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ABSTRACT

This paper proposes a novel method to adapt the block-
sparsity structure to the observed noisy data. Towards this
goal, the Stein risk estimator framework is exploited, and the
block-sparsity is dyadically organized in a tree. The adapta-
tion of the sparsity structure is obtained by finding the best
recursive dyadic partition, whose terminal nodes (leaves)are
the blocks, that minimizes a data-driven estimator of the risk.
Our main contributions are (i) analytical expression of the
risk; (ii) a novel estimator of the risk; (iii) a fast algorithm
that yields the best partition. Numerical results on wavelet-
domain denoising of synthetic and natural images illustrate
the improvement brought by our adaptive approach.

1. INTRODUCTION

In the last decade or so, sparsity has emerged as one of
the attractive theoretical and practical signal properties in a
wide range of signal processing applications. The interestin
sparsity has arisen owing to the new sampling theory,com-
pressed sensing, which revitalizes the vision of to the well-
known Shannon sampling theory.

In multiscale decompositions of natural images, it has
been widely observed that large detail coefficients are not
only sparse but also tend to cluster intoblocks(or groups)
along the singularities. It can then be safely anticipated that
exploiting this typical structure of the sparsity as a prior
would be beneficial in many subsequent processing steps, for
instance in restoration and inverse problems.

Block- sparsity and estimation A now classical approach
to denoising [14, 13] operates by individual threshold-
ing/shrinkage of the coefficients in a suitable basis (e.g.
wavelets), where the signal/image is sparse. However, the in-
dividual thresholding achieves a degree of trade-off between
variance and bias contribution to the quadratic risk which
is not optimal. One way to increase estimation precision is
by exploiting information about neighboring coefficients.In
other words, the coefficients could be thresholded in blocks
rather than individually. It has been shown that such a pro-
cedure, with an appropriate fixed block size, achieves the
optimal minimax convergence rates over several functional
spaces (e.g. Besov) [4, 5, 8]. From a practical point view, the
results of [8, 7, 21] clearly show the notable improvement
brought by block thresholding. In [7] the authors propose a
multi-channel block denoising algorithm in the wavelet do-
main. [21] advocate the use of block denoising for audio

signals with anisotropic blocks. In these works, and follow-
ing [6], the denoiser hyperparameters (threshold, block size)
are optimized by minimizing the Stein Unbiased Risk Esti-
mator (SURE). Block thresholding with fixed block size has
been extended to deconvolution in [9]. Moreover, there has
been a recent wave of interest in convex block-sparsity reg-
ularization in the statistical and machine learning literature
(e.g. [22, 1]), as well as in the compressed sensing commu-
nity; e.g. [2]. In all these works, the block-sparsity structure
is supposedly known in advance.

Dyadic partitioning The CART methodology of tree-
structured adaptive non-parametric regression has been
widely used in statistical data analysis since its inception
nearly two decades ago [3]. It is built around ideas of re-
cursive partitioning. There are several variants of CART, de-
pending on the procedure used to construct the partition. In
this work, we are interested in optimal (non-greedy) dyadic
recursive partitioning. That is, starting from the trivialpar-
tition containing the whole domain, partitions are built by
splitting it into two pieces vertically and horizontally. The
same splitting is applied recursively to each ancestor piece,
generating the children partitions. A recursive dyadic parti-
tion is any partition reachable by successive application of
these rules. While the original CART can split rectangles in
all proportions, the dyadic CART we develop here, can split
rectangles only in half (i.e. squares). This allows a more
limited range of possible partitions, which makes it possi-
ble to find an optimal partition in linear time. There are
close connections between the dyadic CART and best-basis
algorithms in a tree-structured dictionary [12, 10]. Thereis
also a mathematical connection between the areas, where the
main results driving them assert that, given an additive cost
function, which assigns numerical values to a 2d-tree and
its subtrees, the optimal subtree minimizing the cost func-
tion is obtained by dynamic programming/bottom-up prun-
ing of the complete tree. This link has been capitalized on
in [16] for denoising, for non-linear approximation of geo-
metrical images in both the spatial [11, 19], and wavelet do-
mains [15, 20, 17]. Adaptivity offered by the segmentation
adaptation is crucial to improve over classical non-adaptive
approximation (e.g. wavelets).

Learning the block structure. In a recent work, [18] pro-
pose to learn the sparsity structure and the sparsifying dic-
tionary from a set of exemplars. However, the solution to
the marginal optimization problem with respect to the spar-



sity structure is obviously NP-hard, the authors approach it,
without any guarantee, using an agglomerative clustering al-
gorithm.

2. BLOCK NON-LINEAR ESTIMATORS AND
RISKS

We consider a simple denoising scenario, where one ob-
servesy = x+ w∈ R

N, with x the unknown clean signal to
recover, andw is an additive white Gaussian noise of vari-
anceσ2. The prior onx is that it exhibits a block-sparsity
pattern.

2.1 Block Estimators

A block segmentationB corresponds to a disjoint union
of the indices set

{0, . . . ,N−1}=
⋃

b∈B

b, b∩b′ = /0, ∀b 6= b′ .

A block-based thresholding estimator ofx is defined aŝx =
Sλ ,B(y), where for each blockb∈ B

∀ i ∈ b, x̂[i] = ρλ (||yb||)y[i], where ||yb||2 =
1
|b| ∑

i∈b

|y[i]|2 ,

(1)
|b| is the cardinality of the block, andyb ∈ R

|b| is the vector
of observations within blockb. In words, this estimator op-
erates by jointly thresholding all coefficients within a block
if the block signal-to-noise ratio is below a threshold param-
eterized byλ > 0. Otherwise, a common attenuation rule is
applied to the coefficients.

In this paper, we consider two popular thresholding esti-
mators; namely soft and James-Stein (JS) thresholdings de-
fined respectively as1

ρSoft
λ (a) = max

(
0,1− λ

||a||

)
, ρJS

λ (a) = max

(
0,1− λ 2

||a||2
)

.

(2)
One can show that these estimators are the unique MAP es-
timators associated to closed-form penalties that indeed pro-
mote block-sparsity. We omit this result for obvious space
limitations. Note that unlike soft thresholding, which hasa
constant bias, the JS rule entails less bias that decreases as
the block energy increases.

2.2 Estimators risks

SURE The quadratic risk associated to a denoiserS is
Ew(||S(y)−x||2) where the expectation is taken with respect
to the noise distribution. The best denoiser (inℓ2 sense)
should be the one that minimizes this risk. However, with-
out access to an oracle that provides some information onx,
minimizing this risk seems out of reach.

Under weak differentiability ofy ∈ R
n 7→ S(y), Stein

lemma allows to get an unbiased estimator of the risk, coined

1Other thresholding rules could be considered as well, with the proviso
that the mappinga 7→ ρλ (a) be weakly differentiable for the Stein lemma to
apply, see hereafter.

SURE, which solely depends on the observationy. Its gen-
eral expression reads

J(y,S) = nσ2 + ||y−S(y)||2 +2σ2div(S− Id)(y) , (3)

wheren is the dimension ofx and the divergence of a multi-
valued mappingf = ( fi)i : R

n →R
n is div( f )(x) = ∑i

∂ fi
∂xi

(x).
The SURE is an unbiased estimator of the risk since

Ew(||S(y)−x||2) = Ew(J(y,S)).

It is then possible to use (3), computed from a single real-
ization ofy, as a risk estimator, and to minimize it in order
to adapt the hyperparameters (e.g. thresholdλ , block size
|b|) of the denoiserS. In this paper, we propose this frame-
work to infer both the optimal block-sparsity structure and
the thresholdλ .

SURE on blocks Applying the SURE formula (3), the
SURE on each blockb ∈ B corresponding to the estimators
yb 7→ ρλ (||yb||)yb defined in (1)-(2) reads

JSoft(yb,λ ,σ) = |b|σ2 +
(
|b|||yb||2−2|b|σ2

)
I(||yb|| < λ )

+

(
|b|λ 2−2σ2(|b|−1)

λ
||yb||

)
I(||yb||> λ ) (4)

JJS(yb,λ ,σ) = |b|σ2 +
(
|b|||yb||2−2|b|σ2

)
I(||yb|| < λ )

+
|b|λ 2−2σ2(|b|−2)

||yb||2/λ 2 I(||yb|| > λ ) , (5)

whereI(ω) is the indicator of the eventω . Let’s point out
that J·(yb,λ ,σ) = σ2J·(yb/σ ,λ/σ ,1), and |b|||yb||2/σ2 ∼
χ2
|b|(|b|||xb||2/σ2) a non-central chi-square distribution with

|b| degrees of freedom and non-centrality parameter
|b|||xb||2/σ2. This simple observation and some algebra yield
the following result.

Proposition 1. Assumeσ = 1. Let L= |b|, µ = L||xb||2 and
λb = λ

√
L. For all L > 2,

Ew(JSoft(yb,λ ,1)) = µ + ∑
k∈N

e−µ/2(µ/2)k

k!

(
−
√

2λb(L−1)

Γ
(

L−1
2 +k

)

Γ
(

L
2 +k

) PL+2k−2− (L+2k)PL+2k+2 +L(λ2
b +2)PL+2k

)
(6)

Ew(JJS(yb,λ ,1)) = µ + ∑
k∈N

e−µ/2(µ/2)k

k!

(
λ2

b (4−L(λ2
b−2))

L+2k−2

PL+2k−2− (L+2k)PL+2k+2 +2LPL+2k

)
(7)

where Pν = Pr(χ2
ν > λ 2

b ) =
Γ(ν/2,λ 2

b )

Γ(ν/2) .

These expressions of the risk only depend onµ , and notxb.

A new risk estimator Although the SURE (with a single
realization ofy) is an unbiased estimator of the risk, it may
exhibit a non-negligible variance. It can be shown that this
is the case for the SURE associated with the block Soft and
JS estimators. Consequently, inferring the optimal partition
based on the SURE turns to be quite inaccurate. In order to



circumvent this difficulty, we propose to use Monte-Carlo in-
tegration from expressions (4)-(5)2. Indeed, a potentially bi-
ased, but with a lower variance, ofEw(JJS(yb,λ ,σ)) is given
by

ĴJS(yb,λ ,σ) =
1
K

K

∑
i=1

(
|b|σ2 +(zi −2|b|σ2)I(zi < λ 2|b|)

+
λ 2|b|(λ 2|b|−2σ2(|b|−2))

zi
I(zi > λ 2|b|)

)
, (8)

where zi are realizations of a random variable (RV)
σ2χ2

|b|(µ̂), µ̂ = |b|max(0, ||yb||2/σ2−1). A similar formula
to (8) can be written for block soft thresholding (4). The bias
in this risk estimator originates from the estimatorµ̂ of the
non-centrality parameter. In our experiments,K = 100 was
sufficient to get good results. In order to alleviate any ambi-
guity in the sequel, the terminology SURE will be avoided,
and our risk estimator will be dubbed Stein risk.

Now, given some block structureB, the overall associated
risk is hence

Ĵ·B(y,λ ,σ) = ∑
b∈B

Ĵ·(yb,λ ,σ) , (9)

whereĴ· is eitherĴSoft or ĴJS.

3. BLOCK SPARSITY BY DYADIC PARTITIONING
Let’s recall that we seek(λ ⋆,B⋆) the global minimizer

of minλ ,BEw(||SB,λ (y)− x||2). Without knowledge ofx, this
solution is approached by the global minimizer of the Stein
risk (8). This leads to an intractable combinatorial problem
if one does not assume additional structure on the set of al-
lowable partitions. To obtain a fast algorithm, inspired by
the CART methodology, we assume that the blocks are or-
ganized in a recursive hierarchical structure, obtained byan
iterative dyadic subdivision of the blocks.

3.1 Quadtree Partitioning

For simplicity, we detail in this section the 2D case of
quadtree subdivisions, which is useful for image processing
applications. Note however that our approach is general and
extends to any dimension and can handle arbitrary subdivi-
sion schemes (possibly non regular and non-stationary). In
the following, the set{0, . . . ,N−1} indexes 2D pixels, and
the blocksb corresponds to squares grouping a subset of the
pixels.

A block partitionB is associated to a quadtreeT, which
is a subtree of the whole quadtree containing all possible
partitions. The blocks of the partition are the leavesL (T)
of T. The latter lists a set of blocksb j ,i indexed by their
depth 06 j 6 J = log2(N)/2, and their position 06 i < 4 j .
Fig. 1shows an example of a quadtreeT (right) and the as-
sociated dyadic partition (left), where each blockb j ,i corre-
sponds to a square regroupingN/4 j pixels. The block are de-
fined iteratively by splittingb j ,i into four regular sub-squares
(b j+1,4i,b j+1,4i+1,b j+1,4i+2,b j+1,4i+3) of equal size.

2Or alternatively (6)-(7) by generating realizationsk of a Poisson RV of
intensity µ̂.

Figure 1: Example of a quadtree B (right) and the associated
dyadic partition (left).

3.2 Fast Block Partitioning

The goal is to minimize the Stein risk (8) of a block esti-
mator with respect to the dyadic partition andλ

min
T,λ

∑
b∈L (T)

Ĵ·(yb,λ ,σ).

As λ is a scalar, its value can be optimized by any
dichotomic-like (e.g. Golden Section) search algorithm over
the cost function marginally minimized with respect toT.
Given that this is an additive cost function over the leaves
of T, minimizing it with respect toT (or equivalentlyB) for
fixed λ is achieved using the CART dynamic programming
algorithm detailed next.

Step 1 Compute the risk on each block. For each possible
dyadic blockb j ,i , computeJj ,i = Ĵ(yb j,i ,λ ,σ).

Step 2 Best blocks selection. A bottom-up recursive prun-
ing of the complete tree. For eachj = J−1. . . ,0 and
0 6 i < 4 j ,

J̃j ,i = min(Jj ,i ,J
c
j ,i) where Jc

j ,i =
3

∑
η=0

J̃j+1,4i+η .

If J̃j ,i = Jj ,i , then the node( j, i) is declared as a leaf
of the treeT. Otherwise( j, i) is an interior node.

The complexity of this algorithm is dominated by that of
computing (8) on all blocks which costsO(KN) operations,
and the number of comparisons in the dyadic CART which
is O(N).

4. NUMERICAL EXAMPLES

Synthetic images Fig. 2(a) shows an example of a dyadic
partition obtained on a subband of the wavelet coefficients of
two noisy geometrical images, here the Shepp-Logan phan-
tom and a triangle, with PSNR=20dB. The displayed parti-
tions are those minimizing the exact risk (knowingx) and
our Stein risk estimator, with each of the block thresholding
rules Soft and JS. One can clearly see that the optimal block
structure provided by our estimator is very close to the oracle
one. Both partitions are adaptively refined to match the ge-
ometry of the singularities as expected. Fig. 2(b) depicts the
exact and estimated Stein risks (dB) at the optimal partition
for each thresholding rule as a function ofλ/σ . The curves
are indeed unimodal and have a similar behavior. In spite of
the anticipated but slight bias in the estimated Stein risk,the
values ofλ optimizing both risks coincide.
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Figure 2: (a)-(c): Dyadic partitions (QT) of a wavelet subband of
two images by minimizing the exact risk and our Stein risk estima-
tor. (b)-(d): Exact and Stein risks (dB) vsλ/σ . The shaded area
corresponds to the confidence interval as the exact risk is estimated
with the empirical mean over 100 realizations.

TI wavelet-domain denoising Fig. 3 depicts some denois-
ing results in the translation-invariant (TI) wavelet domain.
For block-thresholding with a fixed block size, the value of
λ was optimized by minimizing the SURE [6]. As the JS rule
entails less denoising bias, it is systematically better than the
Soft rule. Compared to fixed-block denoising, adapting the
block sparsity structure enhances notably the denoising per-
formance both visually and quantitatively.

5. CONCLUSION
We have proposed a framework to adapt the block-

sparsity structure from noisy data. Its potential application
has been illustrated on a denoising. The extension of this ap-
proach to inverse problems as well as some open theoretical
questions concerning the properties of our risk estimator are
currently under investigation.
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[17] S. Mallat and G. Peyré. Orthogonal bandlet bases for
geometric images approximation.Commun. on Pure
and Appl. Math., 61(9):1173–1212, 2008.

[18] K. Rosenblum, L. Zelnik-Manor, and Y. Eldar. Dic-
tionary optimization for block-sparse representations.
In AAAI Fall 2010 Symposium on Manifold Learning,
2010.

[19] R. Shukla, P.L. Dragotti, M. Do, and M. Vetterli. Rate
distortion optimized tree structured compression algo-
rithms for piecewise smooth images.IEEE Trans. Im-
age Proc., 14(3), 2005.

[20] M. Wakin, J. Romberg, H. Choi, and R. Baraniuk.
Wavelet-domain approximation and compression of
piecewise smooth images.IEEE Trans. Image Proc.,
15(5):1071–1087, May 2006.

[21] G. Yu, S. Mallat, and E. Bacry. Audio denoising by
time-frequency block thresholding.IEEE Trans. on
Sig., 56(5):1830–1839, 2008.

[22] M. Yuan and Y. Lin. Model selection and estimation in
regression with grouped variables.J. of The Roy. Stat.
Soc. B, 68(1):49–67, 2006.

Noisy PSNR=10 dB

PSNR=28.17 dB

PSNR=28.94 dB

PSNR=29.56 dB

PSNR=28.32 dB

Original

PSNR=29.5 dB

PSNR=30.66 dB

(a)

PSNR=26.19 dB

Original

PSNR=26.62 dB

PSNR=27.40 dB

Noisy PSNR=10 dB

PSNR=26.4 dB

PSNR=26.76 dB

PSNR=26.24 dB

(b)

Figure 3: Zoom on denoising results with input PSNR=10dB. (a):
Synthetic image. (b): Natural image.


