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Abstract

Adaptive feedforward broadband vibration (or noise) compensation is currently used when a correlated measurement with the disturbance
(an image of the disturbance) is available. However in most of the systems there is a ”positive” mechanical feedback coupling between
the compensator system and the measurement of the image of the disturbance. This may lead to the instability of the system. The paper
proposes new algorithms taking into account this coupling effect and provides the corresponding analysis. The algorithms have been
applied to an active vibration control (AVC) system and real time results are presented. A theoretical and experimental comparison with
some existing algorithms is also provided.

Key words: active vibration control, adaptive feedforward compensation, adaptive control, identification in closed loop, parameter
estimation.

1 Introduction

Adaptive feedforward broadband vibration (or noise) com-
pensation is currently used in ANC (Active Noise Control)
and AVC (Active Vibration Control) when a correlated mea-
surement with the disturbance (an image of the disturbance)
is available ([4,5,10,19]). From the user point of view and
taking into account the type of operation of adaptive distur-
bance compensation systems, one has to consider two modes
of operation of the adaptive schemes:

• Adaptive operation. The adaptation is performed contin-
uously with a non vanishing adaptation gain.
• Self-tuning operation. The adaptation procedure starts ei-

ther on demand or when the performance is unsatisfac-
tory. A vanishing adaptation gain is used.
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At the end of the nineties it was pointed out that in many
systems there is a ”positive” feedback coupling between the
compensator system and the measurement of the image of
the disturbance. The positive feedback may destabilize the
system. The system is no more a pure feedforward compen-
sator. Different solutions have been proposed to overcome
this problem ([8,19,7,9,10]).

One of the solutions to overcome this problem ([10]) is to
try to compensate the positive feedback ([10,6]). However
since the compensation can not be perfect, the potential in-
stability of the system still exists ([18,3]).
Another approach discussed in the literature is the analy-
sis in this new context of existing algorithms for adaptive
feedforward compensation developed for the case without
feedback. An attempt is made in [18] where the asymptotic
convergence in a stochastic environment of the so called
”Filtered-U LMS” (FULMS) algorithm is discussed. Fur-
ther results on the same direction can be found in [6]. The
authors use the Ljung’s ODE method ([16]) for the case of
a scalar vanishing adaptation gain. Unfortunately this is not
enough because nothing is said about the stability of the
system with respect to initial conditions and when a non
vanishing adaptation gain is used (to keep adaptation capa-
bilities). The authors assume that the positive feedback does
not destabilize the system.
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A stability approach for developing appropriate adaptive
algorithms in the context of internal positive feedback is
discussed in [8]. Unfortunately the results are obtained in
the context of very particular assumptions upon the system,
namely that the transfer function of the physical compensator
system (called ”secondary path” - see section 2) is strictly
positive real, that the feedback path and the primary path
(the transfer between the disturbance and the residual error)
can be described by FIR (finite impulse response) models.
Only the case of constant scalar adaption gain is considered.
Convergence analysis in the stochastic case with a vanishing
adaption gain is not provided.

An interesting approach is adopted in [19] using a Youla-
Kucera parametrization (Q - parametrization) of the feedfor-
ward compensator. A fixed stabilizing feedforward filter is
first designed and a recursive self-tuning procedure for es-
timating the Q filter is implemented using input-output data
acquired without the compensator. Details are not given con-
cerning a possible adaptive operation in the presence of the
feedforward compensator. A stability analysis of the self-
tuning algorithm is not provided.

The problem of the internal positive feedback can be prop-
erly addressed in the context of H∞ or H2 model based de-
sign. This approach has been considered in [3,17,1]. How-
ever the resulting compensator does not have adaptation ca-
pabilities and its performance is not necessarily very good.
Provided that the high dimension of the resulting compen-
sator can be reduced, it may constitute an ”initial” value
for the parameters of an adaptive or self-tuning feedforward
compensator. In [3] it is shown experimentally that the re-
sults obtained with the H∞ approach are better than those ob-
tained using the very popular FULMS adaptation algorithm
(for a disturbance with known spectral characteristics). A
similar comparison done experimentally in this paper con-
firms this fact. However this is no more true when compar-
ing the H∞ design with the adaptive algorithms introduced
in the present paper (see section 7).
It is important to remark that all these contributions (except
[1]) have been done in the context of active noise control.
While the algorithms for active noise control can be used
in active vibration control, one has to take into account the
specificity of these latter systems which feature many low
damped vibration modes (resonance) and low damped com-
plex zeros (anti-resonance).

The main contributions of the present paper are:

• development of new real time recursive adaptation algo-
rithms for active vibration control systems with mechan-
ical coupling.
• stability analysis (in a deterministic context) and conver-

gence analysis (in a stochastic context) of the algorithms.
• application of the algorithms to an active vibration control

system (most of the available control literature deal only
with active noise control).
• comparison of the new algorithms with existing algo-

rithms (both theoretically and experimentally).

While the algorithms have been developed in the context
of AVC, they are certainly applicable to ANC systems with
acoustic coupling.

The paper is organized as follows. The AVC system on which
the algorithms will be tested, is presented in section 2. The
system representation and feedforward compensator struc-
ture are given in section 3. The algorithm for adaptive feed-
forward compensation will be developed in section 4 and
analysed in section 5. Section 6 will present a comparison
with other algorithms. Section 7 will present experimental
results obtained on the active vibration control system with
the algorithms introduced in this paper as well as with two
other adaptive algorithms given in the literature.

2 An active vibration control system using an inertial
actuator

Figures 1 and 2 represent an AVC system using a correlated
measurement with the disturbance and an inertial actuator
for reducing the residual acceleration. The structure is repre-
sentative for a number of situations encountered in practice.

The system consists of three mobile metallic plates (M1,
M2, M3) connected by springs. The first and the third plates
are also connected by springs to the rigid part of the system
formed by two other metallic plates connected themselves
rigidly. The upper and lower mobile plates (M1 and M3) are
equipped with inertial actuators. The one on the top serves
as disturbance generator (inertial actuator 1 in figure 2), the
one at the bottom serves for disturbance compensation (in-
ertial actuator 2 in figure 2). The system is equipped with
a measure of the residual acceleration (on plate M3) and
a measure of the image of the disturbance made by an ac-
celerometer posed on plate M1. The path between the dis-
turbance (in this case, generated by the inertial actuator on
top of the structure), and the residual acceleration is called
the global primary path. The path between the measure of
the image of the disturbance and the residual acceleration
(in open loop) is called the primary path and the path be-
tween the inertial actuator for compensation and the residual
acceleration is called the secondary path. When the com-
pensator system is active, the actuator acts upon the resid-
ual acceleration, but also upon the measurement of the im-
age of the disturbance (a positive feedback). The measured
quantity û(t) will be the sum of the correlated disturbance
measurement d(t) obtained in the absence of the feedfor-
ward compensation (see figure 3(a)) and of the effect of the
actuator used for compensation.

The disturbance is the position of the mobile part of the
inertial actuator (see figures 1 and 2) located on top of the
structure. The input to the compensator system is the position
of the mobile part of the inertial actuator located on the
bottom of the structure.

The input to the inertial actuators being a position, the global
primary path, the secondary path and the positive feedback
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Fig. 1. An AVC system using a feedforward compensation - photo

path have a double differentiator behavior.

The corresponding block diagrams in open loop operation
and with the compensator system are shown in Figures 3(a)
and 3(b), respectively. In figure 3(b), û(t) denotes the effec-
tive output provided by the measurement device and which
will serve as input to the adaptive feedforward filter N̂. The
output of this filter denoted by ŷ(t) is applied to the actuator
through an amplifier. The transfer function G (the secondary
path) characterizes the dynamics from the output of the fil-
ter N̂ to the residual acceleration measurement (amplifier +
actuator + dynamics of the mechanical system). The transfer
function D between d(t) and the measurement of the resid-
ual acceleration (in open loop operation) characterizes the
primary path.

The coupling between the output of the filter and the mea-
surement û(t) through the compensator actuator is denoted
by M. As indicated in figure 3(b) this coupling is a ”posi-
tive” feedback. This unwanted coupling raises problems in
practice (source of instabilities) and makes the analysis of
adaptive (estimation) algorithms more difficult.

At this stage it is important to make the following remarks,
when the feedforward filter is absent (open loop operation):

• very reliable models for the secondary path and the ”pos-
itive” feedback path can be identified by applying appro-
priate excitation on the actuator.
• an estimation of the primary path transfer function can

be obtained using the measured d(t) as input and χ(t) as
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Fig. 2. An AVC system using a feedforward compensation -
scheme
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Fig. 3. Feedforward AVC: in open loop (a) and with adaptive
feedforward compensator (b)

output (the compensator actuator being at rest).

The objective is to develop stable recursive algorithms for
online estimation and adaptation of the parameters of the
feedforward filter compensator (which will be denoted N̂)
such that the measured residual error (acceleration or force
in AVC, noise in ANC) be minimized in the sense of a cer-
tain criterion. This has to be done for broadband disturbances
d(t) (or s(t)) with unknown and variable spectral character-
istics and an unknown primary path model. 1 .

3 Basic Equations and Notations

The description of the various blocks will be made with
respect to Figure 3.

The primary path is characterized by the asymptotically sta-
ble transfer operator 2 :

D(q−1) =
BD(q−1)

AD(q−1)
(1)

where
BD(q−1) = bD

1 q−1 + ...+bD
nBD

q−nBD (2)

1 Variations of the unknown model W , the transfer function be-
tween the disturbance s(t) and d(t) are equivalent to variations of
the spectral characteristics of s(t).
2 The complex variable z−1 will be used for characterizing the
system’s behavior in the frequency domain and the delay operator
q−1 will be used for describing the system’s behavior in the time
domain.
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AD(q−1) = 1+aD
1 q−1 + ...+aD

nAD
q−nAD (3)

The unmeasurable value of the output of the primary path
(when the compensation is active) is denoted x(t).
The secondary path is characterized by the asymptotically
stable transfer operator:

G(q−1) =
BG(q−1)

AG(q−1)
(4)

where:

BG(q−1) = bG
1 q−1 + ...+bG

nBG
q−nBG = q−1B∗G(q

−1) (5)

AG(q−1) = 1+aG
1 q−1 + ...+aG

nAG
q−nAG (6)

The positive feedback coupling is characterized by the
asymptotically stable transfer operator:

M(q−1) =
BM(q−1)

AM(q−1)
(7)

where:

BM(q−1) = bM
1 q−1 + ...+bM

nBM
q−nBM = q−1B∗M(q−1) (8)

AM(q−1) = 1+aM
1 q−1 + ...+aM

nAM
q−nAM (9)

Both BG and BM have a one step discretization delay. The
identified models of the secondary path and of the positive
feedback coupling will be denoted Ĝ and M̂, respectively.
The optimal feedforward filter (unknown) is defined by :

N(q−1) =
R(q−1)

S(q−1)
(10)

where:
R(q−1) = r0 + r1q−1 + ...+ rnR q−nR (11)

S(q−1) = 1+S1q−1 + ...+SnS q−nS = 1+q−1S∗(q−1) (12)

The estimated filter is denoted by N̂(q−1) or N̂(θ̂ ,q−1) when
it is a linear filter with constant coefficients or N̂(t,q−1)
during estimation (adaptation) of its parameters.

The input of the feedforward filter is denoted by û(t) and
it corresponds to the measurement provided by the pri-
mary transducer (force or acceleration transducer in AVC
or a microphone in ANC). In the absence of the compen-
sation loop (open loop operation) û(t) = d(t). The ”a pos-
teriori” output of the feedforward filter (which is the con-
trol signal applied to the secondary path) is denoted by

ŷ(t +1) = ŷ(t +1|θ̂(t +1)). The ”a priori” output of the es-
timated feedforward filter is given by:

ŷ0(t +1) = ŷ(t +1|θ̂(t))
=−Ŝ∗(t,q−1)ŷ(t)+ R̂(t,q−1)û(t +1)

= θ̂
T (t)φ(t) =

[
θ̂

T
S (t), θ̂

T
R (t)

][ φŷ(t)

φû(t)

]
(13)

where

θ̂
T (t) = [ŝ1(t)...ŝnS(t), r̂0(t)...r̂nR(t)] = [θ̂ T

S (t), θ̂
T
R (t)] (14)

φ
T (t) = [−ŷ(t)...− ŷ(t−nS +1, û(t +1), û(t)...û(t−nR +1)]

= [φ T
ŷ (t),φ

T
û (t)] (15)

and ŷ(t), ŷ(t − 1) ... are the ”a posteriori” outputs of the
feedforward filter generated by:

ŷ(t +1) = ŷ(t +1|θ̂(t +1)) = θ̂
T (t +1)φ(t) (16)

while û(t +1), û(t)... are the measurements provided by the
primary transducer 3 . The unmeasurable ”a priori” output of
the secondary path will be denoted ẑ0(t +1).

ẑ0(t +1) = ẑ(t +1|θ̂(t)) =
B∗G(q

−1)

AG(q−1)
ŷ(t) (17)

The ”a posteriori” unmeasurable value of the output of the
secondary path is denoted by:

ẑ(t +1) = ẑ(t +1|θ̂(t +1)) (18)

The measured primary signal (called also reference) satisfies
the following equation:

û(t +1) = d(t +1)+
B∗M(q−1)

AM(q−1)
ŷ(t) (19)

The measured residual error satisfies the following equation:

χ
0(t +1) = χ(t +1|θ̂(t)) = ẑ0(t +1)+ x(t +1) (20)

The ”a priori” adaptation error is defined as:

ν
0(t +1) =−χ

0(t +1) =−x(t +1)− ẑ0(t +1) (21)

The ”a posteriori” adaptation (residual) error (which is com-
puted) will be given by:

ν(t +1) = ν(t +1|θ̂(t +1)) =−x(t +1)− ẑ(t +1) (22)

When using an estimated filter N̂ with constant parameters:
ŷ0(t) = ŷ(t), ẑ0(t) = ẑ(t) and ν0(t) = ν(t).

3 û(t + 1) is available before adaptation of parameters starts at
t +1
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4 Development of the Algorithms

The algorithms for adaptive feedforward compensation will
be developed under the following hypotheses:

(1) H1 - The signal d(t) is bounded
i.e.

|d(t)| ≤ α ∀t (0≤ α ≤ ∞) (23)
(which is equivalently to say that s(t) is bounded and
W (q−1) in figure 3 is asymptotically stable).

(2) H2 - Perfect matching condition. There exists a filter
N(q−1) of finite dimension such that 4 :

D =− N
(1−NM)

G (24)

and the characteristic polynomial of the ”internal” feed-
back loop:

P(z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1) (25)

is a Hurwitz polynomial.
(3) H3 - The effect of the measurement noise upon the

measured residual error is neglected (deterministic con-
text).

(4) H4 - The primary path model D(z−1) is unknown and
constant

Once the algorithms will be developed under these hypothe-
ses, hypotheses 2 and 3 will be removed and the algorithms
will be analyzed in this modified context.
A first step in the development of the algorithms is to estab-
lish a relation between the errors on the estimation of the pa-
rameters of the feedforward filter and the measured residual
acceleration. This is summarized in the following lemma.

Lemma 4.1: Under hypotheses H1 through H4, for the sys-
tem described by equations (1) through (22) using a feedfor-
ward compensator N̂ with constant parameters, one has:

ν(t +1) =
AM(q−1)G(q−1)

P(q−1)
[θ − θ̂ ]T φ(t) (26)

where

θ
T = [s1, ...snS ,r0,r1, ...rnR ] = [θ T

S ,θ
T
R ] (27)

is the vector of parameters of the optimal filter N assuring
perfect matching

θ̂
T = [ŝ1...ŝnS , r̂0...r̂nR ] = [θ̂ T

S , θ̂
T
R ] (28)

is the vector of constant estimated parameters of N̂ and φ(t)
and û(t +1) are given by 15 and 19.

4 In many cases, the argument q−1 or z−1 will be dropped out

The proof of this lemma is given in Appendix 1.
Filtering the vector φ(t) through an asymptotically stable
filter L(q−1) = BL

AL
, equation (26) for θ̂ = constant becomes:

ν(t +1) =
AM(q−1)G(q−1)

P(q−1)L(q−1)
[θ − θ̂ ]T φ f (t) (29)

with:
φ f (t) = L(q−1)φ(t) (30)

Equation (29) will be used to develop the adaptation algo-
rithms neglecting for the moment the non-commutativity of
the operators when θ̂ is time varying (however an exact al-
gorithm can be derived in such cases - see [?]).

Replacing the fixed estimated parameters by the current es-
timated parameters, equation (29) becomes the equation or
the a-posteriori residual error ν(t +1) (which is computed):

ν(t +1) =
AM(q−1)G(q−1)

P(q−1)L(q−1)
[θ − θ̂(t +1)]T φ f (t) (31)

Equation (31) has the standard form for an a-posteriori adap-
tation error ([?]), which immediately suggests to use the
following parameter adaptation algorithm:

θ̂(t +1) = θ̂(t)+F(t)ψ(t)ν(t +1) ; (32)

ν(t +1) =
ν0(t +1)

1+ψT (t)F(t)ψ(t)
; (33)

F(t +1) =
1

λ1(t)

F(t)− F(t)ψ(t)ψT (t)F(t)
λ1(t)
λ2(t)

+ψT (t)F(t)ψ(t)

 (34)

1≥ λ1(t)> 0;0≤ λ2(t)< 2;F(0)> 0 (35)
ψ(t) = φ f (t) (36)

where λ1(t) and λ2(t) allow to obtain various profiles for
the matrix adaptation gain F(t) (see section 7 and [?]). By
taking λ2(t)≡ 0 and λ1(t)≡ 1, one gets a constant adaptation
gain matrix (and choosing F = γI, γ > 0 one gets a scalar
adaptation gain).

Three choices for the filter L will be considered, leading to
three different algorithms:
Algorithm I: L = G
Algorithm II: L = Ĝ
Algorithm III:

L =
ÂM

P̂
Ĝ (37)

where:
P̂ = ÂM Ŝ− B̂MR̂ (38)

is an estimation of the characteristic polynomial of the in-
ternal feedback loop computed on the basis of available es-
timates of the parameters of the filter N̂.
For the Algorithm III several otions for updating P̂ can be
considered:
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• Run Algorithm II for a certain time to get estimates of R̂
and Ŝ
• Run a simulation (using the identified models)
• Update P̂ at each sampling instant or from time to time

using Algorithm III (after a short initialization horizon
using Algorithm II)

The following procedure is applied at each sampling time
for adaptive or self-tuning operation:

(1) Get the measured image of the disturbance û(t+1), the
measured residual error χ0(t +1) and compute ν0(t +
1) =−χ0(t +1)

(2) Compute φ(t) and φ f (t) using (15) and (30)
(3) Estimate the parameter vector θ̂(t +1) using the para-

metric adaptation algorithm (32) through (36).
(4) Compute (using (16)) and apply the control.

5 Analysis of the Algorithms

5.1 The Deterministic Case - Perfect Matching

For algorithms I, II and III the equation for the a-posteriori
adaptation error has the form:

ν(t +1) = H(q−1)[θ − θ̂(t +1)]T ψ(t) (39)

where:

H(q−1) =
AM(q−1)G(q−1)

P(q−1)L(q−1)
,ψ = φ f (40)

Neglecting the non-commutativity of time varying operators,
one has the following result:

Lemma 5.1: Assuming that eq. (39) represents the evolution
of the a posteriori adaptation error and that the parameter
adaptation algorithm (32) through (36) is used, one has:

lim
t→∞

ν(t +1) = 0 (41)

lim
t→∞

[ν0(t +1)2]

1+ψ(t)T F(t)ψ(t)
= 0 (42)

||ψ(t)|| is bounded (43)
lim
t→∞

ν
0(t +1) = 0 (44)

for any initial conditions θ̂(0),ν0(0),F(0), provided that:

H ′(z−1) = H(z−1)− λ2

2
,max

t
[λ2(t)]≤ λ2 < 2 (45)

is a strictly positive real transfer function.

Proof: Using Theorem 3.2 from [?], under the condition
(45), (41) and (42) hold.

However in order to show that ν0(t+1) goes to zero one has
to show first that the components of the observation vector

are bounded. The result (42) suggests to use the Goodwin’s
”bounded growth” lemma ([13] and Lemma 11.1 in [?]).

Provided that one has:

|ψT (t)F(t)ψ(t)|
1
2 ≤C1 +C2. max

0≤k≤t+1
|ν0(k)| (46)

0 <C1 < ∞ 0 <C2 < ∞ F(t)> 0

||ψ(t)|| will be bounded. So it will be shown that (46) holds
for algorithm I (for algorithms II and III the proof is similar).
From (22) one has:

−ẑ(t) = ν(t)+ x(t) (47)

Since x(t) is bounded (output of an asymptotically stable
system with bounded input), one has:

|− ŷ f (t)|= |−Gŷ(t)|= |− ẑ(t)| ≤C3 +C4 · max
0≤k≤t+1

|ν(k)|

≤C′3 +C′4 · max
0≤k≤t+1

|ν0(k)| (48)

0 <C3,C4,C′3,C
′
4 < ∞ (49)

since |ν(t)| ≤ |ν0(t)| for all t. Filtering both sides of equation
(19) by G(q−1) one gets in the adaptive case:

û f (t) =
BG

AG
d(t)+

BM

AM
ŷ f (t) (50)

Since AG and AM are Hurwitz polynomials and d(t) is
bounded, it results that:

|û f (t)| ≤C5 +C6 · max
0≤k≤t+1

|ν0(k)|; 0 <C5,C6 < ∞ (51)

Therefore (46) holds, which implies that ψ(t) is bounded
and one can conclude that (44) also holds. End of the proof.

It is interesting to remark that for Algorithm III taking into
account equation (37), the stability condition is that:

AM

ÂM
· P̂

P
· G

Ĝ
− λ2

2
(52)

should be a strictly positive real transfer function. However
this condition can be re-written for λ2 = 1 as ( [16,15]):∣∣∣∣∣

(
AM

ÂM
· P̂

P
· G

Ĝ

)−1

−1

∣∣∣∣∣< 1 (53)

for all ω . This roughly means that it always holds provided
that the estimates of AM , P, and G are close to the true values
(i.e. H(e jω) in this case is close to a unit transfer function).
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5.2 The Stochastic Case - Perfect Matching

There are two sources of measurement noise, one acting on
the primary transducer which gives the correlated measure-
ment with the disturbance and the second acting on the mea-
surement of the residual error (force, acceleration). For the
primary transducer the effect of the measurement noise is
negligible since the signal to noise ratio is very high. The
situation is different for the residual error where the effect
of the noise can not be neglected.

In the presence of the measurement noise (w), the equation
of the a-posteriori residual error becomes:

ν(t +1) = H(q−1)[θ − θ̂(t +1)]T ψ(t)+w(t +1) (54)

The O.D.E. method [16,15] can be used to analyse the
asymptotic behavior of the algorithm in the presence of
noise. Taking into account the form of equation (54), one
can directly use theorem 4.1 of [?] or theorem B1 of [12].

The following assumptions will be made:

(1) λ1(t) = 1 and λ2(t) = λ2 > 0
(2) θ̂(t) generated by the algorithm belongs infinitely often

to the domain DS:

DS , {θ̂ : P̂(z−1) = 0⇒ |z|< 1}

for which stationary processes:

ψ(t, θ̂), ψ(t)|
θ̂(t)=θ̂=const

χ(t, θ̂) = χ(t)|
θ̂(t)=θ̂=const

can be defined.
(3) w(t) is a zero mean stochastic process with finite mo-

ments and independent of the sequence d(t).

From (54) for θ̂(t) = θ̂ , one gets:

ν(t +1, θ̂) = H(q−1)[θ − θ̂ ]T ψ(t, θ̂)+w(t +1, θ̂) (55)

Since ψ(t, θ̂) depends upon d(t) one concludes that ψ(t, θ̂)
and w(t + 1, θ̂) are independent. Therefore using Theorem
4.1 from [?] it results that if:

H ′(z−1) =
AM(z−1)G(z−1)

P(z−1)L(z−1)
− λ2

2
(56)

is a strictly positive real transfer function, one has:
Prob{ lim

t→∞
θ̂(t) ∈ DC}= 1

where: DC = {θ̂ : ψT (t, θ̂)(θ − θ̂) = 0}.
If furthermore ψT (t, θ̂)(θ − θ̂) = 0 has a unique solution
(richness condition), the condition that H ′(z−1) be strictly
positive real implies that: Prob{ lim

t→∞
θ̂(t) = θ}= 1.

5.3 The Case of Non-Perfect Matching

If N̂(t,q−1) does not have the appropriate dimension there
is no chance to satisfy the perfect matching condition.
Two questions are of interest in this case:

(1) The boundedness of the residual error
(2) The bias distribution in the frequency domain

5.3.1 Boundedness of the residual error

For analyzing the boundedness of the residual error, results
from [12,13], can be used. The following assumptions are
made:

(1) There exists a reduced order filter N̂ characterized by
the unknown polynomials Ŝ (of order nS) and R̂ (of
order nR), for which the closed loop formed by N̂ and
M is asymptotically stable. i.e. AM Ŝ−BMR̂ is a Hurwitz
polynomial.

(2) The output of the optimal filter satisfying the matching
condition can be expressed as:

ŷ(t +1) =−[Ŝ∗(q−1)ŷ(t)− R̂(q−1)û(t +1)+η(t +1)]
(57)

where η(t +1) is a norm bounded signal

Using the results of [12] (theorem 4.1 pp 1505-1506) and
assuming that d(t) is norm bounded, it can be shown that
all the signals are norm bounded under the passivity condi-
tion (45), where P is computed now with the reduced order
estimated filter.

5.3.2 Bias distribution

Using the Parseval’s relation, the asymptotic bias distribution
of the estimated parameters in the frequency domain can be
obtained starting from the expression of ν(t), by taking into
account that the algorithm minimizes (almost) a criterion of
the form lim

N→∞

1
N ∑

N
t=1 ν2(t).

The bias distribution (for algorithm III) will be given by:

θ̂
∗ = argmin

θ̂

∫
π

−π

[|D( jω)− N̂( jω)G( jω)

1− N̂( jω)M( jω)
|2φd(ω)

+ φw(ω)]dω (58)

where φd and φw are the spectral densities of the disturbance
d(t) and of the measurement noise. Taking into account
equation (24), one obtains:

θ̂
∗ = argmin

θ̂

∫
π

−π

[|SNM|2|N− N̂|2|SN̂M|
2|G|2φd(ω)

+ φw(ω)]dω (59)

where SNM and SN̂M are the output sensitivity functions of
the internal closed loop for N and respectively N̂: SNM =

1
1−NM ;SN̂M = 1

1−N̂M
.
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From (58) and (59) one concludes that a good approxima-
tion of N will be obtained in the frequency region where φd
is significant and where G has a high gain (usually G should
have high gain in the frequency region where φd is signifi-
cant in order to counteract the effect of d(t)). However the
quality of the estimated N̂ will be affected also by the output
sensitivity functions of the internal closed loop N−M.

5.4 Relaxing the Positive Real Condition

It is possible to relax the strictly positive real (S.P.R.) con-
ditions taking into account that:

(1) The disturbance (input to the system) is a broadband
signal

(2) Most of the adaptation algorithms work with a low
adaptation gain.

Under these two assumptions, the behavior of the algorithm
can be well described by the ”averaging theory” developed
in Anderson and al. [2] and Ljung [16] (see also [?]).

When using the averaging approach, the basic assumption of
a slow adaptation holds for small adaptation gains (constant
and scalar in [2] i.e. λ2(t) ≡ 0,λ1(t) = 1; matrix and time
decreasing asymptotically in [16,?] i.e lim

t→∞
λ1(t)= 1,λ2(t)=

λ2 > 0 or scalar and time decreasing.).
In the context of averaging, the basic condition for stability
is that:

lim
N→∞

1
N

N

∑
t=1

ψ(t) H ′(q−1)ψT (t) =
1
2

∫
π

−π

ψ(e jω)[H ′(e jω)

+ H ′(e− jω)]ψT (e− jω)dω > 0 (60)

be a positive definite matrix (ψ(e jω) is the Fourier trans-
form of ψ(t)).
One can view (60) as the weighted energy of the observa-
tion vector ψ . Of course the S.P.R sufficient condition upon
H ′(z−1) (see Equation 45) allows to satisfy this condition.
However in the averaging context it is only needed that (60)
is true which allows that H ′ be non positive real in a lim-
ited frequency band. Expression (60) can be re-written as
follows:∫

π

−π

ψ(e jω)[H ′+H ′∗]ψT (e− jω)dω =

r

∑
i=1

∫
αi+∆i

αi

ψ(e jω)[H ′+H ′∗]ψT (e− jω)dω−

p

∑
j=1

∫
β j+∆ j

β j

ψ(e jω)[H̄ ′+ H̄ ′∗]ψT (e− jω)dω > 0 (61)

where H ′ is strictly positive real in the frequency intervals
[αi,αi+∆i] and H̄ ′ =−H ′ is positive real in the frequencies
intervals [β j,β j +∆ j] (H ′∗ denotes the complex conjugate
of H ′). The conclusion is that H ′ does not need to be S.P.R.

It is enough that the ”positive” weighted energy exceeds the
”negative” weighted energy. This explains why algorithms
I and II will work in practice in most of the cases. It is
however important to remark that if the disturbance is a
single sinusoid (which violates the hypothesis of broadband
disturbance) located in the frequency region where H ′ is not
S.P.R, the algorithm may diverge (see [2,16]).

Without doubt, the best approach for relaxing the S.P.R.
conditions, is to use algorithm III (given in eq.(37)) instead
of algorithm II. This is motivated by equations (52) and (53).
As it will be shown experimentally, this algorithm gives the
best results.

6 Comparison with other algorithms

The algorithms developed in this paper with matrix and
scalar adaptation gain for IIR feedforward compensators will
be compared with the algorithm of Jacobson-Johnson ([8])
and the FULMS ([18]) algorithm. These two references con-
sider the same type of compensator and take into account
the internal positive feedback 5 .

Table 1 summarizes the structure of the algorithms, the sta-
bility and convergence conditions as well as the hypothe-
ses upon the structure of the system. The notations adopted
in this paper were used to describe the other algorithms.
A table in Appendix 2 gives the equivalence of the nota-
tions between the present paper and the notations used in
[8] and [18]. It was not possible to give in table 1 all the op-
tions for the adaptation gain. However basic characteristics
for adaptive operation (non vanishing adaptation gain) and
self-tuning operation (vanishing adaptation gain) have been
provided 6 .

7 Experimental results

A detailed view of the mechanical structure used for the
experiments has been given in figure 1 and the description
of the system has been given in section 2.

7.1 System identification

The models of the plant may be obtained by parametric
system identification with the same methodology used for
an active suspension in [13,11].

The secondary path between the control signal ŷ(t) and the
output χ(t) has been identified in the absence of the feedfor-
ward compensator. The excitation signal was a PRBS gener-
ated with a shift register with N = 10 and a frequency divider

5 Algorithms dedicated to FIR feedforward compensators have not
been considered because they are particular cases of the algorithms
for IIR compensators.
6 Convergence analysis can be applied only for vanishing adap-
tation gains.
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Paper (Matrix gain) Paper (Scalar gain) Jacobson-Johnson(Scalar gain) FULMS (Scalar gain)

θ̂(t +1) = θ̂(t)+F(t)ψ(t) ν0(t+1)
1+ψT (t)F(t)ψ(t) θ̂(t)+ γ(t)ψ(t) ν0(t+1)

1+γ(t)ψT (t)ψ(t) θ̂(t)+µγψ(t) ν0(t+1)
1+γψT (t)ψ(t) θ̂(t)+ γ(t)ψ(t−1)ν0(t)

Adapt.
gain

F(t +1)−1 = λ1(t)F(t)+

γ(t)> 0 γ > 0, 0 < µ ≤ 1 γ(t)> 0
+λ2(t)ψ(t)ψT (t)

0≤ λ1(t)< 1,0≤ λ2(t)< 2

F(0)> 0

Adaptive Decr. gain and const. trace γ(t) = γ = const γ > 0 γ(t) = γ = const

Self λ2 = const. ∞

∑
t=1

γ(t) = ∞, lim
t→∞

γ(t) = 0
Does not ∞

∑
t=1

γ(t) = ∞, lim
t→∞

γ(t) = 0
tuning lim

t→∞
λ1(t) = 1 apply

φ T (t) = [−ŷ(t), . . . , û(t +1), . . .] [−ŷ(t), . . . , û(t +1), . . .] [−ŷ(t), . . . , û(t +1), . . .] [−ŷ(t), . . . , û(t +1), . . .]

ψ(t) =

Lφ(t) Lφ(t)

φ(t)
Lφ(t)
L = ĜL2 = Ĝ; L3 =

ÂM
P̂

Ĝ L2 = Ĝ; L3 =
ÂM
P̂

Ĝ

P̂ = ÂM Ŝ− B̂MR̂ P̂ = ÂM Ŝ− B̂MR̂

G = BG
AG

BG = b1G z−1 +b2G z−2 + . . . BG = b1G z−1 +b2G z−2 + . . . BG = 1, AG = 1 BG = b1G z−1 +b2G z−2 + . . .

AG = 1+a1G z−1 +a2G z−2 + . . . AG = 1+a1G z−1 + . . . or G = SPR AG = 1+a1G z−1 + . . .

M = BM
AM

BM = b1M z−1 +b2M z−2 + . . . BM = b1M z−1 +b2M z−2 + . . . BM = b1M z−1 +b2M z−2 + . . . BM = b1M z−1 +b2M z−2 + . . .

AM = 1+a1M z−1 +a2M z−2 + . . . AM = 1+a1M z−1 + . . . AM = 1 AM = 1

D = BD
AD

BD = b1D z−1 +b2D z−2 + . . . BD = b1D z−1 +b2D z−2 + . . . BD = b1D z−1 +b2D z−2 + . . . BD = b1D z−1 +b2D z−2 + . . .

AD = 1+a1D z−1 +a2D z−2 + . . . AD = 1+a1D z−1 + . . . AD = 1 AD = 1+a1D z−1 + . . .

Stability AMG
PL −

λ

2 = SPR AMG
PL = SPR G = SPR Unknown

condition λ = maxλ2(t)

Conv. AMG
PL −

λ

2 = SPR AMG
PL = SPR

Does not G
PĜ

= SPR
condition λ = λ2 apply

Table 1
Comparison of algorithms for adaptive feedforward compensation in AVC with mechanical coupling
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Fig. 4. Frequency characteristics of the primary, secondary and
reverse paths

of p = 4. The estimated orders of the model are nBG = 15,
nAG = 13. The best results in terms of model validation were
obtained with Recursive Extended Least Square method. The
frequency characteristic of the secondary path is shown in
figure 4 (solid). There are several very low damped vibration
modes in the secondary path. The first vibration mode is at
46.56Hz with a damping of 0.013, the second at 83.9Hz with
a damping of 0.011, the third one at 116Hz with a damping

of 0.014. There is also a pair of low damped complex ze-
ros at 108Hz with a damping of 0.021. There are two zeros
on the unit circle corresponding to the double differentiator
behavior.
The reverse path M(q−1) has been identified in the absence
of the feedforward compensator with the same PRBS exci-
tation (N = 10 and a frequency divider of p = 4) applied at
ŷ(t) and measuring the output signal of the primary trans-
ducer û(t). The estimated orders of the model are nBM = 15,
nAM = 13. The frequency characteristic of the reverse path
is presented in figure 4 (dotted). There are several very low
damped vibration modes at 46.20Hz with a damping of
0.045, at 83.9Hz with a damping of 0.01, at 115Hz with a
damping of 0.014 and some additional modes in high fre-
quencies. There are two zeros on the unit circle correspond-
ing to the double differentiator behavior.
The primary path has been identified in the absence of the
feedforward compensator using d(t) as an input and measur-
ing χ(t). The disturbance s(t) was a PRBS sequence (N=10,
frequency divider p=2). The estimated orders of the model
are nBD = 26, nAD = 26. The frequency characteristic is pre-
sented in figure 4 (dashed) and may serve for simulations
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and detailed performance evaluation. Note that the primary
path features a strong resonance at 108 Hz, exactly where
the secondary path has a pair of low damped complex zeros
(almost no gain). Therefore one can not expect good atten-
uation around this frequency.

7.2 Broadband disturbance rejection using matrix adap-
tation gain

The performance of the system for rejecting broadband dis-
turbances will be illustrated using the adaptive feedforward
scheme. The adaptive filter structure for most of the experi-
ments has been nR = 9, nS = 10 (total of 20 parameters) and
this complexity does not allow to verify the ”perfect match-
ing condition” (not enough parameters). The influence of the
number of parameters upon the performance of the system
has been also investigated (up to 40 parameters).

A PRBS excitation on the global primary path will be con-
sidered as the disturbance. The corresponding spectral den-
sities of d(t) in open loop and of û(t) when feedforward
compensation is active are shown in figure 5 (the effect of
the mechanical feedback is significant).
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Fig. 5. Spectral densities of the image of the disturbance in open
loop d(t) and in feedforward compensation scheme û(t) (experi-
mental)

For the adaptive operation the Algorithms II and III have
been used with decreasing adaptation gain (λ1(t) = 1,
λ2(t) = 1) combined with a constant trace adaptation gain 7 .
Once the trace of the adaptation gain is below a given value,
one switches to the constant trace gain updating. The trace
of the adaptation gain F(t) is maintained constant by mod-
ifying appropriately λ1(t) for a fixed ratio α = λ1(t)/λ2(t).
The corresponding formula is:

trF(t +1) =
1

λ1(t)
tr[F(t)− F(t)ψ(t)ψ(t)T F(t)

α +ψ(t)T F(t)ψ(t)
] = trF(t) (62)

7 Almost similar results are obtained if instead of the ”decreasing
adaptation gain” one uses adaptation gain updating with variable
forgetting factor λ1(t) (the variable forgetting factor tends towards
1).

The advantage of the constant trace gain updating is that the
adaptation moves in an optimal direction (least squares) but
the size of the step does not go to zero. For details see [14,?].

The experiments have been carried on by first applying
the disturbance and then starting the adaptive feedforward
compensation after 50s. Time domain results obtained in
open loop and with adaptive feedforward compensation al-
gorithms II and III on the AVC system are shown in figure
6 and figure 7, respectively. The filter for the Algorithm III
has been computed based on the parameter estimates ob-
tained with algorithm II at t=3600s (almost same results are
obtained if the initialization horizon is of the order of 200
s). The initial trace of the matrix adaptation gain for 20 pa-
rameters was 10 and the constant trace has been fixed at 0.2.
As it can be seen the transient duration for Algorithm II is
approximatively 75s seconds while for algorithm III is ap-
proximately 12s.

The variance of the residual force without the feedfor-
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Fig. 6. Real time results obtained with Algorithm II using matrix
adaptation gain
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Fig. 7. Real time results obtained with Alagorithm III using matrix
adaptation gain

ward compensator is: var(χ(t) = x(t)) = 0.0354. With adap-
tive feedforward compensation algorithm II, the variance
is: var(χ(t)) = 0.0058 (evaluated after 175s, when the tran-
sient is finished). This corresponds to a global attenuation of
15.68dB dB. Using algorithm III the variance of the resid-
ual acceleration is: var(χ(t)) = 0.0054. This corresponds to
a global attenuation of 16.23 dB, which is an improvement
with respect to algorithm II. The convergence of the param-
eters is much slower (but this does not have impact on the
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Fig. 8. Evolution of the feedforward compensator parameters for
Algorithm III using matrix adaptation gain (experimental)
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Fig. 9. Power spectral densities of the residual acceleration in open
loop and with adaptive feedforward compensation (experimental)

Number of parameters 20 32 40

Global attenuation (db)16.2316.4916.89
Table 2
Influence of the number of parameters upon the global attenuation

performance). This is illustrated on figure 8. The experiment
has been carried over 13 hours using algorithm III. Figure
9 shows the power spectral densities of the residual acceler-
ation measured on the AVC in open loop (without compen-
sator) and using adaptive feedforward compensation (after
the adaptation transient i.e. 175s). The corresponding global
attenuations are also given. Algorithm III performs slightly
better than algorithm II. The influence of the number of pa-
rameters upon the performance of the system is summarized
in Table 2 for the case of algorithm III. The global attenua-
tion is slightly improved when the number of parameters of
the compensator is augmented over 20 (the PSD are almost
the same).

To test the adaptive capabilities of the algorithms, a sinu-
soidal disturbance has been added at 1500s (adaptation al-
gorithm III with constant trace set at 1). Figure 10 shows
the time domain results in the case when the adaptation is
stopped prior to the application of the sinusoidal disturbance
(upper diagram) and when the adaptation is active (lower di-
agram). The duration of the transient is approximatively 25s.
Figure 11 shows the evolution of the parameters when the
sinusoidal disturbance is applied. The power spectral den-
sities when adaptation is stopped prior to the application of
the sinusoidal disturbance and when adaptation is active are
shown in Figure 12. One can remark a strong attenuation

of the sinusoidal disturbance (larger than 35dB) without af-
fecting other frequencies (similar results are obtained with
algorithm II).
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Fig. 10. Real time results for rejection of an additional sinusoidal
disturbance. Upper diagram: adaptation stopped prior application
of the disturbance. Lower diagram: adaptation is active

0 500 1000 1500 2000 2500

−1

−0.5

0

0.5

1

Convergence of the feedforward compensator parameters

Time [sec]

A
da

pt
iv

e 
fil

te
r 

pa
ra

m
et

er
s

Fig. 11. Evolution of the compensator parameters when a sinu-
soidal disturbance is added (experimental)

7.3 Broadband disturbance rejection using scalar adapta-
tion gain

Experiments have been carried out under the same protocol
using the algorithms with scalar adaptation gain given in
columns 2 (introduced in this paper), 3 ([8]) and 4 ([18]) of
Table 1. The algorithm of Jacobson-Johnson (column 3) was
unstable even for very low adaptation gain. The explanation
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Fig. 12. Power spectral densities of the residual acceleration when
an additional sinusoidal disturbance is added (Disturbance = PRBS
+ sinusoid)
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Fig. 13. Real time results obtained with FULMS algorithm

is clear. It does not use filtering at least by Ĝ and since
G is not positive real (in particular in the frequency zone
where most of the energy of the disturbance is concentrated)
the instability is not surprising. To make a fair comparison
the same adaptation gain has been used for the algorithms
given in column 2 and 4 of Table 1. Since the FULMS is
very sensitive to the value of the adaptation gain (becomes
easily unstable and the transients are very bad) a value for
the adaptation gain of 0.001 has been chosen (for a higher
value FULMS is unstable). This value corresponds to a trace
of a diagonal matrix adaptation gain of 0.02 when using a
compensator filter with 20 parameters.

Figure 13 shows the adaptation transient for the FULMS
algorithm. The maximum value is unacceptable in practice
(one can not tolerate an overshoot over 30% of the uncom-
pensated residual acceleration). Figure 14 shows the adap-
tation transient for the scalar version of the algorithm III.
It is surprisingly good. Almost same transient behavior is
obtained with the scalar version of algorithm II. Figure 15
and figure 16 show the evolution of the parameters for the
FULMS algorithm and the scalar version of algorithm III.
One can see jumps in the evolution of the parameters for the
FULMS algorithms and instabilities occurs on a long run.
For the algorithm III evolution of the parameters is smooth
and no instabilities occur in a long run (12 hours). Compar-
ing figure 16 and figure 8 one can see that the convergence
point in the parameter space is not the same. Either the al-
gorithm with scalar gain has not yet converged or there are
several local minima in the case of a compensator with not
enough parameters for satisfying the perfect matching con-
dition.

The performances in the frequency domain are summarized
in figure 17 where the power spectral densities and the global
attenuation provided by the algorithms with scalar adapta-
tion gain are shown. In figure 17 also the performances of
a H∞ compensator designed in [1] are also given (initial
complexity: 70 parameters, reduced to 40 without loss of
performance). The H∞ design provides better performance
than the FULMS but less good performance than the perfor-
mance provided by algorithms II and III in their scalar or
matrix version (despite that the number of filter parameters
is divided by 2).
Adaptation capabilities have been tested by adding a sinu-
soidal disturbance like for the case of matrix adaptation gain.
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Fig. 14. Real time results obtained with Algorithm III using scalar
adaptation gain
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Fig. 15. Evolution of the feedforward compensator parameters
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Fig. 16. Evolution of the feedforward compensator parameters
(experimental) - Algorithm III using scalar adaptation gain
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loop and with adaptive feedforward compensation using scalar
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Fig. 18. Spectral densities of the residual acceleration in open
loop and with adaptive feedforward compensation using scalar
adaptation gain (Disturbance = PRBS + sinusoid)(experimental)

The FULMS has been destabilized by the application of the
sinusoidal disturbance. Figure 18 shows the power spectral
densities of the residual acceleration when the adaptation is
stopped before the sinusoidal disturbance is applied, when
the adaptation is active and when the H∞ compensator (not
designed for this supplementary disturbance) is used. The
performance of the adaptation algorithm III with scalar gain
is less good than in the case of matrix adaption gain (see
Figure 12). The sinusoidal disturbance is attenuated in the
scalar case by 20db while the attenuation is over 35dB with
a matrix adaptation gain. In addition the performance is de-
graded in the frequency region 170-270 Hz which does not
occur when using a matrix adaption gain. The H∞ compen-
sator does a very little attenuation of the sinuosoidal distur-
bance (2.6dB). It does not have ”adaptation capabilities”.

8 Concluding Remarks

The paper has presented several new algorithms for adap-
tive feedforward compensation in AVC systems taking into
account the existence of an inherent internal positive feed-
back coupling.
Theoretical analysis has pointed out the presence of a suf-
ficient condition for stability involving a positive real con-
dition on a certain transfer function. This condition can be
relaxed by taking into account the nature of the disturbance
(broadband) or by an appropriate filtering of the regressor
vector.
Real time results obtained on an active vibration control sys-
tem have shown the feasibility and good performance of the
proposed algorithms. The algorithms have been compared
theoretically and experimentally with two other algorithms
for which an analysis in the context of the internal positive
feedback is available as well as with an H∞ controller. It
will be interesting to test the proposed algorithms on ANC
systems.
Subjects for further research may include: 1) initializa-
tion procedures using model based designed feedforward
compensators 2) imposing constraints on the poles of the
internal positive feedback loop.

Appendix 1: Proof of lemma 4.1

Proof: Under the assumption H2 (perfect matching condi-
tion) the output of the primary path can be expressed as:

x(t) =−G(q−1)y(t) (63)

where y(t) is a dummy variable given by:

y(t +1) =−S∗(q−1)y(t)+R(q−1)u(t +1)

= θ
T

ϕ(t) =
[
θ

T
S ,θ

T
R
][ ϕy(t)

ϕu(t)

]
(64)

where:

θ
T = [s1, ...snS ,r0,r1, ...rnR ] =

[
θ

T
S ,θ

T
R
]

(65)

ϕ
T (t) = [−y(t)...− y(t−nS +1),u(t +1)...u(t−nR +1)]

=
[
ϕ

T
y (t),ϕ

T
u (t)

]
(66)

and u(t) is given by:

u(t +1) = d(t +1)+
B∗M(q−1)

AM(q−1)
y(t) (67)

For a fixed value of the parameter vector θ̂ characterizing
the estimated filter N̂(q−1) of same dimension as the opti-
mal filter N(q−1), the output of the secondary path can be
expressed by (in this case ẑ(t) = ẑ0(t) and ŷ(t) = ŷ0(t)):

ẑ(t) = G(q−1)ŷ(t) (68)

where:
ŷ(t +1) = θ̂

T
φ(t) (69)

The key observation is that the dummy variable y(t+1) can
be expressed as:

y(t +1) = θ
T

φ(t)+θ
T [ϕ(t)−φ(t)]

= θ
T

φ(t)+θ
T
S [ϕy−φŷ]+θ

T
R [ϕu−φû] (70)

Define the dummy error (for a fixed vector θ̂ )

ε(t +1) = y(t +1)− ŷ(t +1) (71)

and the adaptation error becomes:

ν(t +1) =−x(t)− ẑ(t) = G(q−1)ε(t +1) (72)

It results from (70) by taking into account the expressions
of u(t) and û(t) given by (67) and (19) that:

y(t +1) = θ
T

φ(t)−
(

S∗(q−1)− R(q−1)B∗M(q−1)

AM(q−1)

)
ε(t)

(73)
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Using equations (69) and (71), one gets (after passing all
terms in ε on the left hand side):

ε(t +1) =
AM(q−1)

P(q−1)
[θ − θ̂ ]T φ(t) (74)

Taking now into account equation(72) one obtains equation
(26). End of the proof.

Appendix 2: Equivalence of notations

Present paper In [8] In [18]

t k k

D P G

G C P

BM F F

AM 1 1

N W C

R b0 +b1q−1 + . . . A

S 1−a1q−1− . . . B

d s x

ŷ ŷ u

û u x+Fu

γ
1
δ

γ

φ φ φ

ψ = Lφ φ P̂φ

F 1
δ

I γI

Table 3
Present notations compared to those of [8] and [18]
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