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Anisotropic rheology during grain boundary diffusion 

creep and its relation to grain rotation, grain boundary 

sliding and superplasticity 

J. WHEELER 

Dept. Earth and Ocean Sciences, Liverpool University, Liverpool L69 3GP, U.K. 
johnwh@liv.ac.uk 

 

The response of periodic microstructures to deformation can be analysed rigorously 

and this provides guidance in understanding more complex microstructures. When 

deforming by diffusion creep accompanied by sliding, irregular hexagons are shown 

to be anisotropic in their rheology. Analytic solutions are derived in which grain 

rotation is a key aspect of the deformation. If grain boundaries cannot support shear 

stress, the polycrystal viscosity is extremely anisotropic. There are two orthogonal 

directions of zero strength: sliding and rotation cooperate to allow strain parallel to 

these directions to be accomplished without any dissolution or plating. When a 

linear velocity/shear stress relationship is introduced for grain boundaries, the 

anisotropy is less extreme, but two weak directions still exist along which 

polycrystal strength is controlled only by the grain boundary “viscosity”.  Irregular 

hexagons are characterised by 4 parameters. A particular subset of hexagons defined 

by 2 parameters, which includes regular hexagons as well as some elongate shapes, 

shows singular behaviour. Grain shapes that are close to that of the subset may 

exhibit large grain rotation rates and have no well-defined rheology unless there is a 

finite grain boundary viscosity. This new analysis explains why microstructures 

based on irregular but near equi-axed grains show high rotation rates during 

diffusion creep and it provides a framework for understanding strength anisotropy 

during diffusion creep. 

1. Introduction 

In crystalline materials, grain boundary diffusion creep (Coble creep in metals 

and ceramics, or solution-aided mass transfer in rocks) is an important deformation 

mechanism [1-3]. It plays a role in superplastic behaviour of metals, and is important 

in how the Earth deforms on long timescales [4]. It is established that grain boundary 

sliding must accompany diffusion to maintain compatibility between grains [5, 6]. 

Grain rotations are an integral aspect of diffusion creep [7].  They are 

particularly important as they are commonly cited as the reason (at least in part) why 

grains remain quite equi-axed at high strains during superplastic deformation. In 
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geology grain rotations are important for that reason and more. In rocks there is 

commonly a lattice preferred orientation (LPO) which gives rise to elastic anisotropy 

and hence anisotropy in seismic wave velocities. Thus LPO can be detected deep in 

the Earth via monitoring seismic waves. Grain rotations during diffusion creep can in 

principle destroy seismic anisotropy by rotating different grains in different ways. 

This has been postulated as a mechanism for destroying LPO but critical experiments 

are lacking. Wheeler [8] gave a numerical model for rotations during diffusion creep 

and shows that they may be limited in extent under particular imposed deformations. 

Consequently grain rotations should be the focus of further research. 

The flow law for diffusion creep shows that strain rate is proportional to stress, 

and grain size has a major effect: for Coble creep strain rate is proportional to the 

inverse cube of grain size. Much less has been said about the possible anisotropy of 

rheology, although it is predicted to occur [9, 10]. Anisotropy may be the result of 

elongate grain shapes, which mean diffusion path lengths are different in different 

directions. Anisotropy is important because it can give rise to strain localisation. For 

example, envisage an anisotropic polycrystal with local areas in “soft” orientations 

relative to an imposed shear stress. These soft orientations will focus strain which, 

depending on the link between microstructure and rheology, may evolve to be yet 

weaker and hence localise strain further.  

Numerical models of diffusion creep encompass polycrystals with irregular 

grain shapes [2, 11] and include the combined operation of stress-induced diffusion, 

grain rotation, and grain boundary sliding, sometimes with a shear stress term [12], 

and the effects of different imposed deformations (pure and simple shear etc.) [8]. 

In general, the behaviour of a large complex array of grains must be dealt with by 

numerical modelling. Grain-scale analytic studies can address only simple 

microstructures, but provide more insight into the reasons for particular behaviours. 

Examples include parallelepipeds [9], regular hexagons [5], cubes [13], orthorhombic 

shapes [10], cylinders [6], elongate hexagons with a mirror plane [12], and regular 

hexagons in shear [14]. 

In this contribution I present the analytic solution for the rheology and grain-

rotation behaviour of a periodic microstructure made of one grain shape (an irregular 

hexagon). There are 4 motivations for this study. 

1. An analytic solution for a regular microstructure can provide a basis for 

understanding behaviour of irregular microstructures (which can be regarded in a 
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general fashion as “perturbed” regular microstructures). In particular numerical 

simulations of irregular microstructures show that relative grain rotations are much 

larger when grains are equi-axed than when they are elongate [8]: the analysis here 

will show why that is the case. 

2. There are various separate treatments of hexagonal microstructures with 

different imposed deformations in the literature and it is not clear how these analyses 

link together to form a coherent whole: the full 2D solution for arbitrary hexagonal 

shapes and general deformations has never been presented. As I will show, the full 

theory provides substantial new insight. 

3. The analytic solution provides a framework for understanding rheological 

anisotropy as a function of grain shape, and the effects on rheology of shear stress 

along grain boundaries. 

4. The analytic solution provides a test for the correctness of numerical 

methods. 

  

I begin the next section with a kinematic analysis: I show how an imposed strain rate 

field will relate to local grain rotations, dissolution/precipitation rates and sliding rates 

along boundaries in a periodic microstructure. This is followed by deriving the 

general equations for force balance, which are applied to diffusion creep with and 

without shear stress on grain boundaries. I then show how these equations are solved 

(for any grain shape and any imposed deformation rate) to derive the angular velocity 

of grains, the stress, and the viscosity tensor for the polycrystal. Specific grain shapes, 

or families of shapes defined by one parameter, are used to illustrate the general 

predictions. Finally I discuss the general significance of this work in understanding 

diffusion creep. 

2. Periodic microstructure: geometry and kinematics 

In this section I establish the basic description of the hexagonal tessellation 

and show how an imposed deformation rate tensor can, together with a specified 

angular velocity, be used to predict growth/dissolution rates along each grain 

boundary. Figure 1 shows a microstructure made by tessellating a single grain shape, 

that of an irregular hexagon. Each hexagon has 3 pairs of parallel faces, denoted by 

vectors Bi. These are linked by vectors Ri defining the translational symmetry of the 

tessellation. The choice of vectors is made so that the actual shape is the same if there 
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is a cyclic interchange of the three boundary vectors (123 → 312 etc.), which is 

advantageous for analysis since it implies that many equations should be invariant 

under such cyclic interchanges. 

It can be seen that: 

R1 = B2 @B3  

R2 = B3 @B1        (1) 

R3 = B1 @B2 

There are 2 distinct types of triple junction in this microstructure, TJa and TJb which 

are not related to each other by translational symmetry. 

 Suppose that a deformation rate D, homogeneous on the large scale, is 

imposed on this microstructure. Deformation at the scale of one grain will be 

accomplished by dissolution, precipitation and sliding at grain boundaries, with no 

internal strain in the grain, but possibly with rotation of the grain. In general the 

movement of each grain is characterised by a velocity w at the origin and an angular 

velocity ω (positive anticlockwise) [2], so that the velocity of any point x in that grain 

is given by: 

 v = w + ωSx          (2) 

where S is the skew tensor 

 S = 0 @1
1 0

d e
          (3) 

Although the behaviour at grain scale is heterogeneous, consider different grains G1 

and G2. It is to be expected that any two points xG1 and xG2 related by a translational 

symmetry vector R will have velocities related by  

vG2 @vG1 = DR          (4) 

If there is any rotation, there must be a single value of angular velocity for all grains. 

So when two grains are related by R we must have 

wG2 + ωS x + R
` a

@wG1 @ωSx = DR  

so 

wG2 @wG1 = D @ωS
` a

R  

The important kinematic quantity is the relative velocity of two grains at their contact. 

Using Eq. (2) for grains G1 and G2 but with the same value of x we find that, 

regardless of the boundary position, 
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 ∆v = wG2 + ωS x @wG1 @ωSx = D @ωS
` a

R       (5) 

 

This can be split into normal and transverse relative velocities for each boundary i, 

using the unit vector Ni normal to the boundary and unit vector Ti parallel to it, with 

the signs being governed by the “anticlockwise” construction of the vectors Bi (Fig. 

1). 

 

ui = N i AD @ωS
` a

R i         (6) 

 

(positive indicates moving apart of the two grains) and 

 

ti =T i AD @ωS
` a

R i          (7) 

 

(positive indicates clockwise or dextral shear component along boundary). Note that if 

a deformation rate is imposed, the angular velocity is the only unknown kinematic 

variable.  

3. Force balance 

 For this regular tessellation there are some relationships between the local 

forces on grain boundaries and the average (macroscopic) stress which prove useful 

later. It is assumed that the material deforms slowly, so there are no accelerations or 

angular accelerations. This means that there is no net force and no net moment on any 

grain [2]. Let Fi be the net force along boundary i pointing into the grain. Then, by 

translational symmetry and force balance, the boundary opposite to i has force –Fi 

acting on it. Thus, force balance is assured. Suppose we have some arbitrarily 

complicated traction distribution along each grain boundary i, specified by fi(s) acting 

outwards from the grain, where s is distance along the boundary. The moment due to 

this is given by  

Z f s
` a

B x ds          (8) 

where the 2D cross product (a scalar) is indicated 

 aB b = ax by @ay bx = bASa          (9) 
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Because of translational symmetry, the force distribution on one member of the pair 

must be the opposite of that on the other. So the contribution of a pair of boundaries to 

the moment is 

Z

2 bdys

f s
` a

B x ds= Rf s
` a

B x ds+ R@f s
` a

B x + R
` a

ds= R@f s
` a

B R ds= F B R  

          (10) 

where F is defined as the net force on the boundary, pointing into the grain. The net 

moment on the grain is obtained by summing over the 3 pairs of boundaries: 

0 =X
i = 1

3

F i B R i         (11) 

What is the average value of the stress, which could be used to describe the 

large-scale behaviour of the material as if it were homogeneous? We take 

compressive stresses as positive. It is known that the average value of stress within a 

region can be written in terms of forces fα  at the boundary of the region, regardless of 

the complexity of stress within that region [15, 16 p. 389] in 3D 

 

 Rσαβ dV = D f
α

xβ dS  

 

where dV is a volume element and dS a surface area element, and in 2D 

 

Rσαβ dA = D f
α

xβ ds 

 

where dA is an area element and ds is a boundary length element, or, where ⊗ 

indicates the outer (tensor) product of two vectors, 

 

 RσdA = Df N x ds        (12) 

 

f is the force resolved along an outwards-facing normal. Let the 2D region under 

consideration be one grain. Then the boundary consists of three pairs of parallel faces. 

Because of translational symmetry, the force distribution on one member of the pair 

must be the opposite of that on the other. So 
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 Z

2 bdys

f N x ds= Rf s
` a

N x ds+ R@f s
` a

N x + R
` a

ds= R@f s
` a

N R ds=@F N R   

Hence the average stress in the grain is obtained by summing over the 3 pairs of 

boundaries (see also [17]): 

 

σ =
1
A
fffffX

i = 1

3

F i N R i         (13) 

 

The stress tensor must be symmetric, but this is assured as a consequence of Eq. (11), 

noting that a⊗b is a symmetric tensor iff a × b = 0. 

4. Equations for grain boundary diffusion 

 

 The previous two sections are quite general insofar as they make no 

assumptions about the details of stress distributions. The aim in this section is to show 

how precipitation rates (velocity differences at grain boundaries) in grain boundary 

diffusion creep relate to forces on the boundaries. Diffusion is driven by gradients in 

chemical potential (in metals, these are linked to gradients in vacancy concentration) 

which, in diffusion creep, are in turn related to gradients in normal stress at interfaces: 

for details see Ford et al. [2]. The diffusive current along a boundary is given by  

 

 C = @LVw
∂σn

∂s
ffffffffffff         (14) 

 

where L is the Onsager diffusion coefficient, w is the effective grain boundary width, 

and V the molar volume and C is current in mol/m/s. σn is the component of stress 

normal to the boundary (compressive positive). The Onsager coefficient is used so 

that the same mathematical framework can apply to diffusion of vacancies (as in 

metals) or of ionic species dissolved in an aqueous grain boundary film (as in rocks), 

compare for example Cocks et al. [18] eqn. 2.4. If grains move apart at velocity u, 

mass balance together with Eq. (14) dictates that 

 u = @V
∂C
∂s
ffffffffff= LV 2 w

∂ 2 σn

∂s2
ffffffffffffffff        (15) 
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For convenience we define Z = LV2w. In a complicated microstructure, grains can 

rotate relative to each other in which case u is a linear function of s and σn is cubic in 

s. However, in the microstructure discussed here, there are no differential rotations 

and σn is quadratic. Consequently we can integrate (15) to obtain  

 

 σn s
` a

=
σs + σe

2
ffffffffffffffffffffff@

uB2

8Z
fffffffffff+

σe @σs

B
fffffffffffffffffffffffs +

u
2Z
ffffffffs2       (16) 

 

where σs and σe  are the normal stress values at the start and end of the boundary, B is 

the boundary length and s is distance along the boundary with the centre point as 

origin (so it runs from –B/2 to B/2). The current is then 

 C =
Z
V
fffffσs@σe

B
fffffffffffffffffffffff@

u
V
fffffs        (17) 

There are only two types of node which are not related by symmetry, labelled TJa and 

TJb on Fig. 1. There are thus two (unknown) values of normal stress at nodes, which 

we define as σa and σb. Writing out Eq. (17) for each boundary we have, for normal 

stresses and currents:  

C1 s
` a

=
Z
V
fffffσa @σb

B1

ffffffffffffffffffffffff@
u1

V
ffffffs  

C2 s
` a

=
Z
V
fffffσa @σb

B2

ffffffffffffffffffffffff@
u2

V
ffffffs 

C3 s
` a

=
Z
V
fffffσa @σb

B3

ffffffffffffffffffffffff@
u3

V
ffffffs 

The net current out of a triple junction should be zero, so for TJa, noting that it is at 

the start point of each of the three boundary vectors, 

C1 @
B1

2
fffffff

f g
+ C2

B2

2
fffffff

f g
+ C3 @

B3

2
fffffff

f g
= 0 

Similarly for TJb,  

@C1

B1

2
fffffff

f g
@C2

B2

2
fffffff

f g
@C3

B3

2
fffffff

f g
= 0 

These two equations can be expanded and rearranged to show that  

σa = σb         (18) 

and 

u1 B1 + u2 B2 + u3 B3 = 0       (19) 
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The latter confirms that precipitation rates weighted by boundary length sum to zero 

as expected since mass is conserved. From previous sections we see that only the net 

force on a boundary is relevant for the evaluation of moment and average stress. For a 

generic boundary, the orthogonal force is, from Eq. (16) 

F? =Z
@

B
2
fffffff

B
2
fffffff

σn s
` a

ds=
σs + σe

2
ffffffffffffffffffffffB @

u1

12Z
ffffffffffffB = σa B @

u1

12Z
ffffffffffffB3 

so for each of the 3 boundaries 

F i
? = σa Bi @

ui

12Z
ffffffffffffBi

3        (20) 

Notice that σa contributes in proportion to the length of the boundary and has the 

character of a pressure. The isotropic component of imposed stress cannot be 

determined from the imposed deformation rate. Later in this contribution the 

calculated stress will be adjusted to have zero trace. For this reason, the value of σa is 

irrelevant – it will cancel out in the adjustment – so from now on it is set to zero. 

 

5. Equations for grain boundary sliding 

 

 It is common to assign zero shear strength to grain boundaries as part of 

diffusion creep models, but there is no loss of generalisation by assigning a viscosity 

as done for example by [9, 19]. It is assumed here that there exists a material constant 

ζ which relates shear stress to sliding velocity 

 τ i = ζt i   

There is experimental evidence for a linear relationship at least for some temperatures 

and timescales [20]. Multiplying by the boundary length gives: 

 F i
|| = ζti Bi           (21) 

If t i > 0, we have dextral movement along the boundary; but then the contribution of 

F i
|| to the force on the grain is in the direction of minus Ti (Fig. 1). We now have 

equations which give the forces on the boundaries in terms of the tangential and 

normal components of relative velocities at each boundary, which are in turn related 

to the deformation rate tensor and the angular velocity by Eq. (5). 
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6. Solution of equations 

The aim here is to derive expressions for the angular velocity of grain rotation 

and for anisotropic rheology, the two key concepts discussed in this contribution.  

6.1. Angular velocity 

The only unknown quantity in this analysis is the angular velocity, and the 

only constraint not automatically satisfied is that of zero moment (11). We therefore 

have one equation in one unknown. Combining Eqs. (6), (7), (20) and (21) the force 

vector on boundary i is 

 

F i = @
Bi

3

12Z
ffffffffffffN i AD @ωS

` a
R i

f g
N i @ ζBi T i AD @ωS

` a
R i

b c
T i   (22) 

 

Each boundary pair contributes F i B R i to the moment. Noting that  

 N B R = @T AR   

and 

T B R = N AR  

we rewrite Eq. (11) as  

0 =X
i = 1

3 Bi
3

12Z
ffffffffffffN i AD @ωS

` a
R i

f g
T i AR i @ ζBi T i AD @ωS

` a
R i

b c
N i AR i

H

J

I

K 

This is linear in ω and is rearranged to give 

 

ω =

X
i = 1

3
Bi

3

12Z
fffffffffffff N i ADR i

b c
T i AR i @ζBi T i ADR i

b c
N i AR i

F G

X
i = 1

3
Bi

3

12Z
fffffffffffff N i ASR i

b c
T i AR i @ζBi T i ASR i

b c
N i AR i

F G
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff   (23) 

 

Note that this expression is cyclic in the indices 1..3 as required from the definitions 

of Bi (Fig. 1).  

6.2. Viscosity tensor 

The angular velocity (23) is substituted back into Eq. (22) to give the forces on 

each boundary, which in turn substitute in Eq. (13) to give the stress as a function of 

deformation rate. The stress is adjusted to be trace-free since the hydrostatic 
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component has no effect on the creep rate. The actual analysis is implemented via 

symbolic mathematics in Maple via Matlab (code available from the author). It is easy 

to show that the antisymmetric part of D plays no role in the stress, as follows: 

express the antisymmetric part of D as αS. Since ω is linear in D, the antisymmetric 

part contributes α to ω and therefore contributes αS - αS = 0  to D - ωS , which is the 

only form in which D appears in the equations for force and stress. 

  Since D is volume-conserving, the relationship between stress and strain can 

be reduced to a linear dependence of a trace-free stress tensor on a symmetric trace-

free strain rate tensor. This is of the form 

 @σαβ = η
αβγδ

eAγδ         (24) 

making it clear that the dependence is via a fourth-rank viscosity tensor [9], which can 

also be expressed as its inverse, analogous to an elastic compliance tensor [10]. 

Compressive stress is taken as positive here. The tensor η is argued to have the same 

symmetries as the elastic stiffness [21],  

 ηαβγδ = ηβαγδ ,ηαβγδ = ηαβδγ ,ηαβγδ = ηγδαβ       (25) 

In 2D a symmetric tensor with zero trace only has two independent components, for 

example 

 

 σ =
σxx σxy

σxy @σxx

f g
  

 

and can be represented by a 2D vector (Appendix 1). It is convenient to define a 2 x 2 

viscosity matrix H so that  

- 
σxx

σxy

f g
=

H11 H12

H21 H22

h

j

i

k eAxx

eAxy

f g
        (26) 

The third Eq. (25) ensures that H is symmetric, and its 3 components contain all the 

information about anisotropy. H does not transform like an ordinary tensor under 

rotations. However, note that if a symmetric matrix with zero trace is rotated by angle 

θ, its associated vector (Eq. (A1.1)) rotates by 2θ; hence the matrix H transforms 

under rotations like a rank 2 tensor except with double the angle. H has 2 

eigenvectors, which indicate orientations in which the stress and strain rate tensors are 

parallel to each other. These eigenvectors are at 90° in this “double-angle” space. 

Therefore in real space there exist 4 orientations, spaced at 45° to each other, in which 
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the stress and strain rate tensors are parallel to each other. Two different eigenvalues 

indicate anisotropy. A polar plot of viscosity versus strain axis illustrates these 

properties (e.g. Fig. 4b). 

 My aim is to illustrate the effect of different grain shapes on rheology and 

grain rotation. I use 4 sets of hexagonal shapes governed by a single parameter λ, 

such that λ = 0 represents a regular hexagon in each set (Figure 2 and Table 2). 

Quantities are non-dimensionalised for simplicity, as follows: let a be a characteristic 

grain size parameter, and  εA a strain rate. Then: 

 

BC=
B
a
fffff

DC=
D
εA
ffffff

σC= σ
Z
a3
fffffff

H C=
HZ
a3
fffffffffff

ωC=
ω
εA
fffff

ζC= 36ζ
Z
a2
fffffff

          (27) 

7. Behaviour when boundaries do not support shear stress 

 This is the usual situation to be considered [2, 5, 22]; the terms in ζ are set to 

zero.  

7.1 Kinematics 

Figure 3 illustrates the response of the four types of shape in Figure 2 to pure 

shear (with extension parallel to y-axis) and simple shear (top-to-right, parallel to x 

axis). In the latter deformation, the principal axis of extension is 45° clockwise of the 

x axis. Fig. 3(b) shows that for pure shear, more elongate grains (larger λ) may show 

slower rotations but not necessarily (e.g. Hex4). Fig. 3(c, d) shows different rotation 

behaviours for simple shear. It is notable that some grains rotate the same way as the 

imposed shear, others counter to it. For shapes near that of a hexagon, very large 

angular velocities are predicted, with magnitudes far in excess of any invariant 

expressing magnitude of the strain rate. For example Hex1 in simple shear has grains 

rotating clockwise at 2.23 for an imposed deformation rate of 1. 
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Figure 3(a, c) also shows the instantaneous precipitation rates on each of the 

three faces. In pure shear, grains in Hex1 show precipitation on the top and symmetric 

dissolution on the two side faces as expected. In simple shear (Fig. 3((c) and (d)), 

however, all precipitation rates are zero, because sliding and grain rotation together 

are sufficient to take up the deformation, for that instant. This would also be the case 

if the deformation were a pure shear imposed at 45° to the axes, because the rotational 

component of deformation does not affect the precipitation rates. This "sliding only" 

response is the case for any value of λ in Hex1 and in Hex4. It has major implications 

for the strength of the polycrystal, discussed in section 6.2.  

Before that, though, the limit  λ→0 demands discussion. 

7.1.1 Singular solutions and associated grain shapes 

For all types of shape in Fig. 3 the limit  λ→0 is a regular hexagon. One 

would expect, then, that for a particular imposed deformation a unique angular 

velocity will be predicted as  λ→0 for all 4 types of hexagon. In fact, in pure shear 

there may be a limiting value for ω as λ→0 (Hex1, Hex4), or not (Hex2, Hex3). The 

same is true for simple shear (Fig. 3(d)) so it appears there is no unique solution for 

the angular velocity of a regular hexagon during diffusion creep. This may seem 

surprising but is easily explained. The numerator and denominator in Eq. (23) both 

contain terms T i AR i . Each term is the dot product of a grain boundary vector with the 

translation vector which relates it to its symmetric equivalent. But in a regular 

hexagon, each boundary is perpendicular to its translation vector (Fig. 1) – so all these 

dot products disappear, and Eq. (23) takes the indeterminate form 0/0. This result has 

not been noted by other authors who used specific deformations and assumed zero 

angular velocity. Physically, it is because in each pair of boundaries, the two are 

directly opposite each other. Thus, not only forces but also moments cancel 

automatically. 

This singular behaviour is not restricted to regular hexagons. Consider a 

hexagon with two sides defined by arbitrary vectors B1 and B2. Now define the third 

side by 

B3 =
B1AB2

B1B B2

fffffffffffffffffffffffS B1 @B2

b c
      (28) 

It is trivial to show that T i AR i  = 0 for all sides. Consequently, recalling ζ = 0, the 

denominator in Eq. (23) is zero. An arbitrary irregular hexagon is defined here by 6 
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independent parameters; ignoring size and orientation this means the basic shape is 

defined by 4 parameters. Eq. (28) shows that a subset, defined by 2 parameters, of all 

hexagonal shapes will yield singular behaviour in the model discussed here. An 

example is shown in Fig. 2. 

 The existence of this singular subset is significant. Small perturbations of 

shape from any shape in that subset will give rise to a great range of angular 

velocities, because the denominator in Eq. (23) will be small. One thus expects a great 

variety of rotation behaviours for quite subtly different grain shapes. Microstructures 

which bear some similarity to “ordinary” hexagonal shapes will not show such 

extreme angular velocities. 

Regular hexagons are the simplest idealisation of equi-axed grains, but they 

belong to the singular subset. This is the underlying explanation for why irregular 

networks of (on average) equi-axed grains give rise to such a wide range of angular 

velocities (Fig. 1 in [8]). 

7.2 Dynamics 

 The viscosity tensor can be obtained by calculating the stress for 2 different 

strain rate tensors using Eqs. (13), (22) and (23), normalising the trace of the stress to 

zero in each case, and then using Eq. (26). The result is a function of the 6 variables 

that define B1..3, and is too long to write out in full. Symbolic routines in Maple via 

Matlab, however, allow analysis of the situation, in particular an examination of the 

viscosity anisotropy. Before describing some specific examples, I discuss the result 

that for a completely general set of boundaries, when they cannot support shear stress, 

det H = 0        (29) 

so that H has one eigenvalue equal to zero. This is a remarkable result, because it 

implies that any microstructure formed by periodic irregular hexagons has one 

direction in double-angle space which has zero viscosity. In actual space 2 directions 

at right angles will have zero viscosity. The result implies that there exists a particular 

strain rate tensor for which the stress is zero, and consequently the force on each 

boundary is zero, so that from Eq. (20), all precipitation rates are zero. The 

deformation in this case is accomplished purely by sliding and grain rotation: two 

examples have already been shown of imposed deformations giving rise to this 

response (simple shear of Hex1 and Hex4, Fig. 3). Since in this section we are 

considering inviscid grain boundaries, no stress is required to accomplish deformation 
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by sliding. Equation (29) implies that there are 2 "zero-strength" directions for any 

polycrystal made of irregular hexagons. We can determine the “zero strength” 

directions from the eigenvectors of H. It is more illuminating, though, to use the 

kinematic equations (6) to determine the “zero strength” direction, by solving the 

three equations u1..3 = 0 for D. If two of these equations are satisfied, the third will be 

automatically, because of mass conservation (Eq. (19)). Writing out the equations for 

the first two boundaries, we have: 

 

N1AD @ωS
` a

R1 = 0

N 2AD @ωS
` a

R2 = 0
 

D has 3 unknown components, so we can set ω to zero to obtain 2 equations in 3 

unknowns. Solving gives a value for D (except for an arbitrary constant of 

multiplication) as a function of the grain shape as defined by B1..3. Appendix 2 shows 

that the solution is: 

 Dw = GS           (30) 

where G is a symmetric tensor given by: 

 G = B2B B3

b c
B1 N B1 + B3B B1

b c
B2 N B2 + B1B B2

b c
B3 N B3   (31) 

Note that G is cyclic in the indices 1 to 3 as expected from the initial definitions of the 

vectors (Fig. 1). The weak directions can be determined from the symmetric part of 

Dw, namely 

 E w =
Dw + Dw

T

2
fffffffffffffffffffffffffff         (32) 

The eigenvectors of Ew give the two weak directions.  

 

7.3 Example Hex1 

This is a symmetric hexagon, elongate parallel to the x-axis. We find: 

 H C=
1
72
ffffffff 1 + 3p

wwwwwwwwwwwwwwwww
λ

b c2

0

0 0

h

lj

i

mk         (33) 

The eigenvector corresponding to the weak directions is (0, 1) in double-angle space, 

corresponding to two axes at 45° to the x-axis in real space, regardless of the value of 

λ. This can be understood by noting that the weak axes must be at 90° to each other, 

but must also satisfy the symmetry of the grain. This has vertical and horizontal 
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mirror planes, so only 0°, 45° and 90° are allowed. 0° and 90° are strong directions. 

The limit as  λ→0 is 

H C=
1
72
ffffffff 1 0

0 0

d e

                (34) 

which will be compared with the limit for a different parameterisation now.  

7.4 Example Hex2 

This is a distorted hexagonal shape with no mirror symmetry. Here we have: 

 H C=
1

216
fffffffffff

f g
λ2 @ 3p

wwwwwwwwwwwwwwwww
λ

@ 3p
wwwwwwwwwwwwwwwww

λ 3

h

j

i

k        (35) 

The non-zero eigenvalue is 

 H s
C=

1
216
fffffffffffλ2 +

1
72
ffffffff          (36) 

and the eigenvector of H corresponding to the weak direction is, in double-angle 

space, 

 
1

3 + λ2q
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwfffffffffffffffffffffffffff 3p

wwwwwwwwwwwwwwwww
,λ

b c
  

which in actual space corresponds to two orthogonal directions 

F 3 + λ2q
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

+ 3p
wwwwwwwwwwwwwwwww

λ
ffffffffffffffffffffffffffffffffffffffffffffffffffffff,1

h

j

i

k
.       (37) 

Note that for large λ these approach 45° to the coordinate axes, but this example  

shows that in general the weak directions relate in a complicated fashion to the grain 

shape, unless that grain has mirror symmetry (Hex1). 

 The viscosity limit as  λ→0 is 

H C=
1
72
ffffffff 0 0

0 1

d e

        (38) 

with weak directions parallel to x and y axes. This value differs in orientation from 

that derived for Hex1 (Eq. (34)), illustrating that no unique value of viscosity exists 

for the rheology of an array of regular hexagons (or for other “singular” shapes). 

The parameterisation using λ does not necessarily represent the subsequent 

evolution of this shape; it is intended just to illustrate the responses of grains which 

have shapes as a function of one parameter. 
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8. Behaviour when boundaries support shear stress 

 If ζ is non-zero, the denominator in Eq. (23) is non-zero for any shape, and 

now the viscosity for regular hexagons is well-defined and isotropic: 

H C=
1 + ζC

72
fffffffffffffffff 1 0

0 1

d e
         (39) 

This is the simplest illustration that grain boundary viscosity increases the overall 

viscosity of the polycrystals,  

To examine the general way in which ζ affects rheology, consider the 

derivation of the stress tensor for a particular deformation rate. From Eq. (23) the 

numerator and denominator of ω are linear in ζ 

 

 ω =
J0 + J1 ζ
A0 + A1 ζ
fffffffffffffffffffffffffffff         (40) 

  

where the Js are a function of geometry and deformation rate, and the As a function of 

geometry. From Eqs. (22) and (13), we see that  

 

 σ = A
` a

+ A
` a

ζ + ζ A
` a

+ A
` a

ω
b c

  

Where (A) is shorthand for an (unspecified) function of geometry and deformation 

rate; this is sufficient to show that σσσσ is of the form (quadratic in ζ)/(linear in ζ), and 

hence the viscosity is: 

 H =
H 0 + H1 ζ + H 2 ζ2

1 + A1 ζ
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff        (41) 

Here H0 is the viscosity in the absence of grain boundary viscosity. For large ζ, H is 

linear in ζ. The viscosity of a polycrystal made of irregular hexagons is in general still 

strongly anisotropic. 

 

8.1 Example Hex1 

 The elongate hexagon has mirror symmetry so, as in the case for zero ζ, the 

two weak directions are at 45° to the coordinate axes in actual space; in double angle 

space the eigenvectors of H are parallel to the coordinate axes and the off-diagonal 

terms are zero. 
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H11
C =

1
72
ffffffff 1 + 3p

wwwwwwwwwwwwwwwww
λ

b c2

+
1
72
ffffffff 1 +

λ2

3 + 2 3p
wwwwwwwwwwwwwwwww

λ
ffffffffffffffffffffffffffffffffffff

h

j

i

k ζC

H22
C =

1
36
fffffff

3p
wwwwwwwwwwwwwwwww

+ 2λ
b c

3p
wwwwwwwwwwwwwwwww

+ λ + 3p
wwwwwwwwwwwwwwwww

+ 3λ
b c

ζC
d e

ζC 3p
wwwwwwwwwwwwwwwww

3p
wwwwwwwwwwwwwwwww

λ2 + 6 3p
wwwwwwwwwwwwwwwww

+ 18λ + 3 3p
wwwwwwwwwwwwwwwww

λ2
b c

ζC

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

H12
C = H21

C = 0

   (42) 

 

H22 exhibits the general form of viscosity dependence on ζ∗ while, for H11, the 

denominator is a factor of the numerator, leaving a linear dependence on ζ.  

For ζ = 0, H11 has the limit as in Eq. (33) and H22 becomes zero. Fig 4(a) illustrates 

the dependence of the eigenvalues on ζ∗ for λ = 2. There is a particular value at which 

the viscosity is isotropic, but as ζ increases, anisotropy remains.   

8.2 Example Hex2 

 The viscosity tensor as a function of ζ∗ and λ  is too long to write out, so for 

illustration substitute λ = (1/4)√3, the value being chosen because then the length of 

side 3 (vector B3) is 5/4 that of the other two sides which leads to relatively simple 

exact expressions for the viscosity tensor. 

  

H11
C =

1
3456
fffffffffffffff945+ 63013ζC+ 63294 ζC

b c2

315+ 926ζC
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

H12
C = @

1
288
fffffffffff315@1489ζC+ 1434 ζC

b c2

315+ 926ζC
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

H22
C =

1
72
ffffffff315+ 1871ζC+ 858 ζC

b c2

315+ 926ζC
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

     (43) 

 

Substituting ζ∗ = 0 gives a viscosity consistent with Eq. (35) with the appropriate 

value of λ. Fig. 4(b) shows how both eigenvalues increase with ζ∗. Because this grain 

shape is not orthorhombic, the eigenvectors are not constrained by symmetry and 

rotate with ζ∗ (Fig. 4(c)). 
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9. Discussion 

9.1 Time evolution 

 My aim here is to give a complete analytic treatment of the instantaneous 

response of a periodic microstructure in diffusion creep. Building on this, the 

evolution through time can be modelled, as two examples show (Fig. 5). These were 

produced using a numerical modelling program developed previously for diffusion 

creep [2], extended to incorporate periodic microstructures and boundary conditions 

[8]. Analytic solutions cannot be obtained for this because of the way that new grain 

boundary and triple junction positions are calculated [2]. There is no inconsistency 

between the numerical and analytic modelling. The analytic treatment here was 

motivated by the need to understand the results of the numerical simulations, which 

are frequently counter-intuitive. 

9.2 Grain rotation 

 Grain rotation is an integral part of the deformation. For nearly hexagonal 

shapes, large angular velocities are predicted, especially when no shear stress is 

assumed along grain boundaries. This is because the regular hexagon shape actually 

yields a singular solution. I suggest that complicated microstructures can be 

considered – to a degree – as perturbed versions of periodic hexagonal 

microstructures. The unbounded angular velocities predicted here for nearly regular 

hexagons then provide an explanation for the wide range of angular velocities 

predicted in numerical models of irregular grain networks when those grains are on 

average equi-axed [8]. Equally importantly, if grains do for any reason become 

elongate, the angular velocities are much reduced in many cases (e.g. Fig. 3).  

9.3 Anisotropic viscosity 

 It has been shown that a periodic microstructure made from a single irregular 

hexagonal grain shape has marked viscosity anisotropy during diffusion creep. The 

anisotropy is manifest in two orthogonal strong directions, and two orthogonal weak 

directions at 45° to the strong directions. In the absence of grain boundary viscosity, 

the weak directions have zero strength. Coaxial stretching parallel to a weak direction 

thus requires, for an instant, no stress. Simple shear with a shear plane at 45° to a 

weak direction (i.e. shear plane parallel to a strong direction) also requires no stress. 
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This behaviour arises because grain boundary sliding is always one aspect of diffusion 

creep, and there is always an orientation of strain in which sliding alone is a sufficient 

response, without dissolution and precipitation of material at grain boundaries. If 

finite shear strength is assigned to grain boundaries, anisotropy remains but now the 

polycrystal has non-zero viscosity in all directions. Both viscosity eigenvalues 

increase as the grain boundary viscosity ζ increases if other quantities are fixed.  

 When grains are elongate the periodic microstructure discussed here is 

anisotropic, with or without grain boundary shear stresses. It is to be expected then 

that irregular aggregates of shaped grains will be anisotropic, and this will have 

implications for the way in which strain partitions and perhaps localises during 

diffusion creep and superplasticity. 

9.4 Relationship to previous work 

 Lifshitz [9] pointed out that diffusion creep is likely to give rise to anisotropic 

viscosity, with the emphasis on volume diffusion creep but a preliminary treatment of 

grain boundary diffusion creep in his Appendix 3. He made no explicit mention of 

grain rotation and so it remains unclear how this would affect the predictions. 

Greenwood [23] provided a precise expression for the anisotropic response of an 

orthorhombic grain during Nabarro-Herring creep, but under special stress 

orientations. Greenwood [10] provided expressions for the viscosity tensor under 

more general stress orientations. In that work it was assumed that creep strength 

varies smoothly as the stress axes are rotated, so that there are no maxima or minima 

at intermediate positions. This contribution, however, shows that there may be marked 

strength minima at 45 degrees to strength maxima, so it would be interesting to see 

how the different approaches could be reconciled. Again, the effects of grain rotation 

must be considered. 

Separate strands of research have examined certain restricted types of 

hexagonal arrays under restricted deformation conditions. For hexagons with mirror 

symmetry in pure shear [12], the analysis here is in agreement. Specifically, the 

stretched hexagonal shapes are of the form Hex1, with the parameter λ related to the 

finite strain. In pure shear, the H11 component (from Eq. (42)) defines the stress and it 

can be shown that this is equivalent to equations 11, 13 and 14 of Kim et al. [12]. 

However the latter analysis did not encompass different strain directions, and hence 

does not address anisotropy. 
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Raj and Ashby[5] show a regular hexagonal array and draw zigzag surfaces of 

connected grain boundary segments which they identify as Mode 1 and Mode 2 

sliding surfaces (their Fig. 2.3). They then analyse movement accommodated by 

diffusion along such serrated surfaces. There appears to be a distinction made 

between the slip surfaces and apparently rigid polycrystals on each side. If, however, 

all grain boundaries are assigned the same properties, they must all be involved in 

sliding and accommodating strain and hence the picture presented by those authors 

becomes modified. Kim et al. [14] allow all grains to rotate and derive a flow stress 

for shear (their equation 19) which can be shown to agree with Eq. (39) given here 

when there is grain boundary viscosity. This work does not reveal the singular nature 

of the regular hexagonal array in the absence of grain boundary viscosity, however; 

nor does it reveal the large and disparate angular velocities and strengths to be 

expected under different loading conditions and for grain shapes slightly different 

from regular. 

In summary, this contribution shows how the grain rotations and strength 

properties of a periodic array of irregular hexagons may be predicted in a unified 

fashion. Some previous work can be seen as particular examples of this more general 

theory. The new theory highlights the importance of strength anisotropy and of the 

effect of overall grain shapes on grain rotation during diffusion creep: it provides a 

platform for understanding the behaviour of more complicated microstructures. 
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Appendix 1: transformation properties of H 

 

 It is shown here that the viscosity tensor in actual space can be related to H 

which transforms like a tensor under rotations in a "double angle" space. Let P be any 

symmetric tensor with zero trace, so it has just 2 independent parts, Pxx and Pxy. 

P
c

=
Pxx Pxy

Pxy @Pxx

h

j

i

k  

The effect of an anticlockwise rotation through θ 

O
c

θ
` a

= cosθ @sinθ
sinθ cosθ

d e
 

on P is  

P
c

. = O
c

θ
` a

P
c

O
c

θ
` aT

=
Pxx cos 2θ

` a
@Pxy sin 2θ

` a
, Pxy cos 2θ

` a
+ Pxx sin 2θ

` a

Pxy cos 2θ
` a

+ Pxx sin 2θ
` a

, Pxy sin 2θ
` a

@Pxx cos 2θ
` a

h

j

i

k  

Representing P by a 2-element vector 

p
c

=
Pxx

Pxy

f g
         (A1.1) 

it is seen that  
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p
c

. =
Pxx cos 2θ

` a
@Pxy sin 2θ

` a

Pxy cos 2θ
` a

+ Pxx sin 2θ
` a

h

j

i

k = cos2θ @sin2θ
sin2θ cos2θ

d e

p
c

= O
c

2θ
` a

p
c

 (A1.2) 

Thus, all tensors P can be represented as 2-vectors of the form p, which transform as 

if rotated by 2θ when the tensor P is rotated by θ. A linear relationship between two 

such tensors in actual space is represented by a 4th rank tensor. In double angle space 

the linear relationship can be expressed by a second rank tensor which as a 

consequence of (A1.2) transforms like an ordinary tensor under rotations but with 

double the angle: 

 H
c

. = O
c

2θ
` a

H
c

O
c

2θ
` aT

        (A1.3) 

Appendix 2: equations for zero strength directions 

Rather than give the derivation, it is sufficient to show that Dw as defined using G in 

Eq. (30) satisfies  

 

N i ADw R i = 0        (A2.1) 

 

using any value of i. Consider the vector 

 

Dw R1 = GS B2 @B3

b c
=

B2B B3

b c
B1 N B1 + B3B B1

b c
B2 N B2 + B1B B2

b c
B3 N B3

d e

S B2 @B3

b c
=

B2B B3

b c
B1 B1ASB2

b c
+ B3B B1

b c
B2 B2ASB2

b c
+ B1B B2

b c
B3 B3ASB2

b c
@

B2B B3

b c
B1 B1ASB3

b c
@ B3B B1

b c
B2 B2ASB3

b c
+ B1B B2

b c
B3 B

c 3
ASB3
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B2B B3

b c
B1 B1ASB2

b c
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B3 B3ASB2

b c
@

B2B B3

b c
B1 B1ASB3

b c
@ B3B B1

b c
B2 B2ASB3

b c
=

B2B B3

b c
B2B B1

b c
@ B2B B3

b c
B1 B3 B B1

b cd e

B1 +

+ B1B B2

b c
B3 B2B B3

b c
@ B3B B1

b c
B2 B3B B2

b c
=

 

          (A2.2) 

where terms of the form a.Sa are identically zero. Now consider the last two terms, 

and define 

 

Q = B1B B2

b c
B3 B2B B3

b c
@ B3B B1

b c
B2 B3B B2

b c
    (A2.3) 
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Noting that  

 

aB b = @bB a  

 

we have 

 

Q B B1 = B1B B2

b c
B3B B1

b c
B2B B3

b c
@ B3B B1

b c
B2B B1

b c
B3B B2

b c
= 0 

 

Hence Q is parallel to B1, so DwR1 is parallel to B1. Because N1 is orthogonal to B1 

we have proved Eq. (A2.1) for i = 1. All expressions involved are cyclic with respect 

to indices 123, so it follows that Eq. (A2.1) holds for all i. 
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Tables 

Table 1: Notation 

Symbol Meaning
B Vector defining grain boundary
C Current (flux x grain boundary width)
D Deformation rate tensor
Dw Deformation rate tensor giving rise to zero stress and zero grain rotation
f Force per unit length as function of position
F Force across boundary
H 2nd rank viscosity tensor (in "double angle" space)
L Onsager diffusion coefficient
N Unit vector perpendicular to (anticlockwise of ) B = ST
R Vector translating boundary to symmetrically equivalent position
s Distance along a boundary segment
S Skew tensor
t Sliding velocity along boundary
T Unit vector parallel to B
u Divergence velocity of two grains (precipitation rate at their contact)
V Molar volume
w Effective grain boundary width
wG Velocity of grain G measured at origin

Z =LV2w (units of m3/Pa/s)

ηηηη 4th rank viscosity tensor
λ Parameter defining a set of hexagon shapes, λ = 0 is regular
σσσσ Stress
ω Angular velocity
ζ Ratio of shear stress to sliding velocity (units of Pas/m)
 

 

Page 25 of 33

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Wheeler page 26 

Table 2: The non-dimensionalised side vectors defining four families of hexagons, 

each parameterised by λ. 
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1

2 3p
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1
2
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f g
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2 3p
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1
2
fff

f g
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1
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f g
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f g
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Captions to figures 

Fig. 1. The meaning of the main geometric vectors defined here. 

 

Fig. 2. Four different types of perturbed regular hexagonal shape, c.f. Table 1. 

Vertical height of regular hexagon is 1, so its sides are length 1/√3. The last figure 

shows a “singular” hexagonal shape. Pairs of faces are directly opposite each other, so 

that moments as well as forces will always balance, giving rise to singular behaviour. 

 

Fig. 3. Each row relates to one of the perturbed hexagonal shapes. Column (a): the 

microstructure for a value of λ = 0.5, showing precipitation rates (numbers written 

beside each of 3 distinct sides) and angular velocity ω (rotation sense emphasised by 

curved arrow) for D = [-1/2 0; 0 1/2], stretching parallel to y axis. (b): angular 

velocity as a function of λ for the same D. Cross marks value used in (a). (c): the 

microstructure for a value of λ = 0.5, showing kinematic quantities as in (a) but for D 

= [0 1/2; 0 0], top-to-right simple shear parallel to x axis. (d): angular velocity as a 

function of λ for the same D. Cross marks value used in (c). 

 

Fig. 4. (a) Eigenvalues of the viscosity tensor as a function of ζ∗ for a particular 

shape, Hex1 with λ = 2. The grain shape is shown bottom right. (b) Nested polar plots 

showing the viscosity as a function of the orientation of the maximum strain rate axis, 

for 4 values of ζ∗. (c) As (a), for Hex2 with λ = (1/4)√3. (d) Angle of "weak" 

direction to x-axis as a function of ζ∗ for Hex2 as in (b). (e) Viscosity plots for Hex2; 

note that because Hex2 has no mirror plane, the orientation of the viscosity tensor can 

vary. 

 

Fig. 5. Examples of evolution of a periodic microstructure through time in (a) simple 

shear and (b) pure shear. Numbers indicate times. The evolution of the xx and xy 

stresses is shown in (c) with solid lines corresponding to simple shear (a) and dashed 

lines for pure shear (b). The microstructure accommodates the first increment of strain 

at zero stress, but then as it evolves the principal strain rate directions are no longer 

aligned parallel to the “weak” directions and the stresses are non-zero. Note how in 
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(b) the grain shapes evolve in such a way as to strengthen and then weaken the 

microstructure as a neighbour-switching geometry is approached. 
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