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FRACTIONAL POISSON FIELD ON A FINITE SET

H. BIERMÉ1, Y. DEMICHEL2 AND A. ESTRADE1

Abstract. The fractional Poisson field (fPf) can be interpreted in term of the number
of balls falling down on each point of R

D, when the centers and the radii of the balls are
thrown at random following a Poisson point process in R

D
×R

+ with an appropriate intensity
measure. It provides a simple description for a non Gaussian random field that has the same
covariance function as the fractional Brownian field. In the present paper, we concentrate on
the restrictions of the fPf to finite sets of points in R

D. Actually, since it takes discrete values,
it seems natural to adapt this field to a discrete context. We are particularly interested in
its finite-dimensional distributions, in its representation on a finite grid, and in its discrete
variations which yield an estimator for its Hurst index.

Introduction

In the last decades a lot of papers have been dedicated to the sum of an infinite number of
Poisson sources. The seminal ideas of Mandelbrot of adding Poisson sources in order to get a
fractional limit are described for instance in [5]. More recently this subject became popular
for the modeling of Internet traffic and telecommunication (see [6, 15]) providing processes
with heavy tails or long range dependence. In higher dimension, throwing Euclidean balls at
random following a specific Poisson repartition for the centers and the radii, and counting
how many balls fall down on each point, provides a random field defined on R

D. In [13], with
an appropriate scaling, a generalized random field is obtained as an asymptotics. It has a
Poisson structure and exhibits a kind of self-similarity index H greater than 1/2. The case H
less than 1/2 is studied in [2] and a pointwise representation (FH(y))y∈RD of the generalized
field is given. It is proved that FH may be written as an integral with respect to a Poisson
random measure and FH is called as fractional Poisson field (fPf). Actually the fPf is of own
interest since it provides a microscopic description of macroscopic properties like stationary
increments or self-similarity and since it has the same covariance function as the fractional
Brownian field but is not Gaussian. Consequently, one can get the fractional Brownian field
with a central limit theorem procedure starting from copies of the fPf. For such an approach
see [10]. Moreover let us mention the opportunity of obtaining many other models following
the same scheme. For instance one can build anisotropic fields by replacing the Euclidean
balls by more general convex sets, stable fields by adding weights to balls [3] and natural
images can be simulated [4].

The present paper focuses on the restrictions of the fPf to finite sets of points in R
D. It

is organized as follows. In the first section, we concentrate on the finite-dimensional distri-
butions of the fPf. Meanwhile, we exhibit a representation of FH similar to the Chentsov one
(see [19], Chapter 8). In particular, we establish that all the finite dimensional distributions
are determined by the (D + 1)-dimensional marginal distributions. In Section 2, we give a
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representation of the fPf on a finite grid Γ ⊂ R
D. More precisely, using explicit random vari-

ables, we describe a random vector (G(y))y∈Γ that has the same distribution as (FH(y))y∈Γ

. Such a representation could be used for simulation purposes. In the last section, namely
Section 3, we investigate the increments of a fPf. We first give an estimate of the expectation
of the q-structure functions of FH for a step δ and establish that it behaves as δ2H with a
constant power, pointing out a high irregularity of FH . We then turn to the discrete quadratic
variations of the fPf. A ratio of two different quadratic variations yields an a.s. estimator
for the Hurst index H. Note that a similar result holds for the fractional Brownian field, but
that our proof needs new arguments since we don’t deal anymore with a Gaussian framework.

To end this section let us give the notations used in the sequel and the precise definition
of the fPf as introduced in [2].

We consider R
D endowed with the Euclidean norm ‖·‖. We write B(x, r) for the closed

ball of center x and radius r > 0 with respect to the Euclidean norm. Without any risk of
confusion, the notation | · | will either denote the absolute value of any real number, or the
D-dimensional Lebesgue measure of any measurable subset of R

D. In what follows, we will
write VD for |B(0, 1)|, the volume of the unit Euclidean ball in R

D, and SD−1 for the unit
sphere in R

D.
Let H ∈ (0, 1/2). We consider ΦH a Poisson point process in R

D × R
+ with intensity

νH(dx, dr) = r−D−1+2H dx dr, (1)

and associate with ΦH a Poisson random measure NH on R
D × R

+ with the same intensity
measure νH .

For any y in R
D, we consider the stochastic integral

FH(y) =

∫

RD×R+

(
1IB(x,r)(y) − 1IB(x,r)(0)

)
NH(dx, dr) (2)

and finally we introduce the fractional Poisson field with Hurst index H as the random field
FH = (FH(y))y∈RD , which is clearly centered with stationary increments.

Heuristically, FH(y) may be seen as the difference between the number of balls B(x, r)
with (x, r) ∈ ΦH covering the point y, and the number of balls covering the origin. This
point of view is not fair since the number of balls covering one particular point is infinite.
Nevertheless, the stochastic integral (2) is well defined since 1IB(x,r)(y)−1IB(x,r)(0) belongs to

L1(RD ×R
+, νH(dx, dr)). Actually, for any y ∈ R

D, one can find a constant C(y) ∈ (0,+∞)
such that for any r ∈ R

+,∫

RD

|1IB(x,r)(y) − 1IB(x,r)(0)| dx = |B(y, r)△B(0, r)| 6 C(y) min
(
rD, rD−1

)
(3)

where A△B stands for the symmetric difference between A and B, two subsets of R
D.

Furthermore, for any y ∈ R
D, 1IB(x,r)(y)−1IB(x,r)(0) also belongs to L2(RD×R

+, νH(dx, dr))
and using the rotation invariance of the Lebesgue measure, we obtain∫

RD×R+

(
1IB(x,r)(y) − 1IB(x,r)(0)

)2
νH(dx, dr) = cH ‖y‖2H (4)

with

cH =

∫

R+

|B(e1, r)△B(0, r)| r−D−1+2Hdr

and e1 being any point in SD−1. One can check that cH is explicitly computed in dimension

D = 1 as cH = 21−2H

H(1−2H) . In higher dimension, explicit formulas for |B(e1, r)△B(0, r)| can be
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found for instance in [20].

Equation (4) shows that, up to a multiplicative constant, FH has the same covariance function
as BH , the fractional Brownian field (fBf) of Hurst index H, namely

Cov(FH(y), FH(y′)) = cH Cov(BH(y), BH(y′)) =
1

2
cH (‖y‖2H +

∥∥y′
∥∥2H

−
∥∥y − y′

∥∥2H
) . (5)

Using a Gaussian measure with control measure νH instead of the Poisson measure NH in
(2), would provide a Gaussian field with covariance (5) that would actually, up to a constant,
be the fBf of index H. Contrarily to this last one, the fPf is neither Gaussian nor self-similar.
However it is still with stationary increments, it is second-order self-similar and it exhibits
what is called an aggregate similarity property in [14].

Since the value of H is fixed all over the paper, we will not mention the dependence on
H anymore and from now on we will drop all the H indices writing Φ, N, ν, F instead of
ΦH , NH , νH , FH .

1. Chentsov representation

We notice that for x, y ∈ R
D and r ∈ R

+ we have

1IB(x,r)(y) − 1IB(x,r)(0) = 1IC(y)∩C(0)c(x, r) − 1IC(0)∩C(y)c(x, r) ,

when defining C(y), the cone over y, by

C(y) = {(x, r) ∈ R
D × R

+ ; y ∈ B(x, r)} . (6)

A similar computation as the one in (4) gives

ν(C(y) ∩ C(0)c) =

∫

RD×R+

1IB(y,r)∩B(0,r)c(x) ν(dx, dr) =
cH
2

‖y‖2H .

Then, we can write
F (y) = N(C(y) ∩ C(0)c) −N(C(0) ∩ C(y)c) (7)

and observe that F (y) follows a Skellam distribution: it is equal to the difference of two i.i.d.

Poisson random variables with parameter cH

2 ‖y‖2H .

This formulation invites us to link the fPf to another related fields G which can be written
as

G(y) = M(C(y) ∩ C(0)c) −M(C(0) ∩ C(y)c) (8)

where M is any random measure on R
D such that (8) makes sense and C(y) is the cone over

y as in (6).
First, when M is replaced by a symmetric α-stable random measure, the resulting field is

a so-called “H − sssis (H self-similar with stationary increments in the strong sense) SαS
Chentsov field” as introduced in [19], with the resulting consequence that H 6 1/α. Going
further, M still being replaced by a symmetric α-stable random measure, and replacing the
difference in (8) by the sum, then the resulting field would be a Takenaka random field [21].

Actually, for the Takenaka random fields, as well as for the fields defined by (8), the
following proposition holds.

Proposition 1.1. Let G be defined by (8). Let y1, y2, . . . , ym be m points in R
D \ {0} with

m > D. Then the distribution of (G(y1), . . . , G(ym)) is determined by the (D+1)-dimensional

marginal distributions of G.
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A similar result was originally established by Sato in [18] for Takenaka fields. As a conse-
quence of Proposition 1.1, if a field G associated with an unknown Poisson measure M has
the same (D+1)-dimensional marginal distributions as the fPf F , then realizations of G may
be obtained by choosing M as the particular Poisson measure with intensity (1).

We do not detail the proof of Proposition 1.1 since similar ideas as [18] can be used in our
case. We only describe the ingredients which are needed.

For any positive integer m, we define

Em = {0, 1}m = {e : [[1,m]] → {0, 1}} .

Let y1, y2, . . . , ym be fixed in R
D \ {0}. Then, writing T = (y1, y2, . . . , ym) we denote for any

e ∈ Em,

C(T, e) =
⋂

16k6m

C(yk)
e(k)

where C(y) still stands for the cone over y and the following convention is used

C(y)1 = C(y) and C(y)0 = C(y)c .

The next statements are obvious. For e, e′ ∈ Em, if e 6= e′ then C(T, e) ∩ C(T, e′) = ∅, and
for any k = 1, . . . ,m,

C(yk) =
⋃

e∈Em; e(k)=1

C(T, e) and C(yk)
c =

⋃

e∈Em; e(k)=0

C(T, e) . (9)

We also denote T̊ = (0, y1, y2, . . . , ym) and E̊m = {e : [[0,m]] → {0, 1}}, so that using (9), for
any k = 1, . . . ,m,

C(0)c ∩ C(yk) =
⋃

e∈E̊m; e(0)=0,e(k)=1

C(T̊ , e) ,

C(0) ∩ C(yk)
c =

⋃

e∈E̊m; e(0)=1,e(k)=0

C(T̊ , e) .

Hence, using (7), we obtain a representation of the random vector (F (y1), . . . , F (ym)) as
stated in the next proposition.

Proposition 1.2. Let y1, y2, . . . , ym ∈ R
D \ {0} and E̊m = {e : [[0,m]] → {0, 1}}. There

exists a family of independent Poisson random variables {X(e) ; e ∈ E̊m} such that

(
F (yk)

)
16k6m

=

( ∑

e∈E̊m

(e(k) − e(0))X(e)

)

16k6m

. (10)

Moreover, for any e ∈ E̊m, X(e) = N(C(T̊ , e)).

2. Discrete representation

Let us fix 0 < δ < R and consider the finite set of R
D with JR,δ ∈ N points

ΓR,δ = B(0, R) ∩ δZD = {yj ; 1 6 j 6 JR,δ}. (11)

We discuss here the possibility to represent the discrete field (F (y))y∈ΓR,δ
by a simpler and

’more natural’ field which could be more relevant for the structure of F . The idea is to
count the number of balls B(x, r) falling down on the points of ΓR,δ. For any fixed y ∈ R

D,
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we take into account in the integral (2) both the covering of y and 0 because the function
(x, r) 7→ 1IB(x,r)(y) is not integrable with respect to the intensity measure ν given by (1).
Intuitively the fact that this latter integral is not finite comes from the high number of very
large balls. It is possible to classify the balls according to their influence on the finite set
ΓR,δ. Notice that 0 ∈ ΓR,δ. One checks that, for all y ∈ ΓR,δ,

- if r +R < ‖x‖ then B(x, r) does not intersect B(0, R) so 1IB(x,r)(y) = 1IB(x,r)(0) = 0,
- if ‖x‖ +R 6 r then B(x, r) covers B(0, R) so 1IB(x,r)(y) = 1IB(x,r)(0) = 1,
- if (‖x‖ − R)+ 6 r < ‖x‖ + R then B(x, r) does not cover B(0, R) but is with a non

empty intersection with B(0, R) so 1IB(x,r)(y) − 1IB(x,r)(0) ∈ {−1, 0, 1}.

Each type of balls corresponds to a Poisson Point process (PPP) with a suitable intensity
and by superposition, the original PPP Φ corresponds to their independent union. Only the
balls that have a non-trivial intersection with B(0, R) are interesting. They are related to a
PPP in R

D × R
+ of intensity measure

ν0(dx, dr) = 1I[(‖x‖−R)+,‖x‖+R)(r)r
−D−1+2H dx dr.

In order to deal with the balls with small radii (smaller than δ/2) we use independence and

superposition property by splitting the intensity ν0 as ν(1) + ν(2) with

ν(1)(dx, dr) = 1I[(‖x‖−R)+,‖x‖+R)∩[δ/2,+∞)(r)r
−D−1+2H dx dr

ν(2)(dx, dr) = 1I[(‖x‖−R)+,‖x‖+R)∩[0,δ/2)(r)r
−D−1+2H dx dr.

Balls with large radii. Let us consider a global PPP Φ(1) of intensity ν(1). The number of
associated balls is a.s. finite and Poisson distributed with parameter

λ1 =

∫

RD×R+

ν(1)(dx, dr) =

∫ +∞

δ/2
C1(r)r

−D−1+2Hdr

with

C1(r) =

∫

RD

1I[(r−R)+,r+R](‖x‖)dx = VD

(
(r +R)D − (r −R)D

+

)
.

Note that, since R is fixed, as r tends to infinity, C1(r)r
−D−1+2H behaves like r−2+2H . Hence,

since H < 1/2, the last integral converges and λ1 < ∞. Therefore we can decompose the

intensity ν(1)(dx, dr) as

λ1︸︷︷︸
number of balls

to consider

(
C1(r)

λ1
r−D−1+2H1I[δ/2,+∞)(r)dr

)

︸ ︷︷ ︸
distribution of the large radii

(
1

C1(r)
1I[(r−R)+,r+R](‖x‖)dx

)

︸ ︷︷ ︸
distribution of the centers
conditionally to the radii

. (12)

Thus we define a random field T (1) by

T (1) =

Λ1∑

n=1

1I
B(X

(1)
n ,R

(1)
n )

(13)

where

- Λ1 is a Poisson random variable with parameter λ1

- R
(1)
n is a positive random variable with probability density function

ρ1(r) = λ−1
1 C1(r) r

−D−1+2H1I[δ/2,+∞)(r)
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- X
(1)
n is distributed in R

D according to the probability distribution with conditional

density with respect to R
(1)
n given by

γ
{R

(1)
n =r}

1 (x) =
1

C1(r)
1I[(r−R)+,r+R](‖x‖).

Balls with small radii. Now we focus on the intensity measure ν(2)(dx, dr). Let (x, r) ∈

R
D×R

+. Either (x, r) ∈

Jδ,R⋂

j=1

C(yj)
c and the ball B(x, r) have no contribution on the set ΓR,δ,

either (x, r) ∈

Jδ,R⋃

j=1

C(yj). Since ‖yj − yi‖ > δ for all pairs (yi, yj) of different points in ΓR,δ,

the JR,δ sets (RD × [0, δ/2)) ∩ C(yj) are disjoint sets. Therefore the PPP of intensity ν(2) is

the superposition of JR,δ independent PPP Φ
(2)
j of intensity

ν
(2)
j (dx, dr) = 1I(RD×[‖x‖−R,‖x‖+R]∩[0,δ/2))∩C(yj)(x, r)r

−D−1+2H dx dr

for which the associated balls B(x, r) satisfy 1IB(x,r)(yi) = 1 if and only if i = j.

Thus each PPP provides a random field T
(2)
j such that

T
(2)
j (yi) =

{
Λ

(2)
j if i = j

0 otherwise,

where Λ
(2)
j is the number of balls resulting from Φ

(2)
j . This number is a.s. finite and Poisson

distributed according to the parameter λ
(2)
j = ν

(2)
j (RD ×R

+). Since ‖x− yj‖ > ‖x‖−‖yj‖ >

‖x‖ −R and ‖x‖ +R > R > δ/2, we obtain

λ
(2)
j =

∫

RD×R+

1I[‖x−yj‖,δ/2)(r)r
−D−1+2Hdx dr =

VD

2H
(δ/2)2H .

To conclude we define a random field T (2) over ΓR,δ by T (2) =

JR,δ∑

j=1

T
(2)
j (note that the T

(2)
j

are independent). Finally, superposing all the previous independent PPP and their related
fields, we obtain the following proposition.

Proposition 2.1. Let ΓR,δ be the finite set defined by (11). Then (F (y))y∈ΓR,δ
has the same

distribution as (G(y) −G(0))y∈ΓR,δ
with G = T (1) + T (2).

This description shows that the restriction to ΓR,δ of the field F is essentially made up with

- a field T (1) which is a simple ’balls counting field’: random balls are built picking-up
the radii first, the centers next, then T (1)(yj) counts the number of these balls above
each yj ,

- a field T (2) whose values at each point yj form a collection of i.i.d. Poisson random

variables with parameter VD

2H (δ/2)2H .
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3. Increments of a fPf

3.1. Structure functions.

Let f : R → R be an integrable function. If q > 0, we define the q-structure function of f by

∀ δ > 0 Sq(δ) =

∫ 1

0
|f(t+ δ) − f(t)|q dt. (14)

When f is regular enough one may expect that limδ→0 Sq(δ) = 0 for all q > 0. More
precisely if f satisfies |f(t + δ) − f(δ)| ≃0 δα with α ∈ (0, 1] and for all t ∈ R (where
u(δ) ≃0 v(δ) means that u(δ)/v(δ) is bounded from above and from below for small δ) then
clearly Sq(δ) ≃0 δ

αq.
When f is not as regular these functionals are a classical tool to study its fractal behavior

[12, 22]. In view of the regular case, one is usually interested in an asymptotic power-law

behavior through a relation of the type Sq(δ) ≃0 δ
H(q) for a certain constant H(q) > 0.

The study of random processes forces to deal with sample paths and the relation above
has to hold almost surely. For example for the fractional Brownian paths BH one obtains
Sq(δ) ≃0 δ

2Hq and H(q) = 2Hq with probability one. Except for a few random functions
such computations are difficult to state. Instead of working path-to-path one may prefer to
work statistically (see [7, 16]) looking for relations of the type

E(Sq(δ)) ≃0 δ
H(q). (15)

Then, assuming that f is a random function satisfying sup
t∈ [−s,1+s]

E |f(t)|q <∞ for some s > 0,

one can consider, by Fubini theorem,

E(Sq(δ)) =

∫ 1

0
E |f(t+ δ) − f(t)|q dt. (16)

Finally, let us explain how to work with a multivariate function f : R
D → R. Among all the

possible extensions we choose to look at the function along straight lines: for fixed t0 ∈ R
D

and direction θ ∈ SD−1 we define

t ∈ R 7→ Lt0,θf(t) = f(t0 + tθ) .

Then one may consider (16) for the univariate functions Lt0,θf .

Now we can state the main result of this section: for the fPf F , all the functions Lt0,θF satisfy
the relation (15) for all q > 2 and H(q) is explicit.

Theorem 3.1. For all q > 2, there exists Cq, C
′
q, δq > 0 such that, for all t0 ∈ R

D and all

θ ∈ SD−1 one has

∀ δ ∈ [0, δq] Cq δ
2H

6 E

(∫ 1

0
|F (t0 + (t+ δ)θ) − F (t0 + tθ)|q dt

)
6 C ′

q δ
2H . (17)

Proof. The proof is divided into two parts: (i) the result is proved for all even integers, (ii)
we extend it to all integers q using Hölder interpolation.

Let t0 ∈ R
D and θ ∈ SD−1. For all t ∈ R we simply write f(t) = F (t0 + tθ).

Let us write, for all (y, x, r) ∈ R
D × R

D × R
+,

ψ(y, x, r) = 1IB(x,r)(y) − 1IB(x,r)(0).
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First we observe that for all t ∈ R and δ > 0:

f(t+ δ) − f(t) =

∫

RD×R+

(ψ(t0 + (t+ δ)θ, x, r) − ψ(t0 + tθ, x, r))N(dx, dr)

=

∫

RD×R+

ψ(δθ, x− t0 − tθ, r)N(dx, dr) . (18)

(i) Let p > 1. Observe now that ψ(y, ·, ·) ∈ L2p
(
R

D × R
+, ν(dx, dr)

)
and

∫

RD×R+

ψ(δθ, x− t0 − tθ, r)p ν(dx, dr) =

{
0 if p is odd,

cHδ
2H if p is even.

Then, according to [1] (with the convention that 00 = 1) and using (18), we have

E

(
(f(t+ δ) − f(t))2p

)

=
∑

(r1,...,r2p)∈I(2p)

K2p(r1, . . . , r2p)

2p∏

k=1

(∫

RD×R+

ψ(δθ, x− t0 − tθ, r)k ν(dx, dr)

)rk

=
∑

(0,r2,0,...,r2p)∈I(2p)

K2p(0, r2, 0, . . . , r2p)

p∏

k=1

(∫

RD×R+

ψ(δθ, x− t0 − tθ, r)2k ν(dx, dr)

)r2k

=
∑

(r1,...,rp)∈I(p)

K̃p(r1, . . . , rp)
(
cHδ

2H
)

p
P

k=1
rk

,

where, for n > 1, I(n) =

{
(r1, . . . , rn) ∈ N

n;
n∑

k=1

krk = n

}
,Kn(r1, . . . , rn) = n!

(
n∏

k=1

rk!(k!)
rk

)−1

and K̃n(r1, . . . , rn) = (2n)!

(
n∏

k=1

rk!((2k)!)
rk

)−1

. Integrating with respect to t ∈ [0, 1] we get

E (S2p(δ)) =
∑

(r1,...,rp)∈I(p)

K̃p(r1, . . . , rp)
(
cHδ

2H
)

p
P

k=1

rk

.

Note that ep = (0, . . . , 0, 1) ∈ I(p) and for any (r1, . . . , rp) ∈ I(p) \ {ep} we have
p∑

k=1

rk > 2

such that
E (S2p(δ)) = cHδ

2H + δ4Hu(δ) ,

where δ 7→ u(δ) is bounded near 0. This gives the result for all even q.

(ii) We will prove that for all q > 2, there exists Cq, C
′
q, δq > 0 such that

∀ t ∈ [0, 1] ∀ δ ∈ [0, δq] Cq δ
2H

6 E |f(t+ δ) − f(t)|q 6 C ′
q δ

2H . (19)

Let t ∈ [0, 1] and δ > 0.

(a) Let 1 6 q 6 r 6 q′ < +∞ and α ∈ [0, 1] such that
1

r
=
α

q
+

1 − α

q′
.

Then, using Hölder inequality :

E |f(t+ δ) − f(t)|r 6 (E |f(t+ δ) − f(t)|q)
αr
q (E |f(t+ δ) − f(t)|q

′

)
(1−α)r

q′ . (20)
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(b) Proof of the rhs of (19). Let r ∈ [2,+∞) and p ∈ N r {0}. Apply (20) with q = 2p and
q′ = 2p+ 2 yields

E |f(t+ δ) − f(t)|r 6 (E |f(t+ δ) − f(t)|2p)
αr
2p (E |f(t+ δ) − f(t)|2p+2)

(1−α)r
2p+2 .

Therefore, using (i):

E |f(t+ δ) − f(t)|r 6 (C ′
2pC

′
2p+2)δ

(2H)(αr
2p

+
(1−α)r
2p+2

)
= C ′

rδ
2H

assuming 0 6 δ < min(δ2p, δ2p+2).

(c) Proof of the lhs of (19). Let r ∈ [1,+∞) and p ∈ N r {0} such that 1 6 r 6 2p 6 2p+ 2.
Apply (20) with q = r, r = 2p and q′ = 2p+ 2 yields

E |f(t+ δ) − f(t)|2p
6 (E |f(t+ δ) − f(t)|r)

2p α
r (E |f(t+ δ) − f(t)|2p+2)

(1−α)2p

2p+2 .

Therefore, using (i):

(E |f(t+ δ) − f(t)|r)
2p α

r > E |f(t+ δ) − f(t)|2p (E |f(t+ δ) − f(t)|2p+2)
−

(1−α)2p

2p+2

> (C2p δ
2H) (C ′

2p+2 δ
2H)

−
(1−α)2p

2p+2

> C ′′
r (δ2H)

1−
(1−α)2p

2p+2 = C ′′
r (δ2H)

2p α
r

assuming 0 6 δ < min(δ2p, δ2p+2). Hence

E |f(t+ δ) − f(t)|r > (C ′′
r )

r
2p α δ2H = Cr δ

2H .

Finally for 0 6 δ < δr = min(δ2p, δ2p+2) we have Crδ
2H 6 E |f(t+ δ) − f(t)|q 6 C ′

rδ
2H as

required. �

Let us observe that, contrarily to BH , the exponent-function q 7→ H(q) is not linear on
[2,+∞). The function is constant (H(q) = 2H) over this interval. We may think about this
as a high irregularity statistical indicator for F .

3.2. Quadratic variations.

As suggested by (17), the study of increments leads naturally to estimate the Hurst index.
In practice, when only discrete observations are available, one can use either wavelets as in
[8], or q-variations. In the Gaussian framework, asymptotic properties of the estimators are
obtained from the quadratic case q = 2 using Hermite expansions of the function | · |q [11, 9].

For any t0 ∈ R
D and θ ∈ SD−1 we consider here the discrete 2-structure function of the line

process Lt0,θF instead of (14), replacing the integral by a finite sum and choosing δ = 2−nu
with u a positive integer. It leads to the quadratic variations of Lt0,θF with step u ∈ Nr{0}:

Vn(u) =
1

2n

2n−1∑

k=0

(
F (t0 + (2−n(k + u))θ) − F (t0 + (2−nk)θ)

)2
. (21)

In order to compute the asymptotic properties of Vn(u) we introduce the stationary sequence

Xn(k) = F (t0+(2−n(k+u))θ)−F (t0+(2−nk)θ) =

∫

RD×R+

ψ(2−nuθ, x−t0−2−nkθ, r)N(dx, dr)

according to (18). Note that Vn(u) is then the empirical mean of (X2
n(k))06k62n−1 so that

E(Vn(u)) = E(X2
n(k)) =

∫

RD×R+

ψ2
n,k(x, r)ν(dx, dr) = cH(2−nu)2H . (22)
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Then, a natural estimator of H can be built by considering log-log ratios of Vn(·), precisely
we will prove the following theorem.

Theorem 3.2. Let u, v > 1 with u 6= v. Then, almost surely as n→ +∞,

Ĥn(u, v) =
1

2
log

(
Vn(u)

Vn(v)

)
/ log

(u
v

)
−→ H

where Vn(u) is defined by (21).

Proof. Using (22), it is enough to prove that almost surely, as n→ +∞,

Vn(u)

E(Vn(u))
→ 1.

By Markov inequality we have, for all ε > 0,

P

(∣∣∣∣
Vn(u)

E(Vn(u))
− 1

∣∣∣∣ > ε

)
6

Var(Vn(u))

ε2E(Vn(u))2
,

thus the only thing to do is to control the variance of Vn(u) in such a way that we can use
Borel-Cantelli lemma. First let us remark that by stationarity

Var(Vn(u)) =
1

22n

n−1∑

k,l=0

Cov
(
X2

n(k), X2
n(l)

)
=

1

2n

2n−1∑

k=−(2n−1)

(1 − 2−n|k|)Cov
(
X2

n(0), X2
n(|k|)

)
.

To compute the covariances we follow the framework of [17]. We can write Xn(k) = I1(ψn,k)
as the Wiener-Itô integral of

ψn,k(x, r) = ψ(2−nuθ, x− t0 − 2−nkθ, r) (23)

with respect to the compensated Poisson random measure N − ν on R
D × R

+. Moreover,
according to the product formula we have

X2
n(k) = I2 (ψn,k ⊗ ψn,k) + I1

(
ψ2

n,k

)
+

∫

RD×R+

ψ2
n,k(x, r)ν(dx, dr) (24)

where I2 (ψn,k ⊗ ψn,k) is the multiple Wiener-Itô integral of order 2 of the symmetric function

ψn,k ⊗ ψn,k ∈ L2(
(
R

D × R
+
)2
, ν(dx, dr)⊗2). Then, using (24), by isometry we obtain that,

for k > 0,

Cov
(
X2

n(0), X2
n(k)

)

= 2

(∫

RD×R+

ψn,0(x, r)ψn,k(x, r)ν(dx, dr)

)2

+

∫

RD×R+

ψ2
n,0(x, r)ψ

2
n,k(x, r)ν(dx, dr).

For the first term, let us remark that by a change of variables one has∫

RD×R+

ψn,0(x, r)ψn,k(x, r)ν(dx, dr) = Cov
(
F (2−nuθ), F (2−n(u+ k)θ) − F (2−nkθ)

)

= (2−n)2Hρu(k)

with

ρu(k) = Cov (F (uθ), F ((u+ k)θ) − F (kθ)) =
cH
2

(
|u+ k|2H − 2|k|2H + |u− k|2H

)
(25)

according to (5). Similarly, by a change of variables the second term satisfies
∫

RD×R+

ψ2
n,0(x, r)ψ

2
n,k(x, r)ν(dx, dr) = (2−n)2H ρ̃u(k)
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with

ρ̃u(k) =

∫

RD×R+

(
1IB(x,r)(uθ) − 1IB(x,r)(0)

)2 (
1IB(x,r)((u+ k)θ) − 1IB(x,r)(kθ)

)2
ν(dx, dr).

(26)
Let us write

1IB(x,r)(uθ) − 1IB(x,r)(0) = 1IC(uθ)∩C(0)c(x, r) − 1IC(0)∩C(uθ)c(x, r)

where C(uθ) is the cone defined by (6). Note that ρ̃u is even and let us consider k > u. We set

T̊ = (0, uθ, kθ, (u+k)θ) so that, according to (9), we can write the integrand in (26) as the sum

of indicator functions of the following sets: C(T̊ , (0, 1, 0, 1)), C(T̊ , (0, 1, 1, 0)), C(T̊ , (1, 0, 0, 1))

and C(T̊ , (1, 0, 1, 0)). Since k > u, each of them is empty except C(T̊ , (0, 1, 1, 0)) and hence
(
1IB(x,r)(uθ) − 1IB(x,r)(0)

)2 (
1IB(x,r)((u+ k)θ) − 1IB(x,r)(kθ)

)2

= 1IC(uθ)∩C(0)c∩C((u+k)θ)c∩C(kθ)

= −
(
1IB(x,r)(uθ) − 1IB(x,r)(0)

) (
1IB(x,r)((u+ k)θ) − 1IB(x,r)(kθ)

)
.

Therefore, by symmetry, for any |k| > u we have ρ̃u(k) = −ρu(k).
Finally

Var(Vn(u)) = (2−n)4H+1 2
2n−1∑

k=−(2n−1)

(1−2−n|k|)ρ2
u(k)+(2−n)2H+1

2n−1∑

k=−(2n−1)

(1−2−n|k|)ρ̃u(k).

Note that (25) implies that ρu(k) =
|k|→+∞

O
(
|k|−2(1−H)

)
and hence ρu ∈ l2(Z) and ρ̃u ∈ l1(Z).

Thus, the first term of Var(Vn(u)) is equivalent to (2−n)4H+1 2
∑

k∈Z
ρ2

u(k) and the second

one is equivalent to (2−n)2H+1
∑

k∈Z
ρ̃u(k). Using (22), it yields

Var(Vn(u))

E(Vn(u))2
∼

n→+∞
(2−n)1−2H

∑
k∈Z

ρ̃u(k)

c2Hu
4H

.

Since H < 1/2, the Borel-Cantelli Lemma allows us to conclude the proof. �

References

[1] Bassan B. and Bona E., Moments of stochastic processes governed by Poisson random measures, Com-
mentationes Mathematicae Universitatis Carolinae, 31, n◦2, 337–343, (1990).
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