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ABSTRACT signals with anisotropic blocks. In these works, and foHow

erg [6], the denoiser hyperparameters (threshold, blook)si
are optimized by minimizing the Stein Unbiased Risk Esti-
mator (SURE). Block thresholding with fixed block size has

block-sparsity is dyadically organized in a tree. The adapt been extendetd to decfo_n\:olutlim in [9]. Mglreoll/er, the{e has
tion of the sparsity structure is obtained by finding the besPeen a recent wave of Interest In convex block-sparsity reg-

recursive dyadic partition, whose terminal nodes (leases) ularlzazt;)nlln thevjtzilltlstu;rz]altsnd nrwrz]icrhlne Igarnr:nig:]htar?nm
the blocks, that minimizes a data-driven estimator of thle. ri (e.9. [22, 1]), as well as € compressed sensing co u-

Our main contributions are (i) analytical expression of then'ty; e.g. [2]. In all these works, the block-sparsity sture

risk; (ii) a novel estimator of the risk; (iii) a fast algdrin is supposedly known in advance.
that yields the best partition. Numerical results on wavele pyadic partitioning The CART methodology of tree-
domain denoising of synthetic and natural images illustratstructured adaptive non-parametric regression has been

This paper proposes a novel method to adapt the bloc
sparsity structure to the observed noisy data. Towards th
goal, the Stein risk estimator framework is exploited, drel t

the improvement brought by our adaptive approach. widely used in statistical data analysis since its inceptio
nearly two decades ago [3]. It is built around ideas of re-
1. INTRODUCTION cursive partitioning. There are several variants of CARF, d

In the last decade or so, sparsity has emerged as one pénding on the procedure used to construct the partition. In
the attractive theoretical and practical signal propsriiea  this work, we are interested in optimal (non-greedy) dyadic
wide range of signal processing applications. The intenest recursive partitioning. That is, starting from the trivizr-
sparsity has arisen owing to the new sampling theoow-  tition containing the whole domain, partitions are built by
pressed sensingvhich revitalizes the vision of to the well- splitting it into two pieces vertically and horizontally.h&
known Shannon sampling theory. same splitting is applied recursively to each ancestorepiec

In multiscale decompositions of natural images, it haggenerating the children partitions. A recursive dyadidipar
been widely observed that large detail coefficients are ndion is any partition reachable by successive application o
only sparse but also tend to cluster irtlmcks(or groups) these rules. While the original CART can split rectangles in
along the singularities. It can then be safely anticipabed t all proportions, the dyadic CART we develop here, can split
exploiting this typical structure of the sparsity as a priorrectangles only in half (i.e. squares). This allows a more
would be beneficial in many subsequent processing steps, fimited range of possible partitions, which makes it possi-
instance in restoration and inverse problems. ble to find an optimal partition in linear time. There are
. L _ close connections between the dyadic CART and best-basis
Block- sparsity and estimation A now classical approach q5rithms in a tree-structured dictionary [12, 10]. Thisre
to denoising [14, 13] operates by individual threshold-y s, 5 mathematical connection between the areas, where the

ing/shrinkage of the coefficients in a suitable basis (€.Gy,in results driving them assert that, given an additive cos
wavelets), where the signal/image is sparse. Howevemthe I function, which assigns numerical values to %teee and

dividual thresholding achieves a degree of trade-off betwe its subtrees, the optimal subtree minimizing the cost func-

variance and bias contribution to the quadratic risk which; o is obtained by dynamic programming/bottom-up prun-

is not optimal. One way to increase estimation precision ig,g ot the complete tree. This link has been capitalized on
by exploiting information about neighboring coefficienits. ;. [16] for denoising, for non-linear approximation of geo-
other words, the coefficients could be thresholded in blocks, otrical images in both the spatial [11, 19], and wavelet do-

rather thap individually. I_t has_been showq that sugh @ PrOnains [15, 20, 17]. Adaptivity offered by the segmentation
ced_ure, W_'th an appropriate fixed block size, achleve_s thﬁdaptation is crucial to improve over classical non-adapti
optimal minimax convergence rates over several funCt'onaépproximation (e.g. wavelets)

spaces (e.g. Besov) [4, 5, 8]. From a practical point view, th

results of [8, 7, 21] clearly show the notable improvementL earning the block structure. In a recent work, [18] pro-
brought by block thresholding. In [7] the authors propose gose to learn the sparsity structure and the sparsifying dic
multi-channel block denoising algorithm in the wavelet do-tionary from a set of exemplars. However, the solution to
main. [21] advocate the use of block denoising for audiadhe marginal optimization problem with respect to the spar-



sity structure is obviously NP-hard, the authors approgch i SURE, which solely depends on the observatiorts gen-
without any guarantee, using an agglomerative clustefing aeral expression reads

gorithm.
IY,9) =no? + |y —Sy)[* +20%div(S-Id)(y),  (3)

2. BLOCK NON-LINEAR ESTIMATORSAND . . . . .
RISKS wheren is the dimension ok and the divergence of a multi-

valued mapping = (fi)i : R" — RMis div(f)(x) = 5; 3 (X).
'he SURE is an unbiased estimator of the risk smce

Ew(|[S(y) —XI?) = Ew(3(¥,S)).

It is then possible to use (3), computed from a single real-
ization ofy, as a risk estimator, and to minimize it in order
to adapt the hyperparameters (e.g. threshqldblock size

A block segmentatioB corresponds to a disjoint union |b|) of the denoise6. In this paper, we propose this frame-
of the indices set work to infer both the optimal block-sparsity structure and
the threshold .

SURE on blocks Applying the SURE formula (3), the
SURE on each block € B corresponding to the estimators

A block-based thresholding estimatorofs defined ax= Yo Pa([l¥ol))yo defined in (1)-(2) reads
Sy g(Y), Where for each block < B

We consider a simple denoising scenario, where one o
servesy = x+w € RN, with x the unknown clean signal to
recover, andv is an additive white Gaussian noise of vari-
ancecg?. The prior onx is that it exhibits a block-sparsity
pattern.

2.1 Block Estimators

{0,...,N=1}=[Jb, bnb'=0,vb#b'.
beB

359y, A,0) = [blo?+ (\bmybn2 zwb\o)l Ibll < A)

1
Vieb, x[i]= i], where 2= = i?,
@
|b| is the cardinality of the block, angh € RI?! is the vector 3%y, A,0) = |b|o®+ (\bHWbHZ Z\b\U ) L(lIybll < A)
of observations within block. In words, this estimator op- b]A2 — 202(|b| - 2)
erates by jointly thresholding all coefficients within a tio + Yal2/A2 Lyl = A) . (5)

if the block signal-to-noise ratio is below a threshold para
eterized byA > 0. Otherwise, a common attenuation rule is wherel (w) is the indicator of the ever. Let's point out
applied to the coefficients. that J' (yp,A,0) = 023 (yp/0,A /0,1), and |b|||yp|?/0? ~
In this paper, we consider two popular thresholding esti2 (|b|||x,2/0?) a non-central chi-square distribution with
mators; namely soft and James-Stein (JS) thresholdings del degrees of freedom and non-centrality parameter
fined respectively ds b|||Xs||?/ . This simple observation and some algebra yield
A 22 the following result.
poM(a) = max(o 1- ) . pisa) = max(o 1- 2)
Il Il Proposition 1. Assumes = 1. Let L= |b|, u = L||x,||* and
One can show that these estimators are the unique MAP &b = A VL. ForallL >2,
timators associated to closed-form penalties that indead p cof e 121/
mote block-sparsity. We omit this result for obvious space (3™ (¥b:A,1) = H+ Z\!i( Voko(L-1)

limitations. Note that unlike soft thresholding, which heas (L5 ok
constant bias, the JS rule entails less bias that decreases a ( Ny — R a2~ (L+ 2P a2+ L(AE +2)PL+2k) (6)
the block energy increases.
. . /. k 204 (A2—
22 Est|matorsr|§(s ]EW(JJS(yb,)\,l)) _ u+k2N e H Zk(!H/Z) ()\b(‘ll_JrLz(k)\Bz 2))
€
SURE The quadratic risk associated to a denoiSeis mzpzf(L+2k)PL+2k+2+2Lm2k) 7

Ew(||S(y) — X||?) where the expectation is taken with respect

to the noise distribution. The best denoiser {jnsense) \here B = Pr(x2 > A2) = F(rV(CZ/gﬁ)

should be the one that minimizes this risk. However, with-

out access to an oracle that provides some informatian on These expressions of the risk only dependgand notxp.

minimizing this risk seems out of reach. : . . :
Under weak differentiability ofy € R" — S(y), Stein A new risk estimator Although the SURE (with a single
lemma allows to get an unbiased estimator of the risk, coinefuﬁ‘"’ll'z"jltlon ofy) is an unbiased estimator of the risk, it may
exhibit a non-negligible variance. It can be shown that this
10ther thresholding rules could be considered as well, wighgroviso is the case for the SURE associated with the block Soft and

that the mappin@— p, (a) be weakly differentiable for the Stein lemmato JS estimators. Consequently, inferring the optimal pantit
apply, see hereafter. based on the SURE turns to be quite inaccurate. In order to




circumvent this difficulty, we propose to use Monte-Carlo in byo | sy

tegration from expressions (4)-(5)ndeed, a potentially bi- ’ ’ b

ased, but with a lower variance, B§,(3'S(y, A, 0)) is given b b 11
2,2 2,3

by J

b2,12
b2,14 b2,15

— 1 K
Py, 0) = ;(|b|oz+<a ~2/b|o?)I(z < A?|b)) bis

| A?[bl(A%[b| ~20%(|b| ~2)),
Z
where z are realizations of a random variable (RV)
02)(‘%‘([1), ft = |b|max0, ||lyp||?/c? — 1). A similar formula
to (8) can be written for block soft thresholding (4). Thesbia 3.2 Fast Block Partitioning
in this risk estimator originates from the estimafoof the
non-centrality parameter. In our experimer{s= 100 was
sufficient to get good results. In order to alleviate any ambi
guity in the sequel, the terminology SURE will be avoided,
and our risk estimator will be dubbed Stein risk.
Now, given some block structuR the overall associated

@>A%b) . (@

Figure 1. Example of a quadtree B (right) and the associated
dyadic partition (left).

The goal is to minimize the Stein risk (8) of a block esti-
mator with respect to the dyadic partition ahd

min 5 J (Y, A, 0).
TA peZiT)

risk is hence As A is a scalar, its value can be optimized by any
o <7 dichotomic-like (e.g. Golden Section) search algorithrarov
By,A,0)=§ J(yp,A,0), 9 ; - o :
(Y ) bgB ¥ ) © the cost function marginally minimized with respectTo
R Given that this is an additive cost function over the leaves
whereJ is eitherJS°" or 39S, of T, minimizing it with respect td (or equivalentlyB) for

fixed A is achieved using the CART dynamic programming
3. BLOCK SPARSITY BY DYADIC PARTITIONING algorithm detailed next.

1 * % Ni 1

L_ets recall that we Sgek)‘ .’B ) the global minimizer Step 1 Computetherisk on each block. For each possible

of min, gEw(||Ss.x (Y) — X||9). Without knowledge ok, this : N o
B ; o . dyadic blockbj i, computel;j = (Y. ;, A, 0).

solution is approached by the global minimizer of the StelnSt 2 Best block sel7 tion. A boit 1 .
risk (8). This leads to an intractable combinatorial prable et ft}'?c N e;: |tor:. : om-_uli SeClirS'V% pru(;]-
if one does not assume additional structure on the set of al- Iong? jcomp cletree. roreagh=J—L....,0an
lowable partitions. To obtain a fast algorithm, inspired by = <% 3
the CART methodology, we assume that the blocks are or- Jji =min(J;;,J7;) where Jj;= Z Jjs1.4i4n-
ganized in a recursive hierarchical structure, obtainedrby =

~ . n=0
iterative dyadic subdivision of the blocks. If Jj; = Jj,, then the nodgj, i) is declared as a leaf

of the treeT. Otherwise(j,i) is an interior node.

3.1 QuadtreePartitioning The complexity of this algorithm is dominated by that of

For simplicity, we detail in this section the 2D case of €0MPuting (8) on all blocks which cos&(KN) operations,
quadtree subdivisions, which is useful for image procegsin@nd the number of comparisons in the dyadic CART which

applications. Note however that our approach is general arld O(N).
extends to any dimension and can handle arbitrary subdivi-
sion schemes (possibly non regular and non-stationary). In

the following, the sef0,...,N —1} indexes-ZD pixels, and Synthetic images Fig. 2(a) shows an example of a dyadic
the blocksb corresponds to squares grouping a subset of thg, rition obtained on a subband of the wavelet coefficiehts o
pixels. " ) : _ two noisy geometrical images, here the Shepp-Logan phan-
_ Ablock partitionB is associated to a quadtr@ewhich 5 and’a triangle, with PSNR=20dB. The displayed parti-
is alsubtree of the whole quadtr.e.e containing all possiblg s are those minimizing the exact risk (knowingand
partitions. The bIQCkS of the partition are the IeaﬁﬁT). our Stein risk estimator, with each of the block threshaidin
of T. The latter lists a set of blocks;; indexed by thje|r rules Soft and JS. One can clearly see that the optimal block
depth 0< j < J =l0gy(N)/2, and their position & i <4%. g4 \cture provided by our estimator is very close to thelerac
Fig. 1shows an example of a quadtibdright) and the as- o - goth partitions are adaptively refined to match the ge-
sociated dyadic partition (left), \J(vh_ere each bldk corre- o meiry of the singularities as expected. Fig. 2(b) depluss t
SPO”‘?'S toasquare regr_oupmg4 pixels. The blockare de- g5t and estimated Stein risks (dB) at the optimal pantitio
fined iteratively by splittingp; ; into four regular_sub—squares for each thresholding rule as a functionbfa. The curves
(bj11,4i,0j41,4i+1,0j+1,41+2,bj11,41+3) Of equal size. are indeed unimodal and have a similar behavior. In spite of

20r alternatively (6)-(7) by generating realizatioksf a Poisson RV of ~ th€ anticipated but slight bias in the estimated Stein trsé,
intensity 1. values ofA optimizing both risks coincide.

4. NUMERICAL EXAMPLES
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Figure 2: (a)-(c): Dyadic partitions (QT) of a wavelet subband of
two images by minimizing the exact risk and our Stein risknest
tor. (b)-(d): Exact and Stein risks (dB) Ws/o. The shaded area
corresponds to the confidence interval as the exact risktisiated
with the empirical mean over 100 realizations.

Tl wavelet-domain denoising Fig. 3 depicts some denois-
ing results in the translation-invariant (T1) wavelet doama
For block-thresholding with a fixed block size, the value of
A was optimized by minimizing the SURE [6]. As the JS rule
entails less denoising bias, it is systematically bettentine
Soft rule. Compared to fixed-block denoising, adapting the
block sparsity structure enhances notably the denoising pe
formance both visually and quantitatively.

5. CONCLUSION
We have proposed a framework to adapt the block-
sparsity structure from noisy data. Its potential appiarat
has been illustrated on a denoising. The extension of this ap
proach to inverse problems as well as some open theoretical
guestions concerning the properties of our risk estimatr a
currently under investigation.
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