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GROUP SPARSITY WITH OVERLAPPING PARTITION FUNCTIONS

This paper introduces a novel and versatile group sparsity prior for denoising and to regularize inverse problems. The sparsity is enforced through arbitrary block-localization operators, such as for instance smooth localized partition functions. The resulting blocks can have an arbitrary overlap, which is important to reduce visual artifacts thanks to the increased translation invariance of the prior. They are moreover not necessarily binary, and allow for non-integer block sizes. We develop two schemes, one primal and another primal-dual, originating from the non-smooth convex optimization realm, to efficiently solve a wide class of inverse problems regularized using this overlapping group sparsity prior. This scheme is flexible enough to handle both penalized and constrained versions of the optimization problems at hand. Numerical results on denoising and compressed sensing are reported and show the improvement brought by the overlap and the smooth partition functions with respect to classical group sparsity.

INTRODUCTION

Sparsity for denoising and inverse problems. Sparsity is a key concept used to solve various image processing problems. One of its earliest manifestations is through the seminal work by Donoho and Johnstone on thresholding operators in orthogonal bases for denoising [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF]. Sparsity in orthogonal and redundant dictionaries, such as wavelets, has then been extensively used to attack a variety of inverse problems, by solving a wisely penalized least-squares problem, where the penalty is chosen to enforce the sparsity of the coefficients. In its simplest form, the prior penalty is the ℓ 1 norm of the coefficients. We refer to [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] for an overview of the methods and theoretical results pertaining to sparse regularization of inverse problems. Non-overlapping group sparsity. It turns out that termby-term sparsity is usually not enough to obtain state-ofthe-art results both for denoising and inverse problems involving natural images. Indeed, wavelet coefficients of images are not only sparse, they typically exhibit local dependencies among neighboring coefficients. Geometric features (edges, textures) are poorly sparsified by isotropic multiscale decompositions and create such dependencies. Block thresholding operators group coefficients in non-overlapping blocks to take into account these dependencies and improve the performances both theoretically and in practice, see e.g. [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Chaux | A nonlinear stein based estimator for multichannel image denoising[END_REF][START_REF] Yu | Audio denoising by time-frequency block thresholding[END_REF][START_REF] Chesneau | Stein block thresholding for image denoising[END_REF] for denoising, and [START_REF] Chesneau | Stein block thresholding for wavelet-based image deconvolution[END_REF] for deconvolution. Convex block sparsity priors have also been used in machine learning, e.g. group-Lasso in [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF][START_REF] Bach | Consistency of the group lasso and multiple kernel learning[END_REF], as well as for in-verse problems such as compressed sensing recovery, see [START_REF] Baraniuk | Model-based compressive sensing[END_REF] among others.

Overlapping group sparsity. To further improve the denoising performance, [START_REF] Cai | Incorporating information on neighboring coefficients into wavelet estimation[END_REF] proposed to take into account the energy of overlapping blocks to threshold non-overlapping groups of coefficients. Sparse group convex priors have been studied with overlapping blocks that have a chain structure in [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF] or a tree structure in [START_REF] Jenatton | Proximal methods for sparse hierarchical dictionary learning[END_REF][START_REF] Zhao | Grouped and hierarchical model selection through composite absolute penalties[END_REF]. These constrained structures lead to interesting properties of the patterns of non-zero coefficients and lead to efficient algorithms. Generic arbitrary overlapping blocks have been recently considered in [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF] using a synthesis formulation (see [START_REF] Cai | Incorporating information on neighboring coefficients into wavelet estimation[END_REF] hereafter for more details). Similarly, [START_REF] Chen | An efficient proximal-gradient method for general structured sparse learning[END_REF] consider arbitrary blocks, but use an analysis formulation.

Convex optimization for sparse regularization. Sparse regularization requires solving challenging non-smooth convex optimization problems. The structure of variational problems with convex sparsity penalties, that are mostly variations around the ℓ 1 penalty, favors the use of proximal splitting schemes, see [START_REF] Combettes | Proximal splitting methods in signal processing, chapter Fixed-Point Algorithms for Inverse Problems in Science and Engineering[END_REF][START_REF] Beck | Gradient-Based Algorithms with Applications to Signal Recovery Problems[END_REF] for review chapters. For instance, problems involving a smooth fidelity term and an ℓ 1 penalty, the one-step forward-backward (see e.g. [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF][START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]), or its multi-step accelerated versions [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF] are excellent candidates. For overlapping block sparsity, one needs to use more sophisticated splitting schemes. Among them, we can think of the (primal) Douglas-Rachford (DR) algorithm [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Combettes | A douglas-rachford splitting approach to nonsmooth convex variational signal recovery[END_REF]), the dual scheme of the alternating direction method of multipliers [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element approximations[END_REF], or primal-dual schemes such as [START_REF] Chen | A proximal-based decomposition method for convex minimization problems[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] and others. The choice of the minimization algorithm is conditioned by the structure of the objective functional at hand. In Section 3, we shall discuss two different algorithms.

Contributions. Our work is closely related to the analysis overlapping block sparsity prior [START_REF] Chen | An efficient proximal-gradient method for general structured sparse learning[END_REF], and extend it in several crucial aspects. (i) We introduce a novel generic prior for overlapping group sparsity, which can use smoothly overlapping partition functions. (ii) We develop two efficient algorithms (one primal and one primal-dual) that are flexible enough to solve exactly, and without any smoothing of the objective functional, a wide class of linear inverse optimization problems involving our group sparsity prior. (iii) We report a numerical study to outline the importance of group sparsity with smoothly overlapping partition functions for image denoising and linear inverse problem regularization.

SMOOTHLY OVERLAPPING GROUP SPARSITY

Inverse problem regularization. This paper aims at studying regularization schemes to solve the ill-posed linear in-verse problem that consists in recovering x 0 from y = Ax 0 +w where A : R N → R P is a bounded linear operator, x 0 ∈ R N is the (unknown) signal/image to recover, and w ∈ R P is an additive noise. The classical regularization approach performs the recovery by solving

min x∈R N 1 2 ||y -Ax|| 2 + λ J(x), (1) 
where J(x) is some penalty functional that reflects the prior information about the signal to recover, and λ > 0 is a regularization parameter that should be adapted to the noise level. We assume in the sequel that J(x) is a convex lower-semicontinuous (lsc) and proper function on R N , with A(dom(J)) = / 0 and J is coercive if ker(A) = {0}. The latter conditions ensure properness of the objective and existence of a minimizer. Note by the way that other data fidelity terms could be used instead of the quadratic term 1 2 ||y -Ax|| 2 to reflect some statistical knowledge about the noise w. We restrict our attention to this fidelity for simplicity of the exposition. The penalized (1) has an equivalent constrained form, in the sense that ∃ε(λ ) > 0 such that the minimizer of ( 1) is also a solution to

min x∈R N , ||y-Ax|| ε(λ ) J(x) . (2) 
In the noiseless case, both formulations (1)-( 2) reduce to

min x∈R N , Ax=y J(x) . (3) 
Group sparsity. We consider a family of priors that measures the sparsity of the signal x using a countable collection of localization operators B i : R N → R N i for i ∈ I. In practice, B i (x) depends only on a few values x(t) of the signal. Thus, our group sparsity prior extends the classical ℓ 1 -norm sparsity by considering

J(x) = ∑ i∈I ϕ i (B i x) = Φ(Bx) (4) 
where each ϕ i : R N i → R + is a proper, lsc convex function, and we have used the shorthand notations

Bx = (B i x) i∈I ∈ Ω = ∏ i∈I R N i ∀ u = (u i ) i ∈ Ω, Φ(u) = ∑ i∈I ϕ i (u i ).
It is sufficient to require that ∀i, ϕ i is coercive and B is injective, and the objective is proper to ensure minimizer existence for (1)-(3).

Examples. A classical group sparsity regularization that have been considered in the literature uses the intra-block ℓ p norm, for p 1,

ϕ i (v) = N i -1 ∑ k=0 |v(k)| p 1/p
, with the classical modification for p = +∞. Note that one should have p > 1 to promote block sparsity. The choice p = 1 yields the classical, non-grouped, ℓ 1 sparsity.

To perform block regularization, we propose to define the (diagonal) localization operators B i through the partition functions b i (t) 0

B i x = (b i (t)x(t)) t∈S i (5)
where the support of b i (t) is

S i = {t \ b i (t) = 0} of size |S i | = N i .
To regularize all the coefficients, we require that ∑ i b i (t) > 0 for all t, and therefore ker(B) = {0}. Note that the group-Lasso regularization is obtained by specializing b i to binary functions b i (t) ∈ {0, 1}, with non-overlapping supports and i∈I S i = {0, . . . , N -1}. Analysis vs. synthesis for block sparsity. A family of overlapping block sparsity priors has been introduced in [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF] for binary blocks. It extends trivially to our setting as follows

J synth (x) = min u∈Ω,B * u=x Φ(u). ( 6 
)
where B * is the adjoint of the blocking operator B. Note that using this prior, the recovery problem (1) can be written as computing x = B * u where u solves

min u∈Ω 1 2 ||y -AB * u|| 2 + λ Φ(u).
This corresponds to a "synthesis" formulation using a redundant dictionary Φ * , as defined by [START_REF] Elad | Analysis versus synthesis in signal priors[END_REF], whereas (4) can be seen as an "analysis" formulation. Note that since the blocks overlap, the analysis prior (4) and the synthesis prior ( 6) are expected to produce different results. It is however beyond the scope of this paper to provide a detailed analysis of the performances of these two classes of methods.

MINIMIZATION ALGORITHMS

All minimization problems considered in this paper can be written as min

x∈R N Ψ(Ax) + λ Φ(Bx) (7) 
where

∀ g ∈ R P , Ψ(g) =    1 2λ ||y -g|| 2 for (1), i ||y-•|| ε (g) for (2), i y=• (g) for (3)
where i C is the indicator of the closed convex set C, so that i C (g) = 0 if g ∈ C and i C (g) = +∞ otherwise. We of course suppose that ∃x ∈ R N such that Ax ∈ dom(Ψ) and Bx ∈ dom(Φ). Sections (3.3) and (3.2) describe respectively a primal and a primal-dual approach to solve [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]. It will turn out that the primal approach is quite efficient on the practical side, but is confined to problems where A * A can be diagonalized efficiently. The primal-dual does not have such a restriction. Having said that, it is beyond the scope of this paper to delve into a detailed comparison of convergence rates of existing methods to solve [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF].

Proximity Operators

We assume that beside above assumptions on the ϕ i 's, these functions are also "almost" simple, meaning that the associated proximity operators can be computed either exactly in closed-form or approximately with a rapidly converging optimization scheme. Recall that the proximity operator (or proximal mapping) of a proper lsc and convex function ϕ i is defined as

∀ v ∈ R N i , prox γϕ i (v) = argmin w∈R N i 1 2
||v -w|| 2 + γϕ i (w), see for instance the review papers [START_REF] Combettes | Proximal splitting methods in signal processing, chapter Fixed-Point Algorithms for Inverse Problems in Science and Engineering[END_REF][START_REF] Beck | Gradient-Based Algorithms with Applications to Signal Recovery Problems[END_REF]. The proximity operator enjoys a whole calculus framework among which Moreau identity that will be useful in the sequel. Let ϕ * i be the Legendre-Fenchel conjugate of ϕ i , then

prox γϕ * i (v) = v -γ prox ϕ i /γ (v/γ) . (8) 
The ℓ 1 and ℓ 2 norms are simple functions, since

prox γ||•|| 1 (v) = max 0, 1 - γ v(k) v(k) k , prox γ||•|| 2 (v) = max 0, 1 - γ ||v|| 2 v.
For the other ℓ p norms (as well as for any 1-homogeneous function), it can be computed by invoking conjugacy arguments and Moreau Identity [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], which yields

prox γ||•|| p (v) = v -γ Proj ||•|| q 1 (v/γ)
where Proj ||•|| q 1 is the orthogonal projector on the dual ℓ q ball (i.e. 1/p + 1/q = 1). For p = ∞, this can be computed using the projection on the ℓ 1 ball (see for instance [START_REF] Fadili | Total variation projection with first order schemes[END_REF]), and for the other values, the projector on the ℓ q ball can be computed using a few Newton iterations [START_REF] Jacques | Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine[END_REF].

Owing to separability of Φ, its proximal mapping is simply the concatenation of those of the ϕ i 's,

∀ u = (u i ) i∈I ∈ Ω, prox γΦ (u) = prox γϕ i (u i ) i∈I . (9)

Primal Algorithm

In order to apply the DR splitting scheme [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF] (see also [START_REF] Combettes | A douglas-rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] and the review paper [START_REF] Combettes | Proximal splitting methods in signal processing, chapter Fixed-Point Algorithms for Inverse Problems in Science and Engineering[END_REF]), we re-write the optimization problem [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] by introducing an auxiliary variable u ∈ Ω and the linear constraint u = B(x)

min z=(x,u)∈R N ×Ω H(z) + i C (z)
where H(x, u) = Ψ(A(x)) + λ Φ(u). Note that in this section, z = (x, u) ∈ R N × Ω actually denotes a couple of variables so we write indifferently H(z) and H(x, u). The linear constraint is defined by

C = {(x, u) \ u = Bx}, i.e. z ∈ ker([-B Id]).
The proximal mapping of H is easily accessible as

prox γH (x, u) = prox γΨ•A (x), prox γλ Φ (u)
where

prox γΨ•A (x) = Id N + γ λ A * A -1 x + γ λ A * y for (1), x + A * (AA * ) -1 (y -Ax) for (3),
and the proximity operator of Φ is defined in [START_REF] Chaux | A nonlinear stein based estimator for multichannel image denoising[END_REF]. It is thus possible to compute efficiently this proximity operator if A * A can be efficiently diagonalized. Note also that there is no closed-form expression of prox Ψ•A in the case (2) unless A is a tight frame.

The orthogonal projector onto C is such that

prox i C (x, u) = Proj C (x, u) = x, B x where x = (Id N + B * B) -1 (B * u + x).
In the specific case of a diagonal block operator B of the form [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF], this projection can be computed in O(N) operation since the operator B * B is diagonal. Indeed,

B * B = diag ∑ t∈S i b i (t) 2 t .
Given some z(0) = (x (0) , u (0) ), the DR algorithm is then summarized as follows:

z(n+1) = 1 - µ 2 z(n) + µ 2 rPox i C (rProx γH (z (n) )) z (n+1) = Prox γH (z (n+1) )
for µ ∈]0, 2[ and γ > 0, where have use the following shorthand notation rProx γH (z) = 2Prox γH (z)z, see for instance [START_REF] Combettes | A douglas-rachford splitting approach to nonsmooth convex variational signal recovery[END_REF]. It can be shown that the sequence z (n) → z ⋆ = (x ⋆ , u ⋆ ) as n → +∞, where x ⋆ is a (global) minimizer of (7).

Primal Dual Algorithm

Both the penalized (1) and constrained (2)-(3) problems can be cast as the minimization of F(Kx) where ∀ (g, u) ∈ R P × Ω,

F(g, u) = Ψ(g) + λ Φ(u) and Kx = (Ax, Bx) ∈ R P × Ω.
By separability, we have prox γF (g, u) = ( g, prox γΦ (u)) with

g =      g+λ γy 1+λ γ for (1), y + ε u-y max(ε,||u-y||) for (2), y for (3).
Since F has an explicit proximal operator and K is a bounded linear operator, our functionals can be minimized efficiently using a primal-dual scheme such as the one proposed in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] (anoother potential candidate is e.g. [START_REF] Chen | A proximal-based decomposition method for convex minimization problems[END_REF]).

Given x (0) = x(0) ∈ R N and β (0) ∈ R P × Ω, define the sequence of iterates:

β (n+1) = prox σ F * β (n) + σ K x(n) x (n+1) = x (n) -τK * β (n+1) x(n+1) = x (n+1) + θ (x (n+1) -x (n) ) .
With the proviso that 0 < θ 1 and

τσ ||K|| 2 < 1. For θ = 1, it is shown in [8] that x (n) → x ⋆ as n → +∞, where x ⋆ is a (global) minimizer of F(Kx).

NUMERICAL ILLUSTRATIONS

In the numerical examples, we consider a natural image f 0 of N = n × n pixels, where n = 256, that is normalized so that || f 0 || ∞ = 1. We implement our method using overlapping smooth partition functions as defined in [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF]. For simplicity we use a translation invariant collection of 2-D Gaussian partition functions, where each b i (t) is centered around pixel i = (i 1 , i 2 ) and has a variance [START_REF] Chen | A proximal-based decomposition method for convex minimization problems[END_REF] where 1 S i restricts the support of b i to

s 2 ∀t = (t 1 ,t 2 ) ∈ {0, . . . , n-1} 2 , b i (t) = e - ||t-i|| 2 s 2 1 S i (t) ,
S i = {[i 1 -3s], . . . [i 1 + 3s]} × {[i 2 -3s], . . . [i 2 + 3s]}
where [•] is the nearest integer rounding operator.

We bench the efficiency of our approach for a varying value of s > 0, which parameterizes the effective width of the overlapping partition functions. We also compare these results with the classical block sparsity prior without overlapping, which corresponds to using b i (t) = 1 S i (t) where the S i 's are blocks of size w × w S i = {i 1 w, . . . (i 1 + 1)w -1} × {i 2 w, . . . (i 2 + 1)w -1}. ( 11)

Denoising

In the denoising experiment, we observe a noisy image f 0 + w where f 0 ∈ R N is the (unknown) clean image and w ∼ N (0, σ 2 ). We use a bi-orthogonal 7-9 wavelet transform W to compute the coefficients y = W ( f 0 + w) = x 0 + w where x 0 = W ( f 0 ) are the (unknown) coefficients to estimate and w remains N (0, σ 2 ). The denoised coefficients x are estimated by solving [START_REF] Bach | Consistency of the group lasso and multiple kernel learning[END_REF], and the denoised image is recovered as f = W -1 (x). We tested different values of λ > 0 so as to maximize the PSNR( f 0 , f ) = -10 log 10 (|| ff 0 || 2 /N). 

Compressed Sensing

We consider a noiseless compressed sensing recovery problem, where a small number P < N of measurements y = M f 0 are collected with a linear sensing operator M ∈ R P×N , which is a realization from a random matrix ensemble. This corresponds to a stylized and idealized compressed sensing acquisition scenario, as proposed by Candès, Romberg and Tao and [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] and Donoho [START_REF] Donoho | Compressed sensing[END_REF] to jointly sample and compress sparse signals. We consider here P = N/8, and M f = (P 2 • D • P 1 ( f )) ↓ P , where P 1 , P 2 are realizations of random permutations of {0, . . . , N -1}, D is an orthogonal discrete cosine transform, and ↓ P selects the P first entries of a vector. This operator M is both random (thus enabling a provably efficient recovery from a small number of measurements), and can be computed in O(N log(N)) operations. The coefficients x of the recovered signal f = W -1 (x) are obtained by solving the constrained formulation (3) with A = MW -1 .

Figure 3 shows the evolution of the PSNR as a function of the partition function width s. Its optimal value on this example is s = 1. The gain with respect to non-overlapping blocks of optimal size w = 4 is roughly 0.45dB. Figure 4 shows a visual comparison of the two priors.

Conclusion

This paper has introduced a novel group sparsity prior to regularize inverse problems together with accompanying optimization algorithms. This allows to use structured group sparsity with smoothly overlapping partition functions. We believe that this prior is a serious option to consider and will be useful for a variety of applications, for instance when binary blocks are too constrained, and translation invariance of the regularization is a desirable property. Numerical experiments on natural images show that this brings some improvement with respect to classical block sparsity using nonoverlapping blocks.
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 1 Figure 1: Evolution of the PSNR as a function of λ /σ , for sparse regularization with non-overlaping blocks (dashed lines, the different curves correspond to different block sizes w) and overlapping smooth partition functions (solid lines, the different curves correspond to different widths s of the Gaussian).
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 12 Figure 1 shows the evolution of the PSNR with the regularization parameter λ , for the boat image, displayed on Figure 2. The best block size for non-overlapping regularization is w = 4. The best partition width s for overlapping regularization is s = 0.8. The PSNR gain is about 0.3dB, which is
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 34 Figure 3: Evolution of the PSNR as a function of of the partition function width s defined in (10). As a reference for comparison, the dashed line corresponds to the PSNR obtained with non-overlapping blocks (11) using w = 4.