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Abstract

This paper assesses the ability of a HMM-based speech synthe-

sis systems to model the speech characteristics of various speak-

ing styles1. A discrete/continuous HMM is presented to model

the symbolic and acoustic speech characteristics of a speak-

ing style. The proposed model is used to model the average

characteristics of a speaking style that is shared among various

speakers, depending on specific situations of speech communi-

cation. The evaluation consists of an identification experiment

of 4 speaking styles based on delexicalized speech, and com-

pared to a similar experiment on natural speech. The compari-

son is discussed and reveals that discrete/continuous HMM con-

sistently models the speech characteristics of a speaking style.

Index Terms: speaking style, speech synthesis, speech

prosody, average modelling.

1. Introduction

Each speaker has his own speaking style which constitutes his

vocal signature, and a part of his identity. Nevertheless, a

speaker continuously adapt his speaking style according to spe-

cific communication situations, and to his emotional state. In

particular, each situational context determines a specific mode

of production associated with it - a genre - which is defined by

a set of conventions of form and content that are shared among

all of its productions [1]. In particular, a specific discourse

genre (DG) relates to a specific speaking style. Consequently, a

speaker adapts his speaking style to each specific situation de-

pending on the formal conventions that are associated with the

situation, his a-priori knowledge about these conventions, and

his competence to adapt his speaking style. Thus, each com-

munication act instantiates a style which is composed of a style

that depends on the speaker identity, and a conventional speak-

ing style that is conditioned by a specific situation.

In speech synthesis, methods have been proposed to model and

adapt the symbolic [2, 3] and acoustic speech characteristics of

a speaking style, with application to emotional speech synthesis

[4]. However, no study exists on the joint modelling of the sym-

bolic and acoustic characteristics of speaking style, and speak-

ing style acoustic modelling generally limits to the modelling

of emotion, with rare extensions to other sources of speaking

styles variations [5].

1This study was partially funded by “La Fondation Des Treilles”,
and supported by ANR Rhapsodie 07 Corp-030-01; reference prosody
corpus of spoken French; French National Agency of research; 2008-
2012.

This paper presents an average discrete/continuous HMM

which is applied to the speaking style modelling of various dis-

course genres in speech synthesis, and assesses whether the

model adequately captures the speech prosody characteristics

of a speaking style. Incidentally, the robustness of the HMM-

based speech synthesis is evaluated in the conditions of real-

world applications. The paper is organized as follows: the

speaking style corpus design is described in section 2; the aver-

age discrete/continuous HMM model is presented in section 3;

the evaluation is presented and discussed in sections 4 and 5.

2. Speech & Text Material

2.1. Corpus Design

For the purpose of speaking style speech synthesis, a 4-hour

multi-speakers speech database was designed. The speech

database consists of four different DG’s: catholic mass cere-

mony, political, journalistic, and sport commentary. In order

to reduce the DG intra-variability, the different DGs were re-

stricted to specific situational contexts (see list below) and to

male speakers only.
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Figure 1: Prosodic description of the speaking

styles depending on the speaker. Mean and vari-

ance of f0 and speech rate (syllable per second).

The following is a description of the four selected DG’s:

mass: Christian church sermon (pilgrimage and Sunday high-

mass sermons); single speaker monologue, no interaction.

political: New Year’s French president speech; single speaker

monologue; no interaction.

journal: radio review (press review; political, economical,



technological chronicles); almost single speaker monologue

with a few interactions with a lead journalist.

sport commentary: soccer; two speakers engaged in mono-

logues with speech overlapping during intense soccer sequences

and speech turn changes; almost no interaction.

The speech database consists of natural speech multi-media au-

dio contents with strongly variable audio quality (background

noise: crowd, audience, recording noise, and reverberation).

The speech prosody characteristics of the speech databased are

illustrated in figure 1.

3. Speaking Style Model

A speaking style model λ(style) is composed of dis-

crete/continuous context-dependent HMMs that model the sym-

bolic/acoustic speech characteristics of a speaking style.

λ
(style) =

“
λ

(style)
symbolic, λ

(style)
acoustic

”
(1)

During the training, the discrete/continuous context-dependent

HMMs are estimated separately. During the synthesis, the sym-

bolic/acoustic parameters are generated in cascade, from the

symbolic representation to the acoustic variations. Addition-

ally, a rich linguistic description of the text characteristics is

automatically extracted using a linguistic processing chain [6]

and used to refine the context-dependent HMM modelling (see

[7] and [8] for a detailed description of the enriched linguistic

contexts).

3.1. Training of the Discrete/Continuous Models

3.1.1. Discrete HMM

For each speaking style, an average context-dependent discrete

HMM λ
(style)
symbolic is estimated from the pooled speakers associ-

ated with the speaking style.

The prosodic grammar consists of a hierarchical prosodic

representation that was experimented as an alternative to ToBI

[9] for French prosody labelling [10]. The prosodic grammar

is composed of major prosodic boundaries (FM, a boundary

which is right bounded by a pause), minor prosodic boundaries

(Fm, an intermediate boundary), and prosodic prominences (P).

Let R be the number of speakers from which an average model

λ
(style)
symbolic is to be estimated. Let l = (l(1), . . . , l(R))

the total set of prosodic symbolic observations, and

l(r) = [l(r)(1), . . . , l(r)(Nr)] the prosodic symbolic se-

quence associated with speaker r, where l(r)(n) is the

prosodic label associated with the n-th syllable. Let

q = (q(1), . . . ,q(R)) the total set of linguistic contexts

observations, and q(r) = [q(r)(1), . . . ,q(r)(Nr)] the lin-

guistic context sequence associated with speaker r, where

q(r)(n) = [q
(r)
1 (n), . . . , q

(r)
L (n)]⊤ is the (Lx1) linguistic

context vector which describes the linguistic characteristics

associated with the n-th syllable.

An average context-dependent discrete HMM λ
(style)
symbolic is es-

timated from the pooled speakers observations. Firstly, an av-

erage context-dependent tree T
(style)
symbolic is derived so as to min-

imize the information entropy of the prosodic symbolic labels

l conditionally to the linguistic contexts q . Then, a context-

dependent HMM model λ
(style)
symbolic is estimated for each termi-

nal node of the context-dependent tree T
(style)
symbolic.

3.1.2. Continuous HMM

For each speaking style, an average acoustic model λ
(style)
acoustic

that includes source/filter variations, f0 variations, and state-

durations, is estimated from the pooled speakers associated

with the speaking style based on the conventional HTS system

[11].

Let R be the number of speakers from which an average

model is to be estimated. Let o = (o(1), . . . ,o(R)) the

total set of observations, and o(r) = [o(r)(1), . . . ,o(r)(Tr)]
the observation sequences associated with speaker r, where

o(r)(t) = [o
(r)
t (1), . . . , o

(r)
t (D)]⊤ is the (Dx1) observation

vector which describes the acoustical property at time t. Let

q = (q(1), . . . ,q(R)) the total set of linguistic contexts

observations, and q(r) = [q(r)(1), . . . ,q(r)(Tr)] the lin-

guistic context sequence associated with speaker r, where

q(r)(t) = [q
(r)
1 (t), . . . , q

(r)
L (t)]⊤ is the (Lx1) linguistic context

vector which describes the linguistic properties at time t.

An average context-dependent HMM acoustic model λ
(style)
symbolic

is estimated from the pooled speakers observations. Firstly, a

context-dependent HMM model is estimated for each of the

linguistic contexts. Then, an average context-dependent tree

T
(style)
acoustic is derived so as to minimize the description length of

the context-dependent HMM model λ
(style)
acoustic.

The acoustic module models simultaneously source/filter varia-

tions, f0 variations, and the temporal structure associated with

a speaking style. Speakers f0 were normalized with respect

to the speaking style prior to modelling. Source, filter, and

normalized f0 observation vectors and their dynamic vectors

are used to estimate context-dependent HMM models λ
(style)
acoustic.

Context-dependent HMMs are clustered into acoustically sim-

ilar models using decision-tree-based context-clustering (ML-

MDL [11]). Multi-Space probability Distributions (MSD) [12]

are used to model continuous/discrete parameter f0 sequence

to manage voiced/unvoiced regions properly. Each context-

dependent HMM is modelled with a state duration probability

density functions (PDFs) to account for the temporal structure

of speech [13]. Finally, speech dynamic is modelled according

to the trajectory model and the global variance (GV) that model

local and global speech variations over time [14].

3.2. Generation of the Speech Parameters

During the synthesis, the text is first converted into a con-

catenated sequence of context-dependent HMM models

λ
(style)
symbolic associated with the linguistic context sequence

q = [q1, . . . ,qN ], where qn = [q1, . . . , qL]⊤ denotes

the (Lx1) linguistic context vector associated with the n-th

phoneme.

Firstly, the prosodic symbolic sequence bl is determined so as

to maximize the likelihood of the prosodic symbolic sequence l

conditionally to the linguistic context sequence q and the model

λ
(style)
symbolic.

bl = argmax
l

p(l|q, λ
(style)
symbolic) (2)

Then, the linguistic context sequence q augmented with the

prosodic symbolic sequence bl is converted into a concatenated



sequence of context-dependent models λ
(style)
acoustic.

The acoustic sequence bo is inferred so as to maximize the like-

lihood of the acoustic sequence o conditionally to the model

λ
(style)
acoustic.

bo = argmax
o

max
q

p(o|q, λ
(style)
acoustic)p(q|λ

(style)
acoustic) (3)

First, the state sequence bq is determined so as to maximize

the likelihood of the state sequence conditionally to the model

λ
(style)
acoustic. Then, the observation sequence bc is determined so

as to maximize the likelihood of the observation sequence con-

ditionally to the state sequence bq, the model λ
(style)
acoustic under

dynamic constraint o = Wc.

Rbqbc = rbq (4)

where:

Rbq = W⊤Σ−1
bq

W. (5)

rbq = W⊤Σ−1
bq

µbq. (6)

and Σbq and µbq are respectively the covariance matrix and the

mean vector for the state sequence bq.

⇓

sentence Longtemps , je me suis couché de bonne heure .

⇓⇓
prosodic

structure

FM * *

Fm * * *

P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##

Table 4.2: Illustration of the text-to-prosodic-structure conversion.
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Figure 2: Generation of discrete/continuous speech pa-

rameters for the sentence: “Longtemps, je me suis couché

de bonne heure” (“For a long time I used to go to bed

early”).

4. Evaluation

The proposed model has been evaluated based on a speaking

style identification perceptual experiment, and compared to a

speaking style identification experiment with natural speech

[15]. For the purpose of such a comparison, it was necessary

to provide a single evaluation scheme for both experiments. In

particular, it was not possible to control the linguistic content of

natural speech utterances which provides evident cues for DG’s

identification (a single keyword would be sufficient to identify a

DG). Thus, such a comparison required to remove lexical access

and to focus on the prosodic dimension only.

4.1. Experimental Setup

40 speech utterances (10 per DG) were selected in the speak-

ing style corpus and removed from the training set. Lexical ac-

cess was removed using a band-pass filter that insured that the

lowest frequency of the fundamental frequency and the highest

frequency of its first harmonic was included.

4.2. Subjective Evaluation

The evaluation consists of a multiple choice identification task

from speech prosody perception. The evaluation was conducted

according to crowd-sourcing technique using social networks.

50 subjects (including 25 native French speakers, 15 non-native

French speakers, 10 non-French speakers; 34 expert and 16

naı̈ve listeners) participated in this experiment. Participants

were given a brief description of the different speaking styles.

Then, they were asked to associate a speaking style to each of

the speech utterances. For this purpose, participants were given

three options:

total confidence: select only one speaking style when certain

of the choice;

confusion: select two different speaking styles when two speak-

ing styles are possible;

total indecision: select ”indecision” when completely unsure.

Subjects were asked to use this possibility only as a very last

resort.

Additional informations were gleaned from the participants:

speech expertise (expert, naı̈ve), language (native French

speaker, non-native French speaker, non-French speaker), age,

and listening condition (headphones or not). Expert participants

were actually coming from various domains (speech and audio

technologies, linguistics, musicians). Participants were encour-

aged to use headphones.

5. Results & Discussion

Identification performance was estimated using a measure

based on Cohen’s Kappa statistic [16]. Cohen’s Kappa statis-

tic measures the proportion of agreement between two raters

with correction for random agreement. Our measure monitors

the agreement between the ratings of the participants and the

ground truth. The measure varies from -1 to 1: -1 is perfect

disagreement; 0 is chance; 1 is perfect agreement. Confusion

ratings were considered as equally possible ratings. Total inde-

cision ratings were relatively rare (3% of the total ratings) and

removed. Figure 3 presents the identification confusion matrix.

Overall score reveals fair identification performance (κ =
0.38 ± 0.04) which is comparable to that observed for iden-

tification from natural speech (κnatural = 0.45 ± 0.03). The

identification performance significantly depends on the speak-

ing style (figure 4): sport commentary is substantially identified

(κ = 0.68 ± 0.05), journal fairly identified (κ = 0.50 ± 0.06),

political discourse moderately identified (κ = 0.28±0.07), and

mass only slightly identified (κ = 0.12 ± 0.06). In compari-

son with identification from natural speech, the identification is

comparable in the case of the sport commentary and the jour-

nal speaking styles (κnatural = 0.70 ± 0.03 and κnatural =
0.54 ± 0.05, respectively). However, there is a drop in identi-

fication for the political and the mass speaking styles which is

especially significant for the mass style (κnatural = 0.34±0.05
and κnatural = 0.38 ± 0.04, respectively). This indicates that

the model somehow failed to capture the relevant cues of the

corresponding speaking style. Nevertheless, a large confusion



M
ASS

POLI
TIC

AL

JO
URNAL

SPORT

M
ASS

POLI
TIC

AL

JO
URNAL

SPORT

390

237

28

43

166

357

116

38

83

64

460

73

7

2

47

470

(a) natural speech

M
A
S
S

P
O
L
IT
IC
A
L

JO
U
R
N
A
L

S
P
O
R
T

M
A
S
S

P
O
L
IT
IC
A
L

JO
U
R
N
A
L

S
P
O
R
T

165

209

18

53

154

245

87

32

131

54

348

41

53

3

28

365

M
A
S
S

P
O
L
IT
IC
A
L

JO
U
R
N
A
L

S
P
O
R
T

S
P
O
R
T

(b) synthetic speech

Figure 3: Identification confusion matrices. Rows represent

synthesized speaking style. Columns represent identified speak-

ing style.

exists between the political and the mass speech that is inherent

to a similarity in the speaking style and the formal situation in

which the speech occurs. Additionally, the conventional HMM-

based speech synthesis system failed into modelling adequately

the breathyness and the creakyness that is specific to the politi-

cal speaking style, especially within unvoiced segments.

ANOVA analysis was conducted to assess whether the iden-

tification performance depends on the language of the partic-

ipants. Analysis reveals a significant effect of the language

(F(2, 59) = 15, p < 0.001) (F(48,2)=5.9, p-value=0.005), and

confirms results obtained for natural speech. This confirms evi-

dence that there exists variations of a speaking style depending

on the language and/or cultural background.

Finally, an informal evaluation of the quality of the synthesized

speech suggests that the speaking style modelling is robust to

the large variety of audio quality.

6. Conclusion

In this study, the ability and the robustness of a HMM-based

speech synthesis system to model the speech characteristics of

various speaking styles were assessed. A discrete/continuous

HMM was presented to model the symbolic and acoustic speech

characteristics of a speaking style, and used to model the aver-

age characteristics of a speaking style that is shared among var-

ious speakers, depending on specific situations of speech com-

munication. The evaluation consisted of an identification ex-

periment of 4 speaking styles based on delexicalized speech,

and compared with a similar experiment on natural speech. The

evaluation showed that the discrete/continuous HMM consis-
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Figure 4: Mean identification scores and 95% confidence inter-

val obtained for natural and synthesized speech.

tently models the speech characteristics of a speaking style, and

is robust to the differences in audio quality. This proves evi-

dence that the discrete/continuous HMM speech synthesis sys-

tem successfully models the speech characteristics of a speak-

ing style in the conditions of real-world applications.
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