads to 

 

( ) ( )m 2222 2233 2211P A B 2 Q 2 S S B S A . Γ + + µ = + − Ω                     (A13) 

The result (A9) can then be written  

 

( ) ( )m 1122 1111R 2C D Q DS CSΓ − + µ = − Ω .                               (A14) 

 

From relations (7.7) and (7.10) of the paper, the parameters A, B, C and D are given by 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

iN
p

i i i i 2222 2233 m m i m i

ii 1

iN
p1

i i i i 2211 m m i m i2
ii 1

iN
p

i i i i 1122 m i m m i

ii 1

iN
p

i i i i 1111 m i m m i

ii 1

V
A Q R PS S S 3k P Q ,

V
B Q R PS S 3k 2 P Q ,

V
C Q R PS S Q 3k 2 R ,

V
D Q R PS S 2 Q 3k 4 R .

=

=

=

=

=  − + − +µ −µ   ∆

= − − − µ +µ   ∆

= − +µ + − µ   ∆

= − − µ + + µ   ∆

∑

∑

∑

∑

         (A15) 

Clearly  

( )( )

( )( )

iN
p9

i i i i 2211 2222 2233 m i2
i 1 i

iN
p

i i i i 1111 1122 m i

i 1 i

V
A B Q R PS S S S k P ,

V
2C D Q R PS S 2S 9k R ,

=

=

 + = − + + −  ∆

 + = − + +  ∆

∑

∑
             (A16) 

and 

( ) ( )

( )

iN
p1

2222 2233 2211 i m 2211 2222 2233 i2
ii 1

iN
p

1122 1111 i m 1111 1122 i

ii 1

V
S S B S A P S S S Q ,

V
DS CS R S 2S Q .

=

=

+ − =  λ +µ + +   ∆

− = λ − µ +   ∆

∑

∑
          (A17) 

 

The relations (A1)-(A3) are now written 

 

( )1
1 2 3 m m m m m 22112

L BP L BQ L BR B 9Bk 3k 2 P Q S ,+ + + Ψ Ω+ µ + − µ −µ = Ω        (A18) 
 

( )1 2 3 m m m m m 1122L CP L CQ L CR C 9Ck Q 3k 2 R S ,+ + + Ψ Ω + µ − µ − − µ = Ω           (A19) 
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( )1 2 3 m m m m m 1111L DP L DQ L DR D 9Dk 2 Q 3k 4 R S+ + + Ψ Ω + µ + µ − + µ = Ω .       (A20) 

 

On multiplying (A19) by 2, adding to (A20) and then dividing by (2C + D) 

 

m 1111 1122
1 2 3 m m

9k S 2S
L P L Q L R 9k

2C D 2C D

+   + + − = −Ψ Ω − µ   + +   
.              (A21) 

 

On using (A13) and (A14) to eliminate P  and R  in (A21), it follows that 

 

( ) ( )

( ){ }

( ){ }

m 3 m 1 2 m m

1111 1122
2222 2233 2211 1

1122 1111
3 m m m

2C D L 2 A B L L 9k Q

S 2S
2 S S B S A L

2C D

DS CS
2C D L 9k 9k .

2C D

 + µ − + µ + Λ − µ 

 + = −Ψ Γ − + −  + 

− − + − Ω − µ Γ+ 

         (A22) 

 

On using the relation (6.11) of the paper it follows that (A22) may be written 

 

( ) ( )
( )

m 3 m 1 2 m m

m m 2211 1111 1122 2222 2233

2C D L 2 A B L L 9k

9k 2S C S A 2S B S S D 1 ,

+ µ − + µ + Γ − µ

 = µ − + − + − 
         (A23) 

 

and that 

 

( ){ }

( ){ }

( )
( ) ( ) ( )

1111 1122
2222 2233 2211 1

1122 1111
3 m

2211 2222 2233 1111 1122

m m m m 1111 2222 2233 1122 2211

S 2S
2 S S B S A L

2C D

S D S C
2C D L 9k

2C D

1 2S C S S D S A 2S B

3k 2 A 2 3k B S S S 2S S .

+ −Ψ Γ − + − + 
−

− + −
+

 = λ − + + + − 

   + − µ − +µ + −   

  (A24) 

 

It then follows from (A22)-(A24) that 

 

( )
m m

Q
9k

Ω
Φ = ΓΨ − λΦ − Γ

µ
,                                           (A25) 

where 

( )2211 2222 2233 1111 11222S C S S D S A 2S B 1Φ = − + − + − .                           (A26) 

 

On using (A15) and (A26) 

 

( ) ( ) ( ){ }
( ) ( ){ }

( ) ( ) ( ){ }

i i i i 1111 m m 1122 m m i
iN
p

1111 1122 2211 2222 2233 m i

ii 1

2211 m m 2222 2233 m m i

2 Q R PS S 3k S 3k 2 P
V

S 2S 2 S S S Q 1 .

2S 3k 2 S S 3k 4 R
=

 − Ψ + +µ − − µ
 
 Φ = + + + + + µ −

∆ 
+ − µ − + + µ  

∑       (A27) 
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From (A13) and (A14) 

 

( ) ( )2222 2233 2211 mP 2 S S B S A 2 A B Q . Γ = + − Ω − + µ                           (A28) 

 

( ) ( )1122 1111 mR S D S C 2C D QΓ = − Ω + + µ .                                    (A29) 

 

On substituting for Q  using (A25) 

 

( ){ } ( ) ( ) ( )2222 2233 2211 m

m

2
P 2 S S B S A A B 2 A B

9k

  Ω
Φ = + − Φ − ΓΨ − λΦ + + µ +  Γ 

, (A30) 

 

 { } ( )( ) ( )1122 1111 m

m

1
R S D S C 2C D 2C D

9k

  Ω
Φ = − Φ + ΓΨ − λΦ + − µ +  Γ 

 .        (A31) 

 

It follows from (A15) that 

 

( ) ( )
( )

( )
( )

2222 2233 m m m

1
2211 m m m2

1122 m m m

1111 m m m

A S S W 3k X Y ,

B S W 3k 2 X Y ,

C S W Y 3k 2 Z ,

D S W 2 Y 3k 4 Z ,

= + − +µ −µ

= − − µ +µ

= +µ + − µ

= − µ + + µ

                            (A32) 

Where 

 
N N N N

i i i ii i i i i i i
p p p p

i i i ii 1 i 1 i 1 i 1

Q R PS P Q R
W V , X V , Y V , Z V

= = = =

−
= = = =

∆ ∆ ∆ ∆∑ ∑ ∑ ∑ .      (A33) 

 

It follows from (A16) and (A17) that 

 

( )
( )

9
2211 2222 2233 m2

1111 1122 m

A B S S S W k X ,

2C D S 2S W 9k Z ,

+ = + + −

+ = + +
                                         (A34) 

 

   
( ) ( )

( )

1
2222 2233 2211 m 2211 2222 22332

1122 1111 m 1111 1122

S S B S A X S S S Y ,

DS CS Z S 2S Y ,

+ − = λ +µ + +

− = λ −µ +
           (A35) 

and 

m mW 9k YΓ = λ + µ ,                                                   (A36) 

and from (A26) 

 

( ) ( )
( )

( ) ( )( )

m m 1111 m m 1122

1111 1122 2211 2222 2233 m

m m 2211 m m 2222 2233

2 W 3k S 3k 2 S X

S 2 S S S S Y

2 3k 2 S 3k 4 S S Z 1.

 Φ = Ψ + +µ − − µ 

 + + + + + µ 

 + − µ − + µ + − 

           (A37) 

 

Consider now 
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( ) ( )
( )

( ) ( )( )

m m 1111 m m 1122

1111 1122 2211 2222 2233 m m

m m 2211 m m 2222 2233

W 3k S 3k 2 S X

S 2 S S S S 9k Y

2 3k 2 S 3k 4 S S Z .

 λΦ −ΓΨ = λΨ +λ +µ − − µ 

 + λ + λ + + + − Ψ µ 

 + λ − µ − + µ + − λ 

     (A38) 

 

Substitution in (A25), (A30) and (A31) leads to 

 

( ){ }
( )

( ){ }

m m m 2211 2222 2233

m mm 2211 2222 2233

m m m 2211 2222 2233

9k X 2 S S S W
P

9k2 S S S

9k X 2 S S S W ,

 µ − µ + + Ψ Ω
Φ =  

µ+ µ + + Φ  

− µ − µ + +

        (A39) 

 

{ } { }m m m m

m m

Q 9k Y W 9k Y W
9k

Ω
Φ = µ + λ Ψ − λΦ − µ + λ   µ

,               (A40) 

 

( ){ } ( )

( ){ }

m m m 1111 1122 m 1111 1122

m m

m m m 1111 1122

R 9k Z S 2S W S 2S
9k

9k Z S 2S W .

Ω Φ = µ + µ + Ψ − µ + Φ  µ

− µ + µ +

    (A41) 

 

These results are of the form (7.25)-(7.31) given in Section 7.  
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B:  Analysis for transversely isotropic cylindrical inclusions 
 

Since 1111 1122S S 0= =  for the fibre case, it follows from (6.11), (7.3) and (7.6) that 0Ψ =  

and 

( )
( )

( ) ( )

m m
i m i i m i m m

m m

m m
m m m m

m m

1 1 2
Q 2R 3k R 9k ,

1 2 1

1 1 2
Q 2R 3k R 9k .

1 2 1

+ ν − ν
∆ = µ − − + µ

−ν − ν

+ ν − ν
∆ = µ − − + µ

−ν −ν

                    (B1) 

 

The equations (7.11)-(7.14) reduce to 
 

( )
( )m m m

m

3k P Q A ,
2 1

Ω
− +µ − µ = ∆

− ν
                                (B2) 

( )
( )m 1

m m m2
m

3k 2 P Q B
2 1

ν Ω
− − µ + µ = ∆

− ν
.                             (B3) 

( )m m mQ 3k 2 R C ,µ + − µ = ∆                                          (B4) 
 

( )m m m2 Q 3k 4 R D− µ + + µ = ∆ .                                          (B5) 
 

From (B4) and (B5) 

( )m9k R 2C D= + ∆ ,                                                 (B6) 
 

( ) ( )m3 Q 2R C Dµ − = − ∆ .                                            (B7) 
 

Substitution in (B1) leads to the following expression for ∆  
 

( ) ( )

1
m m 2 m

m m m m m m

1 C D D 2 C1 1
1

9k 1 9k 2 1

 − ν − ν + − ν
= = +  ∆ µ −ν µ −ν 

 .                       (B8) 

 

Consider now the constants C and D defined by (7.10).  As 1111 1122S S 0= = , it follows using 

(B1) that  

( )m m
i i i m m

m m

9k
Q 3R 3k 4

3k 4

µ
∆ = − + + µ

+ µ
 .                              (B9) 

( )
iN
p

m i m m i

ii 1

V
C Q 3k 2 R

=

= µ + − µ   ∆∑  ,                                   (B10) 

( )
iN
p

m i m m i

ii 1

V
D 2 Q 3k 4 R

=

= − µ + + µ   ∆∑  .                               (B11) 

 

On using (7.2) it then follows that 
i
T m

i m m

m m

k
27k

3k 4

+µ
∆ = µ

+ µ
 ,                                            (B12) 

( ) ( )
iN

i im m T
p m m A m m i

i 1m m T m

3k 4 k
C V 2 3k 3k 2

27k k=

+ µ  = +µ ν − − µ µ +µ
∑  ,             (B13) 

( ) ( )
iN

i im m m m T
p m m A m m i i

i 1m m T T m

3k 4 9k k
D V 2 3k 2 3k 4

27k k k=

 + µ µ
= − µ ν − + µ + 

µ +µ 
∑  .    (B14) 
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It can be shown that 
iN

i im m m T
p A i i

i 1m T T m

3k 4 k
2C D V 2 1

3 k k=

 + µ µ
+ = ν − + 

µ +µ 
∑  ,                  (B15) 

 

( )
iN

i im m m T
p A i i

i 1m T T m

3k 4 3k k
C D V 2 1

9k k k=

 + µ
− = + ν − 

+µ 
∑  .                 (B16) 

 

It then follows from (B6) and (B7) that 
 

( ) iN
m mi im m T

p A i i
i 1m m T T m

3k 23k 4 k
Q V 6

27k k k=

 − µ+ µ
= ∆ ν − 

µ +µ 
∑ ,                (B17) 

 

iN
i im m m T
p A i i

i 1m m T T m

3k 4 k
R V 2 1

27k k k=

 + µ µ
= ∆ ν − + 

µ +µ 
∑ .                     (B18) 

From (B8) 

m m

m m m m m m

1 3k 4 2C D C D 1

9k 9k 3 3k 4

 + µ + −
= + − ∆ µ µ + µ 

 ,                       (B19) 

 

so that on using (B15) and (B16) 
 

( )
iN
p4

m m m3 i
m m i 1 T m

V1 1
V k

9k k=

 
= + + µ  ∆ µ +µ 

∑ .                            (B20) 

 

It then follows from (7.5), (B17) and (B18) that 
iN
pi i

A T m m i
eff eff i 1 T m
A T m m iN

p m
i

m mi 1 T m

V
6 k 3k 2

k
Q 6 k 3k 2

V 3V

3k 4k

=

=

 ν − + µ  + µ
≡ ν − + µ =

+
+ µ+µ

∑

∑
 ,              (B21) 

 

( )
( )

iN
pi i

A T m i
eff eff i 1 T m
A T m iN

p m
i

m mi 1 T m

V
2 1 k

k
R 2 1 k

V 3V

3k 4k

=

=

 ν − + µ  + µ
≡ ν − +µ =

+
+ µ+µ

∑

∑
 .                 (B22) 

 

On eliminating eff
Aν in (B21) and (B22) 

( ) ( )
( ) ( )

iN
pi

T m m m i
eff i 1 T m
T m m m iN

p m
i

m mi 1 T m

V
3 k 3k 4

k
3 k 3k 4

V 3V

3k 4k

=

=

 + µ − + µ  + µ
+µ − + µ =

+
+ µ+µ

∑

∑
 .      (B23) 

 

It then follows, on using the relation m 1
T m m3

k k= + µ , that the result (B23) may be written as 

the following mixtures relationship 
iN
p m

eff i m
i 1T m T m T m

V1 V

k k k=

= +
+µ +µ +µ

∑ .                                    (B24) 
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From (B21) 

( )
( )

i iN
im m A T

m p i
eff eff m m i 1 T m
A T iN

p m
i m

i 1 T m T m

3k 2 k
V V

2 3k 4 k
k

V V

k k

=

=

− µ ν
+

+ µ +µ
ν =

+
+µ +µ

∑

∑
 .                            (B25) 

Since 

( )

m
m T m m

m
m mT m

k 3k 2

2 3k 4k

ν − µ
=

+ µ+µ
 ,                                           (B26) 

it follows that 
i i mN

i A T m m T
p i m

eff eff i 1 T m T m
A T iN

p m
i m

i 1 T m T m

k V k
V

k k
k

V V

k k

=

=

ν ν
+

+µ +µ
ν =

+
+µ +µ

∑

∑
 .                                    (B27) 

 

On using (B24) the following mixtures relation is obtained 
 

eff eff i i mN
iA T A T m m T
peff i m

i 1T m T m T m

k k V k
V

k k k=

ν ν ν
= +

+µ +µ +µ
∑  .                                  (B28) 

 

On subtracting (B2) and (B3) to obtain a value for Ω  and then substituting in (7.15) 

  

( ) ( )m m m3k 4 Q 3R P QR 4 Q 2 A B+ µ + − = − µ − − ∆    .                    (B29) 
 

Thus, on using (7.5) 
 

( ) ( ) ( ) ( )eff eff eff eff eff
T m A T m A T m m3 k P 2 1 k 3 6 k 3k 2 2 A B + µ = ν − − µ ν − + µ − − ∆   .      (B30) 

 

From (7.7) and on using the appropriate values of ijklS relevant to cylinders 

( )
( )

iN
pi i i i

m m i m i

m ii 1

VQ R PS
A 3k P Q

2 1=

 −
= − +µ −µ 

− ν ∆ 
∑  ,                          (B31) 

 

( )
( )

( )
iN
pi i i i m 1

m m i m i2
m ii 1

VQ R PS
B 3k 2 P Q

2 1=

 − ν
= − − µ +µ 

− ν ∆ 
∑  .               (B32) 

 

It then follows that 

( ) ( ) ( )
iN
p

i i i i m m i m i

ii 1

V
2 A B Q R PS 3k 4 P 4 Q

=

− = − − + µ − µ   ∆∑  .            (B33) 

 

This relation is now written on using (7.2) and (B12) 

( ) ( ) ( )

( ) ( ) ( )

i i i iN N
p p T Am m 2 4

m m m m m3 3i i
m m i 1 i 1T m T m

2
iN N N N2 Ai i i i i 2 i4

p A m p A m m p m p3 i
i 1 i 1 i 1 i 1 T m

V V k9k
2 A B 2 k 2 k

3k 4 k k

V E 4 V k V 4 V .
k

= =

= = = =

νµ
− = µ − µ − + µ

+ µ +µ +µ

ν
− − µ ν + + µ + µ

+µ

∑ ∑

∑ ∑ ∑ ∑

   (B34) 

 

It should be noted from (B20) and (B24) that 
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eff
T m

m m

m m

k
27k

3k 4

+µ
∆ = µ

+ µ
.                                              (B35) 

 

Substitution in (B30) leads to 
 

( ) ( )
( )

( )
eff eff
A T m meff eff m m

A T m eff
m mT m

6 k 3k 2 9k
P 2 1 k 3 2 A B

3k 43 k

ν − − µ µ = ν − − µ − −  + µ+µ
 .        (B36) 

 

On using (7.5) it follows that 

( ) ( ) ( )
( )

( )

eff
A m m meff eff eff eff

A m A A T m eff
T m

m m

m m

6 3k 2
E 2 1 3 2 1 k 3

3 k

9k
2 A B .

3k 4

ν µ + − µ = µ − ν − ν − − µ  +µ

µ
− −

+ µ

             (B37) 

From (B34) and (B37) 

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( ) ( )

eff
m Aeff eff eff eff eff4 2

A A m m A A A m m m3 3eff
T m

i i i iN N
p p T A2 4

m m m m m3 3i i
i 1 i 1T m T m

2
i

N N N N2 Ai i i i i 2 i4
p A m p A m m p m p3 i

i 1 i 1 i 1 i 1 T m

2 1
E 1 2 k 1 1 3 2 k

k

V V k
2 k 2 k

k k

V E 4 V k V 4 V .
k

= =

= = = =

µ +ν
 = − ν + µ + ν − ν + ν µ + − µ + µ

ν
− µ − µ + + µ

+µ +µ

ν
+ + µ ν − + µ − µ

+µ

∑ ∑

∑ ∑ ∑ ∑

 (B38) 

 

On using (B24) and (B28) it can be shown after some calculation that the following mixtures 

relationship is valid that determines the effective axial modulus eff
AE  of the composite 

 

( ) ( )2 2
eff eff i i m 2N
T A m T A meff i i T m m

A p A m meff i m
i 1T m T m T m

4k 4k 4k
E V E V E

k k k=

 ν µ ν µ  ν µ + = + + +  + µ + µ + µ   
 

∑ ,    (B39) 

 

where                                                      m 1
T m m3

k k= + µ .                                                   (B40) 

Deleted: 1

Page 54 of 58

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

C: REDUCE program 

 

The following code can be used with the algebraic programming system REDUCE to check 

that general results given in the paper agree exactly with the results of Qiu and Weng. 

 
% symbol at start of a line, or towards end of a line, denotes a comment which is ignored by 
% REDUCE 
 
% A REDUCE program to check analysis in paper agrees exactly with results of Qiu & Weng (1992) 
 
% Written by L N McCartney, October 2009 
 
% The following code calculates and outputs various residuals denoted res(x) which should all 
% be zero  
 
off echo$     % Stops input instructions being shown in output file 
 
% Only statements terminated by ; are printed in output file, i.e. echoed 
% Statements terminated with $ are not echoed 
 
sn:= 5$       % No. of reinforcing phases in composite 
 
% array declarations 
 
array v(sn), vp(sn), ea(sn), et(sn), na(sn), nt(sn), ga(sn), gt(sn), kt(sn)$ 
array k(sn), l(sn), l1(sn), m(sn), n(sn), p(sn), q(sn), r(sn), s(sn), del(sn)$ 
array c(sn), d(sn), e(sn), f(sn), g(sn), h(sn)$ 
 
% on rounded;    
% When switched on, this outputs approximate results in decimal form rather than as exact 
% fractions  
 
% Set properties (in rational number form) for matrix 
 
em:= 5%   % Young's modulus 
nm:= 3/11$  % Poisson's ratio 
km:= em/3/(1 - 2*nm)$ % Bulk modulus  
gm:= em/2/(1 + nm)$ % Shear modulus    
ktm:= km + gm/3$ % Plane strain transverse bulk modulus  
 
vm:= 4/10$   % Volume fraction of matrix 
 
% Matrix values for parameters k, l, m, n and p used by Qiu & Weng  
 
k(0):= ktm$ 
l(0):= 2*ktm*nm$ 
m(0):= gm$ 
n(0):= em + l(0)*l(0)/k(0)$  
p(0):= gm$            
                   
% Set properties (in rational number form) for each reinforcing species 
 
for i:=1:sn do 
  << ea(i):= 200 * (1 + 4/10*i)/sn; 
     na(i):= 1/2 * (11/10 + 1/2*i)/sn;          
     kt(i):= 200 * (4/10 + 3/10*i)/sn; 
     ga(i):= 200 * (6/10 + 6/10*i)/sn;      
     gt(i):= 200 * (12/10 + 9/10*i)/sn;        
     vp(i):= 1; 
     k(i):= kt(i)$ 
     l(i):= 2*k(i)*na(i)$     
     m(i):= gt(i)$ 
     n(i):= ea(i) + l(i)*l(i)/k(i)$ 
     p(i):= ga(i) >>$  
 
% Normalise volume fractions so they sum to 1 exactly 
 
s1:= 0$ 
for i:= 1:sn do 
  << s1:= s1 + vp(i) >>$ 
for i:=1:sn do 
  << vp(i):= vp(i) / s1 * (1 - vm) >>$        
 
% Check sum of volume fractions is unity       
  
s1:= 0$                                       
for i:=1:sn do 
  << s1:= s1 + vp(i)$ 
     v(i):= vp(i) >>$ 
s1:= s1 + vm$ 
res1:= 1 - s1; 
 
% Set matrix volume fraction in the v array 
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v(0):= vm$ 
 
% Calculate Sijkl for spheroid using only rational values 
% Method can use any Sijkl satisfying some essential conditions 
 
S1111:= 3/10$ 
S2222:= 6/10$ 
S1122:= 75/10000$ 
S2233:= 46/1000$ 
S1212:= 22/100$ 
 
% Calculate dependent values of Sijkl 
 
S2323:= (S2222 - S2233)/2$ 
S2211:= nm*(S2222 + S2233 - S1111 - S1122) + S1122$ 
S3311:= S2211$ 
S1133:= S1122$  
S3333:= S2222$ 
S3322:= S2233$ 
 
% Qiu and Weng (1990) solution 
 
for r:=0:sn do 
  << w1:= 2*(k(r) - k(0))*((1 - nm)*(S2222 + S2233) - 2*nm*S2211)$ 
     w2:= 2*(l(r) - l(0))*((1 - nm)*S1122 - nm*S1111)$ 
     c(r):= 1 + w1/em + w2/em$ 
     w1:= (n(r) - n(0))*(S1111 - 2*nm*S1122)$ 
     w2:= 2*(l(r) - l(0))*((1 - nm)*S1122 - nm*S1111)$ 
     d(r):= 1 + w1/em + w2/em$     
     e(r):= 1 + 2*(m(r) - m(0))/m(0)*S2323$  
     f(r):= 1 + 2*(p(r) - p(0))/p(0)*S1212$ 
     w1:= 2*(k(r) - k(0))*((1 - nm)*S1122 - nm*S1111)$ 
     w2:= (l(r) - l(0))*(S1111 - 2*nm*S1122)$ 
     g(r):= w1/em + w2/em$ 
     w1:= (n(r) - n(0))*(S2211 - nm*(S2222 + S2233))$ 
     w2:= (l(r) - l(0))*((1 - nm)*(S2222 + S2233) - 2*nm*S2211)$ 
     h(r):= w1/em + w2/em$ 
     l1(r):= c(r)*d(r) - 2*g(r)*h(r) >>$ 
       
res2:= l(0) - km + 2/3*gm; 
res3:= n(0) - km - 4/3*gm;   
                   
s1:= 0$ 
s2:= 0$   
s3:= 0$    
s4:= 0$ 
s5:= 0$   
s6:= 0$   
       
for r:=0:sn do                 
  << s1:= s1 + 2*v(r)*(k(r)*d(r) - l(r)*g(r))/l1(r)$ 
     s2:= s2 + v(r)*(n(r)*c(r) - 2*l(r)*h(r))/l1(r)$ 
     s3:= s3 + 2*v(r)*m(r)/e(r)$ 
     s4:= s4 + 2*v(r)*p(r)/f(r)$ 
     s5:= s5 + v(r)*(l(r)*d(r) - n(r)*g(r))/l1(r)$ 
     s6:= s6 + v(r)*(l(r)*c(r) - 2*k(r)*h(r))/l1(r) >>$         
ccla:= s1$ 
dcla:= s2$ 
ecla:= s3$ 
fcla:= s4$ 
gcla:= s5$ 
hcla:= s6$ 
             
s1:= 0$ 
s2:= 0$   
s3:= 0$    
s4:= 0$ 
s5:= 0$   
s6:= 0$   
 
for r:=0:sn do               
  << s1:= s1 + v(r)*c(r)/l1(r)$ 
     s2:= s2 + v(r)*d(r)/l1(r)$ 
     s3:= s3 + v(r)/e(r)$ 
     s4:= s4 + v(r)/f(r)$ 
     s5:= s5 + v(r)*g(r)/l1(r)$ 
     s6:= s6 + v(r)*h(r)/l1(r) >>$ 
          
lcai:= s1*s2 - 2*s5*s6$  
ccai:= s1/lcai$ 
dcai:= s2/lcai$ 
ecai:= 1/s3$ 
fcai:= 1/s4$ 
gcai:= s5/lcai$ 
hcai:= s6/lcai$ 
       
kc:= (ccla*ccai + 2*hcla*gcai)/2$ 
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lc:= gcla*ccai + dcla*gcai$ 
lcp:= hcla*dcai + ccla*hcai$ 
res4:= lc - lcp; 
nc:= dcla*dcai + 2*gcla*hcai$ 
mc:= ecla*ecai/2$ 
pc:= fcla*fcai/2$ 
       
EAC1:= nc - lc*lc/kc$ 
NAC1:= lc/2/kc$ 
KTC1:= kc$ 
GTC1:= mc$ 
GAC1:= pc$ 
 
% Solution based on analysis in this paper 
 
s1:= 0$ 
gts:= (1/2/S2323 - 1)*gm$ 
for i:= 1:sn do 
  << w:= v(i)/(gt(i) + gts)$ 
     s1:= s1 + w >>$ 
s1:= s1 + vm/(gm + gts)$ 
GTC2:= 1/s1 - gts$ 
 
s1:= 0$ 
for i:=1:sn do  
  << w:= v(i)/(gm/(gt(i) - gm) + 2*S2323)$ 
     s1:= s1 + w >>$ 
s1:= 1/s1 - 2*S2323$ 
GTC3:= gm/s1 + gm$ 
 
s1:= 0$ 
gas:= (1/2/S1212 - 1)*gm$ 
for i:= 1:sn do 
  << w:= v(i)/(ga(i) + gas)$ 
     s1:= s1 + w >>$ 
s1:= s1 + vm/(gm + gas)$ 
GAC2:= 1/s1 - gas$ 
 
s1:= 0$ 
for i:=1:sn do  
  << w:= v(i)/(gm/(ga(i) - gm) + 2*S1212)$ 
     s1:= s1 + w >>$ 
s1:= 1/s1 - 2*S1212$ 
GAC3:= gm/s1 + gm$ 
 
% Calculate L coefficients and P, Q, R, S, DEL for each I using (6.8), (6.10) and (6.11) 
 
l1:= (3*km + gm)*S1111 - (3*km - 2*gm)*S1122$ 
l2:= (S1111 + 2*(S1122 + S2211 + S2222 + S2233))*gm$ 
l3:= 2*(3*km - 2*gm)*S2211 - (3*km + 4*gm)*(S2222 + S2233)$ 
psi:= 2*S1122*S2211 - S1111*(S2222 + S2233)$  
 
for i:=1:sn do      
  << p(i):= ea(i) + 2*na(i)*(2*na(i) - 1)*kt(i) - 2*gm$ 
     q(i):= 6*na(i)*kt(i) - 3*km + 2*gm$ 
     r(i):= (2*na(i) - 1)*kt(i) + gm$         
     s(i):= 3*kt(i) - 3*km - gm$        
     del(i):= l1*p(i) + l2*q(i) + l3*r(i) + psi*(q(i)*r(i) - p(i)*s(i)) + 9*km*gm >>$                                                                                                
 
% Calculate W, X, Y, Z using (7.24) 
       
s1:= 0$                                                                                                                                                                                      
s2:= 0$      
s3:= 0$             
s4:= 0$                
for i:=1:sn do 
  << s1:= s1 + v(i)*(q(i)*r(i) - p(i)*s(i))/del(i)$     
     s2:= s2 + v(i)*p(i)/del(i)$     
     s3:= s3 + v(i)*q(i)/del(i)$           
     s4:= s4 + v(i)*r(i)/del(i) >>$ 
 
W:= s1$ 
X:= s2$ 
Y:= s3$ 
Z:= s4$   
 
% Calculate SLA, PHI using (7.31) and (7.28)   
                                 
sla:= (3*km + 4gm)*S1122 - (3*km - 2*gm)*S1111$            
phi:= l1*X + l2*Y + l3*Z + 2*psi*W - 1$ 
        
% Calculate alpha and beta coefficients using (7.30) 
 
al1:= 2*gm*(S2211 + S2222 + S2233)*phi$ 
be1:= 9*km*gm*X - 2*gm*(S2211 + S2222 + S2233)*W$ 
al2:= - sla*phi$ 
be2:= 9*km*gm*Y + sla*W$ 
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nly

al3:= - gm*(S1111 + 2*S1122)*phi$ 
be3:= 9*km*gm*Z + gm*(S1111 + 2*S1122)*W$  
       
% Calculate alpha, beta, gamma using (8.2)  
 
w1:= -(al1*be2 + al2*be1) + (al2*be3 + al3*be2) + 3*(al1*be3 + al3*be1)$ 
w2:= -al1*al2 + al2*al3 + 3*al1*al3$ 
gam:= be1*be2 - be2*be3 - 3*be1*be3$  
be:= w1 + w2/psi - 2*psi*gam$ 
al:= be*psi + gam*psi**2$ 
 
res5:= al - be*psi - gam*psi**2; 
res6:= w2/psi/(9*km*gm) - phi**2;                
       
% Calculate Omega using (8.6)    
       
omb:= - psi*gam/al$   
 
res7:= al*omb**2 - be*omb - gam; 
 
om:= -9*km*gm*psi*gam/al$ 
 
w1:= 9*km*gm*(be/al - 1/psi)$ 
 
res8:= OM - w1;   
       
% Calculate solution using (7.25-7.27) and relation S = Q - 3R 
 
P:= ((be1*psi + al1)*omb - be1)/phi$ 
Q:= ((be2*psi + al2)*omb - be2)/phi$ 
R:= ((be3*psi + al3)*omb - be3)/phi$ 
S:= Q - 3*R$ 
 
res9:= Q*R - P*S - om;                                                                                                                                     
 
% Calculate non-shear effective properties of composite using (8.9)  
 
KTC2:= (S + 3*km + gm)/3$ 
NAC2:= ( (R - gm)/KTC2 + 1 )/2$  
EAC2:= P + 2*NAC2*(1 - 2*NAC2)*KTC2 + 2*gm$ 
 
res10:= EAC1 - EAC2; 
res11:= NAC1 - NAC2; 
res12:= KTC1 - KTC2; 
res13:= GAC1 - GAC2; 
res14:= GTC1 - GTC2; 
 
% Output values of elastic constants if needed 
% Switch rounded on after array declarations if compact decimal form is needed 
 
% write EAC:= EAC2; 
% write NAC:= NAC2; 
% write KTC:= KTC2; 
% write MUA:= GAC2; 
% write MUT:= GTC2; 
 
end; 
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