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Anisotropic rheology during grain boundary diffusion
creep and its relation to grain rotation, grain boundary
sliding and superplasticity

J. WHEELER

Dept. Earth and Ocean Sciences, Liverpool University, Liverpool L69 3GP, U.K.
johnwh@liv.ac.uk

The response of periodic microstructures to deftiomacan be analysed rigorously
and this provides guidance in understanding monepb&x microstructures. When
deforming by diffusion creep accompanied by slidinggular hexagons are shown
to be anisotropic in their rheology. Analytic soduts are derived in which grain
rotation is a key aspect of the deformation. lfilgtzoundaries cannot support shear
stress, the polycrystal viscosity is extremely amipic. There are two orthogonal
directions of zero strength: sliding and rotatiooperate to allow strain parallel to
these directions to be accomplished without angadiigion or plating. When a
linear velocity/shear stress relationship is introgtl for grain boundaries, the
anisotropy is less extreme, but two weak directgtilsexist along which

polycrystal strength is controlled only by the grabundary “viscosity”. Irregular
hexagons are characterised by 4 parameters. Apartsubset of hexagons defined
by 2 parameters, which includes regular hexagomgetisas some elongate shapes,
shows singular behaviour. Grain shapes that ase ¢fwthat of the subset may
exhibit large grain rotation rates and have no-efined rheology unless there is a
finite grain boundary viscosity. This new analysiglains why microstructures
based on irregular but near equi-axed grains shgkvrotation rates during

diffusion creep and it provides a framework for ersfanding strength anisotropy

during diffusion creep.

1. Introduction

In crystalline materials, grain boundary diffusion creep (Coble creep ingnetal
and ceramics, or solution-aided mass transfer in rocks) is an important deformat
mechanism [1-3]. It plays a role in superplastic behaviour of metals, and isantport
in how the Earth deforms on long timescales [4]. It is established that grain boundar
sliding must accompany diffusion to maintain compatibility between grains.[5, 6]

Grain rotations are an integral aspect of diffusion creep [7]. They are
particularly important as they are commonly cited as the reasongairigeart) why

grains remain quite equi-axed at high strains during superplastic defornhation.
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geology grain rotations are important for that reason and more. In rocks there is
commonly a lattice preferred orientation (LPO) which gives rise taeksisotropy

and hence anisotropy in seismic wave velocities. Thus LPO can be detected deep in
the Earth via monitoring seismic waves. Grain rotations during diffusion creep can i
principle destroy seismic anisotropy by rotating different grains inrdiftevays.

This has been postulated as a mechanism for destroying LPO but cxitieeheents

are lacking. Wheeler [8] gave a numerical model for rotations during diffusiop cree
and shows that they may be limited in extent under particular imposed deformations
Consequently grain rotations should be the focus of further research.

The flow law for diffusion creep shows that strain rate is proportional tesstre
and grain size has a major effect: for Coble creep strain rate is propottidnal
inverse cube of grain size. Much less has been said about the possible anisotropy of
rheology, although it is predicted to occur [9, 10]. Anisotropy may be the result of
elongate grain shapes, which mean diffusion path lengths are different inndiffere
directions. Anisotropy is important because it can give rise to straindatah. For
example, envisage an anisotropic polycrystal with local areas in “soft’tatimms
relative to an imposed shear stress. These soft orientations will fodosagtieh,
depending on the link between microstructure and rheology, may evolve to be yet
weaker and hence localise strain further.

Numerical models of diffusion creep encompass polycrystals with irregular
grain shapes [2, 11] and include the combined operation of stress-induced diffusion,
grain rotation, and grain boundary sliding, sometimes with a shear stress term [12]
and the effects of different imposed deformations (pure and simple shear etc.) [8].

In general, the behaviour of a large complex array of grains must be dealt with by
numerical modelling. Grain-scale analytic studies can address only simple
microstructures, but provide more insight into the reasons for particular belsaviour
Examples include parallelepipeds [9], regular hexagons [5], cubes [13], orthorhombic
shapes [10], cylinders [6], elongate hexagons with a mirror plane [12], and regular
hexagons in shear [14].

In this contribution | present the analytic solution for the rheology and grain-
rotation behaviour of a periodic microstructure made of one grain shape (an irregula
hexagon). There are 4 motivations for this study.

1. An analytic solution for a regular microstructure can provide a basis for

understanding behaviour of irregular microstructures (which can be regarded in a
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1

2

2 general fashion as “perturbed” regular microstructures). In patiouimerical

2 simulations of irregular microstructures show that relative grainioataare much

7 larger when grains are equi-axed than when they are elongate [8]: th&sahale

3 will show why that is the case.

ig 2. There are various separate treatments of hexagonal microstructares wi
ig different imposed deformations in the literature and it is not clear how thdgseana

14 link together to form a coherent whole: the full 2D solution for arbitrary hexédgona
ig shapes and general deformations has never been presented. As | will show, the full
g theory provides substantial new insight.

;g 3. The analytic solution provides a framework for understanding rheological
g; anisotropy as a function of grain shape, and the effects on rheology of shear stress
23 along grain boundaries.

§§ 4. The analytic solution provides a test for the correctness of numerical

g? methods.

28

29

30 | begin the next section with a kinematic analysis: | show how an imposedrstei

2; field will relate to local grain rotations, dissolution/precipitation rated sliding rates

gi along boundaries in a periodic microstructure. This is followed by deriving the

gg general equations for force balance, which are applied to diffusion crdepnalit

g; without shear stress on grain boundaries. | then show how these equations are solved
39 (for any grain shape and any imposed deformation rate) to derive the an¢pdéyve
32 of grains, the stress, and the viscosity tensor for the polycrystal. Sggaificshapes,

fé or families of shapes defined by one parameter, are used to illustrate¢nal ge

jg predictions. Finally | discuss the general significance of this work in uadeisg

46 diffusion creep.

47

jg 2. Periodic microstructure: geometry and kinematics

22 In this section | establish the basic description of the hexagonal tessellat

gg and show how an imposed deformation rate tensor can, together with a specified
gg angular velocity, be used to predict growth/dissolution rates along each grain

g? boundary. Figure 1 shows a microstructure made by tessellating a singlshgiae,

58 that of an irregular hexagon. Each hexagon has 3 pairs of parallel faces, denoted by
23 vectorsB;. These are linked by vectdrs defining the translational symmetry of the

tessellation. The choice of vectors is made so that the actual shape is thietlsarmae
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is a cyclic interchange of the three boundary vectors 2232 etc.), which is
advantageous for analysis since it implies that many equations should beninvaria
under such cyclic interchanges.

It can be seen that:

R,=B,@B,

R,=B,@B, 1)

R,=B, @B,

There are 2 distinct types of triple junction in this microstructurgaid T4 which
are not related to each other by translational symmetry.

Suppose that a deformation rBtehomogeneous on the large scale, is
imposed on this microstructure. Deformation at the scale of one grain will be
accomplished by dissolution, precipitation and sliding at grain boundaries, with no
internal strain in the grain, but possibly with rotation of the grain. In general the
movement of each grain is characterised by a velacaythe origin and an angular

velocity o (positive anticlockwise) [2], so that the velocity of any paiim that grain

is given by:
V=W + ©SX (2)
whereS is the skew tensor
“o@1”
S= 10 3)

Although the behaviour at grain scale is heterogeneous, consider different drains G
and G2. It is to be expected that any two patgtsandxgs;related by a translational
symmetry vectoR will have velocities related by

Vs, @V, = DR (4)

If there is any rotation, there must be a single value of angular velocai} fpains.
So when two grains are related Ryve must have

Wy, + ©S X+ R @w,, @oSx =DR

SO

W, @w,, = D @oS R

The important kinematic quantity is the relative velocity of two grains atd¢betact.
Using Eq. (2) for grains G1 and G2 but with Hamevalue ofx we find that,
regardless of the boundary position,

http://mc.manuscriptcentral.com/pm-pml Wheeler page 4
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AV =W, + ©SX @W;, @oSX = D @oS R (5)

This can be split into normal and transverse relative velocities for each boundary
using the unit vectoN; normal to the boundary and unit vectemparallel to it, with
the signs being governed by the “anticlockwise” construction of the vet(Fgy.

1).

u=N,AD @S R, (6)
(positive indicates moving apart of the two grains) and
t =T ,AD @wS R, (7)

(positive indicates clockwise or dextral shear component along boundary). Note tha
a deformation rate is imposed, the angular velocity is the only unknown kinematic

variable.

3. Force balance

For this regular tessellation there are some relationships betweenahe loc
forces on grain boundaries and the average (macroscopic) stress which prove useful
later. It is assumed that the material deforms slowly, so there are neratoak or
angular accelerations. This means that there is no net force and no net moment on any
grain [2]. LetF; be the net force along boundanyointinginto the grain. Then, by
translational symmetry and force balance, the boundary opposit@sdorce F;
acting on it. Thus, force balance is assured. Suppose we have some arbitrarily
complicated traction distribution along each grain boundary i, specifig¢shpwacting
outwardsfrom the grain, where s is distance along the boundary. The moment due to
this is given by

Zf\sﬁB x ds (8)

where the 2D cross product (a scalar) is indicated
aBb=a b, @a, b, =bASa 9)
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Because of translational symmetry, the force distribution on one member ofrthe pai
must be the opposite of that on the other. So the contribution of a pair of boundaries to
the moment is

Z f sB xds=Rf sBxds+R@f SB Xx+R ds=R@f sBRds=FBR

2bdys
(10)
whereF is defined as the net force on the boundary, poimtitagthe grain. The net
moment on the grain is obtained by summing over the 3 pairs of boundaries:
3
0=X F.BR, (11)
i=1

What is the average value of the stress, whichdcbelused to describe the
large-scale behaviour of the material as if it wesenogeneous? We take
compressive stresses as positive. It is knownthigaaverage value of stress within a
region can be written in terms of forcgsat the boundary of the region, regardless of

the complexity of stress within that region [15,A&89] in 3D
Ro,,dV=Df_x,dS
where dV is a volume element and dS a surfaceedeaaent, and in 2D

Ro,,dA=Df_Xx,ds

where dA is an area element and ds is a boundaggheslementor, where®

indicates the outer (tensor) product of two vegtors
RodA=DfN xds (12)

f is the force resolved along an outwards-facingnadr Let the 2D region under
consideration be one grain. Then the boundary stsef three pairs of parallel faces.
Because of translational symmetry, the force digtron on one member of the pair
must be the opposite of that on the other. So

http://mc.manuscriptcentral.com/pm-pml Wheeler page 6
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Z fN xds=Rf saN x ds+ R@f saN X+RadS=R@f saN Rds=@F N R

2bdys
Hence the average stress in the grain is obtaipetitmming over the 3 pairs of

boundaries (see also [17]):

3
o= FNR (13)

i=1

The stress tensor must be symmetric, but thissigrad as a consequence of Eq. (11),

noting thata®b is a symmetric tensor if x b = 0.

4. Equationsfor grain boundary diffusion

The previous two sections are quite general imssdahey make no
assumptions about the details of stress distribati®he aim in this section is to show
how precipitation rates (velocity differences aigrboundaries) in grain boundary
diffusion creep relate to forces on the boundaieusion is driven by gradients in
chemical potential (in metals, these are linkedraalients in vacancy concentration)
which, in diffusion creep, are in turn related tadjents in normal stress at interfaces:

for details see Ford et al. [2]. The diffusive emtralong a boundary is given by

& i

C=@LVw o

(14)

where L is the Onsager diffusion coefficient, wihe effective grain boundary width,
and V the molar volume and C is current in mol/ra/ss the component of stress
normal to the boundary (compressive positive). ODnsager coefficient is used so
that the same mathematical framework can applyffiestbn of vacancies (as in
metals) or of ionic species dissolved in an aquegpam boundary film (as in rocks),
compare for example Cocks et al. [18] eqn. 2.4rdins move apart at velocity u,
mass balance together with Eq. (14) dictates that

2
@Iﬂﬁ: vawaﬁﬂimﬂiﬂ

u=@v 0S 0<?

(15)

Wheeler page 7
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For convenience we define Z = BW. In a complicated microstructure, grains can
rotate relative to each other in which case ulisear function of s and, is cubic in
s. However, in the microstructure discussed hbgretare no differential rotations

andoy is quadratic. Consequently we can integrate (@ B)ptain

uﬁmqﬂm@mﬁ mmrsz
sz B

Gn o™ CHHAan @ (16)
wherecs andc, are the normal stress values at the start andfethé boundary, B is
the boundary length and s is distance along thedemy with the centre point as
origin (so it runs from —B/2 to B/2). The currestthen
ﬁmmﬂ@m@ o

Vv
There are only two types of node which are noteel®dy symmetry, labelled Tand

C= a7

TJ, on Fig. 1. There are thus two (unknown) valuesarmal stress at nodes, which
we define as, andoy,. Writing out Eq. (17) for each boundary we hawe,rformal

stresses and currents:

Cl\ = ?}ﬁ Wéﬁiw@ lf/ﬂﬁs

C, s°= @ff‘””éﬁm@%

C, s°= @ff‘””éﬁm@%

The net current out of a triple junction shouldzeeo, so for T4 noting that it is at

the start point of each of the three boundary vecto

W, W

C@ +C@

Similarly for TJ,

T T T
@C1?ﬁq 2%#} 3?%}:

These two equations can be expanded and rearramgbdw that

Ga=0, (18)
and

B,+u,B,+u,B,=0 (19)
ul 1 272 33

Wheeler page 8
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The latter confirms that precipitation rates wegghby boundary length sum to zero
as expected since mass is conserved. From presgamtions we see that only the net
force on a boundary is relevant for the evaluatibmoment and average stress. For a
generic boundary, the orthogonal force is, from #§)

i3
2 2 T a & i i HRHR . 3
:Z = =
F @mG“ s ds 5 8@1228 caB@lzzB

2

so for each of the 3 boundaries

2 _ R 3
I:i =0, Bi @122 BI (20)

Notice thats, contributes in proportion to the length of the boary and has the
character of a pressure. The isotropic componempbsed stress cannot be
determined from the imposed deformation rate. Liaténis contribution the
calculated stress will be adjusted to have zegetrRor this reason, the valueagfis

irrelevant — it will cancel out in the adjustmense-from now on it is set to zero.

5. Equationsfor grain boundary dliding

It is common to assign zero shear strength toxdraundaries as part of
diffusion creep models, but there is no loss ofegalisation by assigning a viscosity
as done for example by [9, 19]. It is assumed tlekthere exists a material constant
¢ which relates shear stress to sliding velocity

T, =LY
There is experimental evidence for a linear refeiop at least for some temperatures
and timescales [20]. Multiplying by the boundamdéh gives:

Fl=ct B, (21)

If t; > 0, we have dextral movement along the boundarythen the contribution of

F!' to the force on the grain is in the direction afus T; (Fig. 1). We now have
eguations which give the forces on the boundan¢erims of the tangential and
normal components of relative velocities at eaalniolary, which are in turn related

to the deformation rate tensor and the angularcitglby Eqg. (5).

Wheeler page 9
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6. Solution of equations

The aim here is to derive expressions for the argudlocity of grain rotation

and for anisotropic rheology, the two key concelsussed in this contribution.

6.1. Angular velocity

The only unknown quantity in this analysis is timgaar velocity, and the
only constraint not automatically satisfied is tbhzero moment (11). We therefore
have one equation in one unknown. Combining EQs(T®, (20) and (21) the force
vector on boundary i is

3 . g b . c
ﬁﬂﬂﬂfN AD @(oSaRi N, @ CB T,AD @(;)SaRi T, (22)

127

Each boundary pair contributés B R;to the moment. Noting that

NBR=@TAR
and
TBR=NAR

we rewrite Eq. (11) as
3 F o3
L

=X J
0 o, 1Z

. g b . c '
N,AD @oS R, T, AR @ (B T,AD @oS R, N, ARK

This is linear inw and is rearranged to give

3 Fﬁﬁlmfb c b c G
X N, /DR, T,/R, @B, T,/DR, N,AR,

®="3 = c b c G
X BCN SR T AR, @B T AR, NAR,

(23)

Note that this expression is cyclic in the indiée8 as required from the definitions
of B; (Fig. 1).

6.2. Viscosity tensor

The angular velocity (23) is substituted back iBtp (22) to give the forces on
each boundary, which in turn substitute in Eqg. @3jive the stress as a function of
deformation rate. The stress is adjusted to betfi@e since the hydrostatic

Wheeler page 10
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component has no effect on the creep rate. Thalaabalysis is implemented via
symbolic mathematics in Maple via Matlab (code kldée from the author). It is easy
to show that the antisymmetric part@flays no role in the stress, as follows:
express the antisymmetric partfasaS. Sincew is linear inD, the antisymmetric
part contributest to o and therefore contributesS - aS=0 toD - S, which is the
only form in whichD appears in the equations for force and stress.

SinceD is volume-conserving, the relationship betweeesstiand strain can
be reduced to a linear dependence of a traceiregsgensor on a symmetric trace-

free strain rate tensor. This is of the form

@5 45 =My €0 (24)

making it clear that the dependence is via a ferattk viscosity tensor [9], which can
also be expressed as its inverse, analogous tlasticecompliance tensor [10].
Compressive stress is taken as positive here.éftsoin is argued to have the same
symmetries as the elastic stiffness [21],

Moy = Mpays Mars = Mooy *Tapys = Thoap (25)

In 2D a symmetric tensor with zero trace only s independent components, for

example
T
Cx Oxy 9
O =
ny @Gxx

and can be represented by a 2D vector (Appendil 5)convenient to define a 2 x 2
viscosity matrixH so that

f 1N lf
) c5xxg:j Hi, H12k éxg

26
Oxy H, Hy, y (26)

The third Eq. (25) ensures thatis symmetric, and its 3 components contain all the
information about anisotropid does not transform like an ordinary tensor under
rotations. However, note that if a symmetric matvitgh zero trace is rotated by angle
0, its associated vector (Eq. (Al1.1)) rotates Byl&nce the matrik transforms

under rotations like a rank 2 tensor except withlde the angled has 2

eigenvectors, which indicate orientations in whith stress and strain rate tensors are
parallel to each other. These eigenvectors aré°anghis “double-angle” space.

Therefore in real space there exist 4 orientatispaced at 450 each other, in which

http://mc.manuscriptcentral.com/pm-pml Wheeler page 11
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the stress and strain rate tensors are paralldb other. Two different eigenvalues
indicate anisotropy. A polar plot of viscosity vessstrain axis illustrates these
properties (e.g. Fig. 4b).

My aim is to illustrate the effect of differentagn shapes on rheology and
grain rotation. | use 4 sets of hexagonal shapesrged by a single parameter
such thai. = 0 represents a regular hexagon in each setré=iyand Table 2).
Quantities are non-dimensionalised for simplicity follows: let a be a characteristic

grain size parameter, ang a strain rate. Then:

o

a’ 27)

7. Behaviour when boundaries do not support shear stress

This is the usual situation to be considered [2, 5, 22]; the tergarenset to

Zero.

7.1 Kinematics

Figure 3 illustrates the response of the four types of shape in Figure 2 to pure
shear (with extension parallel to y-axis) and simple shear (top-to-rightlgbdo x
axis). In the latter deformation, the principal axis of extensionigiskwise of the
x axis. Fig. 3(b) shows that for pure shear, more elongate grains ¢ameay show
slower rotations but not necessarily (e.g. Hex4). Fig. 3(c, d) shows differemmota
behaviours for simple shear. It is notable that some grains rotate the sp@ae tiva
imposed shear, others counter to it. For shapesim&taof a hexagon, very large
angular velocities are predicted, with magnitudes far in excess of amaitva
expressing magnitude of the strain rate. For example Hex1 in simple sbegaing

rotating clockwise at 2.23 for an imposed deformation rate of 1.

Wheeler page 12
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1

2

2 Figure 3(a, c) also shows the instantaneous precipitation rates on each of the
2 three faces. In pure shear, grains in Hex1 show precipitation on the top and symmetric
7 dissolution on the two side faces as expected. In simple shear (Fig. 3((c) and (d))

3 however, all precipitation rates are zero, because sliding and graiondtajether

ig are sufficient to take up the deformation, for that instant. This would also be the case
ig if the deformation were a pure shear imposed at@ e axes, because the rotational
1; component of deformation does not affect the precipitation rates. This "sliding only"
16 response is the case for any valu@ of Hex1 and in Hex4. It has major implications

g for the strength of the polycrystal, discussed in section 6.2.

;g Before that, though, the limit—0 demands discussion.

21

2:23 7.1.1 Singular solutions and associated grain shapes

24 For all types of shape in Fig. 3 the linkit>0 is a regular hexagon. One

32 would expect, then, that for a particular imposed deformation a unique angular

% velocity will be predicted ag.—0 for all 4 types of hexagon. In fact, in pure shear

ég there may be a limiting value far asA—0 (Hex1, Hex4), or not (Hex2, Hex3). The

g; same is true for simple shear (Fig. 3(d)) so it appears there is no unique solution for
gi the angular velocity of a regular hexagon during diffusion creep. Thisesy

35 surprising but is easily explained. The numerator and denominator in Eq. (23) both
23 contain termd ; AR, . Each term is the dot product of a grain boundary vector with the
23 translation vector which relates it to its symmetric equivalent. But igldae

jg hexagon, each boundary is perpendicular to its translation vector (Fig. 1) — soeall thes
fé dot products disappear, and Eq. (23) takes the indeterminate form 0/0. This result has
44 not been noted by other authors who used specific deformatiorssuntiedero

32 angular velocity. Physically, it is because in each pair of boundaries, thegtwo ar

j; directly opposite each other. Thus, not only forces but also moments cancel

‘S‘g automatically.

51 This singular behaviour is not restricted to regular hexagons. Consider a

gg hexagon with two sides defined by arbitrary vecyrsndB,. Now define the third

o side by

56

g; B, = meBl @82C (28)

23 It is trivial to show thall , AR, = O for all sides. Consequently, recallibg 0, the

denominator in Eq. (23) is zero. An arbitrary irregular hexagon is defined here by 6

http://mc.manuscriptcentral.com/pm-pml Wheeler page 13
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independent parameters; ignoring size and orientation this means the basis shape i
defined by 4 parameters. Eg. (28) shows that a subset, defined by 2 parameters, of all
hexagonal shapes will yield singular behaviour in the model discussed here. An
example is shown in Fig. 2.

The existence of this singular subset is significant. Small perturbations of
shape from any shape in that subset will give rise to a great rangeutdrang
velocities, because the denominator in Eq. (23) will be small. One thus expects a great
variety of rotation behaviours for quite subtly different grain shapes. Micrastesct
which bear some similarity to “ordinary” hexagonal shapes will not show such
extreme angular velocities.

Regular hexagons are the simplest idealisation of equi-axed grains, but they
belong to the singular subset. This is the underlying explanation for why irregular
networks of (on average) equi-axed grains give rise to such a wide range af angul

velocities (Fig. 1 in [8]).

7.2 Dynamics

The viscosity tensor can be obtained by calculating the stress for 2 differen
strain rate tensors using Egs. (13), (22) and (23), normalising the trace oéssdst
zero in each case, and then using Eq. (26). The result is a function of the 6 variables
that defineB;_3 and is too long to write out in full. Symbolic routines in Maple via
Matlab, however, allow analysis of the situation, in particular an examination of the
viscosity anisotropy. Before describing some specific examples, | difoeisesult
that for a completely general set of boundaries, when they cannot support shear stres

detH =0 (29)
so thatH has one eigenvalue equal to zero. This is a remarkable result, because it
implies that any microstructure formed by periodic irregular hexagonsneas
direction in double-angle space which has zero viscosity. In actual spacet@se
at right angles will have zero viscosity. The result implies that thésesexparticular
strain rate tensor for which the stress is zero, and consequently the force on eac
boundary is zero, so that from Eq. (20), all precipitation rates are zero. The
deformation in this case is accomplished purely by sliding and grain rotation: two
examples have already been shown of imposed deformations giving rise to this
response (simple shear of Hex1 and Hex4, Fig. 3). Since in this section we are

considering inviscid grain boundaries, no stress is required to accomplish deformation

http://mc.manuscriptcentral.com/pm-pml Wheeler page 14
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by sliding. Equation (29) implies that there are 2 "zero-strength" diredborsy
polycrystal made of irregular hexagons. We can determine the “zero strength”
directions from the eigenvectorsldf It is more illuminating, though, to use the
kinematic equations (6) to determine the “zero strength” direction, by solving the
three equations; = 0 forD. If two of these equations are satisfied, the third will be
automatically, because of mass conservation (Eq. (19)). Writing out the equations f

the first two boundaries, we have:

N,AD @wS R,=0

N,AD @»S R, =0
D has 3 unknown components, so we camdetzero to obtain 2 equations in 3
unknowns. Solving gives a value for(except for an arbitrary constant of
multiplication) as a function of the grain shape as defined;by Appendix 2 shows
that the solution is:

D, =GS (30)

whereG is a symmetric tensor given by:

G= B,BB, B,N B+ B,BB, B,N B,+ BBB, B,N B, (31)

Note thatG is cyclic in the indices 1 to 3 as expected from the initial definitions of the

vectors (Fig. 1). The weak directions can be determined from the symmeti¢ part

Dw, namely
.
E,= mﬂﬂﬂfgﬂﬁﬂﬂﬂ (32)

The eigenvectors @&,, give the two weak directions.

7.3 Example Hex1

This is a symmetric hexagon, elongate parallel to the x-axis. We find:

P I
chl 79 1+P3 % Op
0 0

The eigenvector corresponding to the weak direstisrfO, 1) in double-angle space,

(33)

corresponding to two axes at°4® the x-axis in real space, regardless of theevaf
L. This can be understood by noting that the weas axust be at 9Go each other,

but must also satisfy the symmetry of the grainsHas vertical and horizontal
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mirror planes, so only°045> and 90 are allowed. ©and 90 are strong directions.
The limit asA—0 is
_fm 10

72 00

which will be compared with the limit for a differeparameterisation now.

H° (34)

7.4 Example Hex2

This is a distorted hexagonal shape with no msyonmetry. Here we have:
/. -
C_]c ﬂwﬂﬁ?] 7\.2 @) 3 }\’k

H™= 216 @ 3L 3 (35)
The non-zero eigenvalue is

c_ fiki, > i
HS_216K + 29 (36)

and the eigenvector &f corresponding to the weak direction is, in doudnbefe

space,

it p-3 ’XC
9342

which in actual space corresponds to two orthogdimattions

(37)

Note that for largé. these approach 4%o the coordinate axes, but this example
shows that in general the weak directions relatesomplicated fashion to the grain
shape, unless that grain has mirror symmetry (Hex1)

The viscosity limit ash—0 is

c_ fif 00
72 01

with weak directions parallel to x and y axes. Wakue differs in orientation from

H (38)

that derived for Hex1 (Eq. (34)), illustrating thed unique value of viscosity exists
for the rheology of an array of regular hexagonddoother “singular” shapes).

The parameterisation usiiagdoes not necessarily represent the subsequent
evolution of this shape; it is intended just tagkirate the responses of grains which

have shapes as a function of one parameter.
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8. Behaviour when boundaries support shear stress

If € is non-zero, the denominator in Eq. (23) is noreZer any shape, and

now the viscosity for regular hexagons is well-defl and isotropic:

cu . e
c_ X 1 O
H™= 72 01 (39)

This is the simplest illustration that grain bouryd@scosity increases the overall
viscosity of the polycrystals,

To examine the general way in whiGlaffects rheology, consider the
derivation of the stress tensor for a particuldodweation rate. From Eq. (23) the

numerator and denominator @fare linear irg

()
where the Js are a function of geometry and defiitomaate, and the As a function of

geometry. From Egs. (22) and (13), we see that

o= A Alcsc Al Ao
Where (A) is shorthand for an (unspecified) functad geometry and deformation

rate; this is sufficient to show thatis of the form (quadratic ig)/(linear ing), and

hence the viscosity is:

2

e @

HereHy is the viscosity in the absence of grain bound#sgosity. For larg€, H is
linear inC. The viscosity of a polycrystal made of irregutaxagons is in general still

strongly anisotropic.

8.1 Example Hex1

The elongate hexagon has mirror symmetry so, dsigase for zer, the
two weak directions are at 480 the coordinate axes in actual space; in doaibige
space the eigenvectorsidfare parallel to the coordinate axes and the @ffiainal

terms are zero.
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(42)

c ki S R

- __J 4 4
36 pP3p°+ 6P 3+18L+3P 3% (°
Hp,=Hz=0

H,, exhibits the general form of viscosity dependemté” while, for Hyy, the
denominator is a factor of the numerator, leavitigear dependence dn

For{ = 0, Hi; has the limit as in Eq. (33) andt+becomes zero. Fig 4(a) illustrates
the dependence of the eigenvalueg ofor A = 2. There is a particular value at which

the viscosity is isotropic, but &3ncreases, anisotropy remains.

8.2 Example Hex2

The viscosity tensor as a functionffand is too long to write out, so for
illustration substituté. = (1/4)V3, the value being chosen because then the lefigth o
side 3 (vectoBy) is 5/4 that of the other two sides which leadeetatively simple

exact expressions for the viscosity tensor.

i (43)
288 315+ 92&°

b CCz

SubstitutingZ™ = 0 gives a viscosity consistent with Eq. (35) vilie appropriate
value ofi. Fig. 4(b) shows how both eigenvalues increask @itBecause this grain
shape is not orthorhombic, the eigenvectors areomdtrained by symmetry and

rotate withZ" (Fig. 4(c)).
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9. Discussion

9.1 Time evolution

My aim here is to give a complete analytic treattrod the instantaneous
response of a periodic microstructure in diffustoeep. Building on this, the
evolution through time can be modelled, as two esdamshow (Fig. 5). These were
produced using a numerical modelling program depadgoreviously for diffusion
creep [2], extended to incorporate periodic mictogtires and boundary conditions
[8]. Analytic solutions cannot be obtained for thiecause of the way that new grain
boundary and triple junction positions are caladd®]. There is no inconsistency
between the numerical and analytic modelling. Tied\dic treatment here was
motivated by the need to understand the resuliseohumerical simulations, which

are frequently counter-intuitive.

9.2 Grain rotation

Grain rotation is an integral part of the defonimat For nearly hexagonal
shapes, large angular velocities are predictediogap/ when no shear stress is
assumed along grain boundaries. This is becaugegéar hexagon shape actually
yields a singular solution. | suggest that compéidamicrostructures can be
considered — to a degree — as perturbed versigpsrimidic hexagonal
microstructures. The unbounded angular velocitredipted here for nearly regular
hexagons then provide an explanation for the waahge of angular velocities
predicted in numerical models of irregular graitwegks when those grains are on
average equi-axed [8]. Equally importantly, if giado for any reason become

elongate, the angular velocities are much reducedany cases (e.g. Fig. 3).

9.3 Anisotropic viscosity

It has been shown that a periodic microstructuaearfrom a single irregular
hexagonal grain shape has marked viscosity angpttaring diffusion creep. The
anisotropy is manifest in two orthogonal strongediions, and two orthogonal weak
directions at 45to the strong directions. In the absence of goawndary viscosity,
the weak directions have zero strength. Coaxiat@img parallel to a weak direction
thus requires, for an instant, no stress. Simpdarstith a shear plane at°4® a

weak direction (i.e. shear plane parallel to argjrdirection) also requires no stress.
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This behaviour arises because grain boundary glidialways one aspect of diffusion
creep, and there is always an orientation of strauhich sliding alone is a sufficient
response, without dissolution and precipitatiomaterial at grain boundaries. If
finite shear strength is assigned to grain bouedagnisotropy remains but now the
polycrystal has non-zero viscosity in all direcBoBoth viscosity eigenvalues
increase as the grain boundary visco§itycreases if other quantities are fixed.
When grains are elongate the periodic microstrealiscussed here is
anisotropic, with or without grain boundary shetaesses. It is to be expected then
that irregular aggregates of shaped grains wilifisotropic, and this will have
implications for the way in which strain partitioasd perhaps localises during

diffusion creep and superplasticity.

9.4 Relationship to previous work

Lifshitz [9] pointed out that diffusion creep ikdly to give rise to anisotropic
viscosity, with the emphasis on volume diffusioaep but a preliminary treatment of
grain boundary diffusion creep in his Appendix & tdade no explicit mention of
grain rotation and so it remains unclear how thisilt affect the predictions.
Greenwood [23] provided a precise expression ferathisotropic response of an
orthorhombic grain during Nabarro-Herring creep, imder special stress
orientations. Greenwood [10] provided expressiangife viscosity tensor under
more general stress orientations. In that workai$ @ssumed that creep strength
varies smoothly as the stress axes are rotatdédasthere are no maxima or minima
at intermediate positions. This contribution, hoemshows that there may be marked
strength minima at 45 degrees to strength maximd,vgould be interesting to see
how the different approaches could be reconcileghii the effects of grain rotation
must be considered.

Separate strands of research have examined cestdiiitted types of
hexagonal arrays under restricted deformation ¢mmdi. For hexagons with mirror
symmetry in pure shear [12], the analysis here agreement. Specifically, the
stretched hexagonal shapes are of the form Hexh thhe parametéx related to the
finite strain. In pure shear, thea+tomponent (from Eq. (42)) defines the stress aind i
can be shown that this is equivalent to equatidnd.2 and 14 of Kim et al. [12].
However the latter analysis did not encompassréiffiestrain directions, and hence
does not address anisotropy.
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Raj and Ashby[5] show a regular hexagonal arraydad zigzag surfaces of
connected grain boundary segments which they iiyesdi Mode 1 and Mode 2
sliding surfaces (their Fig. 2.3). They then analygovement accommodated by
diffusion along such serrated surfaces. There appede a distinction made
between the slip surfaces and apparently rigidgrgstals on each side. If, however,
all grain boundaries are assigned the same prepettiey must all be involved in
sliding and accommodating strain and hence theggiresented by those authors
becomes modified. Kim et al. [14] allow all gratasrotate and derive a flow stress
for shear (their equation 19) which can be showagi@e with Eq. (39) given here
when there is grain boundary viscosity. This wooksinot reveal the singular nature
of the regular hexagonal array in the absenceahdroundary viscosity, however;
nor does it reveal the large and disparate angelacities and strengths to be
expected under different loading conditions andgf@in shapes slightly different
from regular.

In summary, this contribution shows how the graitations and strength
properties of a periodic array of irregular hexagjoray be predicted in a unified
fashion. Some previous work can be seen as patiexbmples of this more general
theory. The new theory highlights the importancstaéngth anisotropy and of the
effect of overall grain shapes on grain rotationrydiffusion creep: it provides a
platform for understanding the behaviour of mormpbcated microstructures.
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Appendix 1: transformation properties of H

It is shown here that the viscosity tensor in akcipace can be relatedHo
which transforms like a tensor under rotations fd@uble angle” space. LBtbe any

symmetric tensor with zero trace, so it has jusid2pendent parts,Pand R.

P:l Pxx ny Kk
C ny @Pxx

The effect of an anticlockwise rotation through
ha " cod @sip
((;) 0= S cod

Ca_ Coar . PXX cos D @nysm 29 P,y cos ZB + Pxcsin, 29
P.=O006 PO6 =
c c cc P, COS 7 Py Sin 26 P, sin 20 @Pxxcos ZB

Representing by a 2-element vector

TP
p_ ny

Cc

(A1.1)

it is seen that
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d e
PXX cos D @ny sin 29 cos®D @sin Ca
o= = - =0 20 Al.2
Cp P,y COS B+ P,y sin Zea sin® cosd Cp c Cp (AL-2)

Thus, all tensor® can be represented as 2-vectors of the fmrmhich transform as

if rotated by ® when the tensd®? is rotated by. A linear relationship between two
such tensors in actual space is represented Byan tensor. In double angle space
the linear relationship can be expressed by a ski@nk tensor which as a
consequence of (Al1.2) transforms like an ordinangbr under rotations but with

double the angle:

H.=0 20°H 0 20™ (A1.3)

Appendix 2: equationsfor zero strength directions

Rather than give the derivation, it is sufficiemshow thaD,, as defined usinG in
Eq. (30) satisfies

N;ADwR;=0 (A2.1)
using any value of i. Consider the vector

D R,=GS B,@B, =
dp c b c b c € b c
B,BB, BN B,+ B,BB, B,N B,+ BBB, B,N B, S B,@B,

b c b c b c b c b c b
BBBBBASB+BBBBBASB+BBBBBASB@
b c c c c c
BBBBBASB @BBBBBASB+BBBB BASB

b c b Cb c

B,BB, B, BASB+BBBB BASB@

b c c c

B,BB, B, BASB @BBB B, BASB

dp ch c b c b ce
B,.BB, B,BB, @B,BB, B, B,BB, B,+

c b c b c b ¢

b
+ B,BB, B, B,BB, @ B,BB, B, B,BB, =

(A2.2)
where terms of the form.Sa are identically zero. Now consider the last twonig
and define

Q= B,BB, B, B,BB, @ B,BB, B, B,BB, (A2.3)
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Noting that

aBb=@bB a

we have

QBB,- B,BB, B,BB, B,BB, @B,BB, B,BB, B,BB, =0

HenceQ is parallel taB;, soDyR; is parallel toB;. BecauséN; is orthogonal td;

we have proved Eq. (A2.1) for i = 1. All expressonvolved are cyclic with respect
to indices 123, so it follows that Eq. (A2.1) hofds all .
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Table 1: Notation

Symbol

M eaning

Vector defining grain boundary

Current (flux x grain boundary width)

Deformation rate tensor

Deformation rate tensor giving rise to zero stass zero grain rotation

Force per unit length as function of position

Force across boundary

2nd rank viscosity tensor (in "double angle" space)

Onsager diffusion coefficient

Unit vector perpendicular to (anticlockwise of BT

Vector translating boundary to symmetrically eqlewa position

Distance along a boundary segment

Skew tensor

Sliding velocity along boundary

Unit vector parallel to B

Divergence velocity of two grains (precipitatiate at their contact)

Molar volume

Effective grain boundary width

Velocity of grain G measured at origin

=LV3w (units of n¥/Pa/s)

4th rank viscosity tensor

Parameter defining a set of hexagon shiA = 0 is regule

Stress

Angular velocity

STle a1 NO§§<C—|”U)U’;UZ|_IT|_“EUOUJ

Ratio of shear stress to sliding velocity (unitdas/m)
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Table 2: The non-dimensionalised side vectors dgjifour families of hexagons,

each parameterised hy

T T T g
Regular hexagon W @fj W ¥ @W 0

2P 3 2P 372 P3’

f f f g
Hexl “"W",@f migg @p@f@x,o

2P 3 2P 32

He><2f G @g*g f gy f@p@", @kg

2P 3 2P 32

f f f g
Hex3 "“‘"W’f,@gTOJ '""'W"m,l‘fq @p@,o

2P 3 2P 3 2
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Captionsto figures

Fig. 1. The meaning of the main geometric vectors defimere.

Fig. 2. Four different types of perturbed regular hexagshape, c.f. Table 1.

Vertical height of regular hexagon is 1, so itesidre length 18. The last figure
shows a “singular” hexagonal shape. Pairs of faceslirectly opposite each other, so
that moments as well as forces will always balagoeng rise to singular behaviour.

Fig. 3. Each row relates to one of the perturbed hexagdragles. Colum(a): the
microstructure for a value @f= 0.5, showing precipitation rates (numbers wmitte
beside each of 3 distinct sides) and angular vglec(rotation sense emphasised by
curved arrow) foD = [-1/2 0; 0 1/2], stretching parallel to y axis): angular

velocity as a function df for the samd®. Cross marks value used in (&)- the
microstructure for a value @f= 0.5, showing kinematic quantities as in (a)fouD
=[0 1/2; 0 0], top-to-right simple shear paratleix axis.(d): angular velocity as a

function ofA for the samé®. Cross marks value used in (c).

Fig. 4. (a) Eigenvalues of the viscosity tensor as a funatib@’ for a particular

shape, Hex1 with = 2. The grain shape is shown bottom righ}.Nested polar plots
showing the viscosity as a function of the orientabf the maximum strain rate axis,
for 4 values of". (c) As (a), for Hex2 with. = (1/4N3. (d) Angle of "weak"

direction to x-axis as a function gf for Hex2 as in (b)(e) Viscosity plots for Hex2;
note that because Hex2 has no mirror plane, tiea@tion of the viscosity tensor can

vary.

Fig. 5. Examples of evolution of a periodic microstructthreough time in(@) simple
shear andb) pure shear. Numbers indicate times. The evolufdhe xx and xy
stresses is shown (n) with solid lines corresponding to simple shearafa dashed
lines for pure shear (b). The microstructure accoaates the first increment of strain
at zero stress, but then as it evolves the prihsipain rate directions are no longer

aligned parallel to the “weak” directions and thesses are non-zero. Note how in
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(b) the grain shapes evolve in such a way as ¢éogtinen and then weaken the

microstructure as a neighbour-switching geometapisroached.
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