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Résumeé

Ce travail présente 'application aux composites fibrésid’nouvelle théorie de plaque. Ce modeéle destiné aux plaques
épaisses et anisotropes utilise les six inconnues statideda theorie de Kirchhoff-Love auxquelles sont ajoutées s
nouvellesinconnues représentant le gradient du momerederil Nommé théorie Bending-Gradient, ce nouveau modéle
peut étre considéré comme une extension aux plaques héb&@®dans I'épaisseurs du modele de Reissner-Mindlin; ce
dernier étant un cas particulier lorsque la plaque est hémeg_a théorie Bending-Gradient est appliquée aux plaques
stratifiées et comparée a la solution exacte de Paﬁhno Kilcaifa d’autres approches. Elle donne de bonnes prédsction
pour la fleche, pour la distribution des contraintes de lbésaent transverse ainsi que pour les déplacements plarss da
de nombreuses configurations matérielles.

Abstract

This work presents the application to laminated plates @&va plate theory for out-of-plane loaded thick plates whiee t
static unknowns are those of the Kirchhoff-Love theory, tich six components are added representing the gradient of
the bending moment. The Bending-Gradient theory is an eidarto arbitrarily layered plates of the Reissner-Mindlin
theory which appears as a special case when the plate is lem@ogs. The new theory is applied to multilayered plates
and its predictions are compared to full Mano’s exdatisos and other approaches. It gives good predictions of
both deflection, shear stress distributions and in-plagigl@ement distribution in many material configuration.

Mots Clés : Theorie de plaque, Modeéle d’ordre supérieur, Plaque SéatiPlague composite
Keywords : Plate theory, Higher-order models, Laminated plates, Gisitg plates

1. Introduction

Laminated plates are widely used in engineering applinatié-or instance angle-ply carbon fiber
reinforced laminates are commonly used in aeronautics.a@dewthese materials are strongly aniso-
tropic and the plate overall behavior is difficult to capturke simplest plate theory is Kirchhoff-Love
plate model. However, this theory does not enable the derivaf accurate transverse shear stress
distribution.

In recent decades many suggestions have been made to ger filmdéin Kirchhoff-Love model. Two
main approaches can be found : asymptotic approaches amahait approaches. The first one is
mainly based on asymptotic expansions in the small pararh;élte[@, B]. However, it leads to more
complex models than Reissner-Mindlin model which is comipaised by engineers. The second
main approach is based on assumaighocdisplacement or stress 3D fields. These models can be
“Equivalent Single Layer” or "Layerwise®. Equivalent silegayer models treat the whole laminate
as an equivalent homogeneous plate. However, when dealthgaminated plates, most of these
models lead to discontinuous transverse shear streswdigins through the thickness as indicated
by Reddy |ﬂ4]. In Layerwise models, all plate degrees of fomedire introduced in each layer of the

laminate and continuity conditions are enforced betwegarka The reader can refer to RedHL/ [4]
1
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and CarreraﬂS] for detailed reviews of kinematic approacied to |ﬂ3[|7|:|8] for static approaches.
Layerwise models lead to correct estimates of local 3D figttsvever, their main drawback is that
they involve a number of degrees of freedom proportionahéortumber of layers.

In [é @] we revisited the use of 3D equilibrium in order taige transverse shear stress as Reiss-
ner m] did for homogeneous plates. Thanks to standaratamial tools, this led to an Equivalent
Single Layer plate theory which takes accurately into antshear effects and does not require any
specific constitutive material symmetry : the Bending-Geatitheory. This plate theory is identi-
cal to the Reissner-Mindlin plate theory in the case of hoemegus plates. However, for laminated
plates, shear forces are replaced by the gradient of thermenibmen® = M ® 0. Hence, this theory
belongs to the family of higher-order gradient models. Theehanical meaning of the bending gra-
dient was identified as self-equilibrated static unknowssoaiated to warping functions in addition
to conventional shear forces.

The purpose of the present work is to present the applicatfaine Bending-Gradient theory to
highly anisotropic laminated plates. The paper is orgahae follows. In Sectionl2 notations are
introduced. In Sectiohl 3, the Bending-Gradient plate thé®shortly detailed. Then it is applied to
fibrous laminates under cylindrical bending in Secfibn 4 emmpared with approximations based on
Reissner-Mindlin theory.

2. Notations

Vectors and higher-order tensors are boldfaced and difféypefaces are used for each order : vectors
are slantedT, u. Second order tensors are sans s&vife. Third order tensors are in typewriter style :
¢,T. Fourth order tensors are in calligraphic stglee. Sixth order tensors are double stroked@.
When dealing with plates, both 2-dimensional (2D) and 33¢es are used. Thu¥, denotes a 3D
vector andT denotes a 2D vector or the in-plane partTofThe same notation is used for higher-
order tensorso is the 3D second-order stress tensor whilis its in-plane part. When dealing with
tensor components, the indexes specify the dimensigrdenotes the 3D tensarwith Latin index
i,],k.=1,2,3 andayg denotes the 2D tensarwith Greek indexest, 3,y.. = 1,2. The identity for
in-plane elast|C|ty ISapys = 5 (6ay635+6a563y) whered,g is Kronecker's symbol. The transpose
operation's is applied to any order tensors as follows$ A)ap.. g = Auwy...pa- Three contraction

products are defined, the usual dot prodacb(_ aib;), the double contraction produé’t:(B = ajjbji)
and a triple contraction produck (. B = Aqp,B\pq). Einstein’s notation on repeated indexes is used
in these definitions. It should be noticed that closest iedeare summed together in contraction

products. The derivation operat@ris also formally represented as a vectar £ = ajj0j = ajj,j is
the divergence ana® 0= ajj Uy = ajj k is the gradient. Herey is the dyadic product. Finally, the

h
integration through the thickness is not@d : [ 2, f(x3)dxz = (f).
2
3.  The Bending-Gradient plate theory

Summary of the plate model

We consider a linear elastic plate of thicknasshich mid-plane is the 2D domain C R? (Figure 1).
Cartesian coordinatéss, X2, X3) in the reference framg@,,€,,&3) are used. The local stiffness tensor
Gkl (X3) is assumed to be invariant with respect to translationser(xfy xo) plane and the plate is
loaded exclusively with the out-of-plane distributed = pzés.

The membrane streds the bending momem, and shear force® are related to the actual 3D local
stress by the following equations :

Nag (X1,X2) = (Ogp), Mgp (X1,X2) = (X304p), Qu (X1,X2) = (Oq3) (Eq.1)

Moreover, we introduce the gradient of the bending morReatM ® 0. The 2D third-order tens®
comply with the following symmetryRp, = RBGV'Z Itis possible to derive shear forol®dromR with :
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Fig. 1. The Plate Configuration

Q =i .".R. The full bending gradier® has six components where@shas two components. Thus,
using the full bending gradient as static unknown introdufoer static unknowns. More precisely we
have :R111 andRy22 are the cylindrical bending part of shear for€@sandQ-, R121 andR22 are the
torsion part of shear forces angh> andR,21 are linked to strictly self-equilibrated stresses.
Equilibrium equations and boundary conditions involvitigss fields are gathered in the set of stati-
cally compatible fields :

(N-O0=00nw (Eq. 2a)
M@O-R=0o0nw (Eq. 2b)
(i .R)-O0=-—psonw (Eq. 2¢)
N-n=V9ondw’ (Eq. 2d)
M = M¢ on dw® (Eq. 2e)

| (i..R)-n=V{ ondw® (Eq. 2f)

wheredwr is the portion of edge on which static boundary conditiorpi;lyalp\7OI is the force per unit
length and® the full bending moment enforced on the edge. This set oftensis almost identical

to Reissner-Mindlin equations where shear forces have tegsaced by the bending gradidt
Generalized stressBs M, andR work respectively with the associated strain variabéshe conven-
tional membrane strairy, the curvature andt the generalized shear strain. These strain fields must
comply with the following compatibility conditions and bodary conditions :

(e=i:(0xU) onw (Eq. 3a)
X=2%-Oonw (Eq. 3b)
r=%¢+i-0OUzonw (Eq. 3¢)
$-n=HY ondw (Eq. 3d)
~

LU =U onduf (Eq. 3e)

whereU is the average through the thickness of the 3D displacenifi¢me plate an@ is the generali-
zed rotationI" andé are 2D third-order tensors with the following symmetsy, = ¢py,. Moreover,

duwK is the portion of edge on which kinematic boundary condgiapply ﬂd Is a given displacement
andHY is a symmetric second-order tensor related to a forcedoatah the edge. These fields are al-
most identical to Reissner-Mindlin kinematically compégifields where the rotation pseudo-vector
is replaced by the generalized rotatdrAssumingt =i .. ¢ in[Eq. 3 lead to a Reissner-Mindlin like
kinematic.

Finally, for constitutive material following local monagic symmetry with respect t(x;, x2) plane
(uncoupling betweeR and(N,M)) the Bending-Gradient plate constitutive equations aitemras :

N=4a:e+B:X (Eq. 4a)
{Mtﬂ:e+1):x (Eq. 4b)
r=f.-R, wherg (I-Ff-F) .T=0 (Eq. 4c)
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where conventional Kirchhoff-Love stiffnesses are defiasd: (2,8, D) = ((1,%3,%3) ¢(x3)) and
¢(x3) is the local plane-stress stiffness tensor. The genedahear compliance tensbiis a sixth
order tensor :

f— /_22 </_X; (6 +2d) :c(z)dz) S(Xa) - (/_X;c(z) : (6+zd)dz) d¥e (Eq. 5)

2
where(a, 6,4) are the Kirchhoff-Love compliances ad= Sqpg = 4543p3 is the out-of-plane shear
compliance tensoss(= ¢~ 1). Sincef is not always invertible, we introduced Moore-Penrose geeu
inverse for the shear stiffness tengor
F=lim(f. . F+x) F

K—0
wherel is the identity for 2D sixth-order tensors following the gealized shear complian€eminor
and major symmetries (g,s:z = inpez Oy5)- The solution of the plate model must comply with the three
sets of equation$ (Eq| 2, Ed.[3, EQ. 4). The complidnisegpositive. However whefiis not definite,
there is a set of solutions, up to a self-stress field.

Fields localization

Once the plate model is solved, it is possible to recover gmaagmation of local 3D fields using
plate unknowns. The local stress is derived as :

6% =M :N+5M :M+35® - R (Eq. 6)
where
(N) _ 5 ds'N —o Eq.7
apeg %8) = capya(Xa) (oyeg +Xa beys)  aNdsiagy (Eq. 7a)
S(g'\B/IS)Z (X3> = CGBV5(X3) (ﬁéysz -+ X3 Lféysz) andsi(sl\s/lz) =0 (Eq 7b)

(®) __[" p foer)dz, s —0ands® =0 (Eq.7
SO(SnZs(X?’) | o CUF]V5(Z> ( Byl +2Z 5V€Z) Z, Sapnle — an 332 — (Eq. 7¢)
2

The in-plane displacement field is :
U =U —xg0U3 +0® - R (Eq. 8)

where
®) _ (g ), ® (®)
Vo’ = [ GZ(Z)SZSBy6(2>dZ+ka[3y6 (Eq. 9)
2

and the fourth order tens@® is an integration constant chosen sucf(ag)> =0.

4.  Application to laminates
4.1. Plate configuration

We consider angle-ply laminates. Each ply is made of urstiveal fiber-reinforced material oriented
at 0 relative to Directiorx;. All plies have the same thickness and are perfectly boundiéaiminate

is denoted between brackets by the successive ply-oriemsalong thickness. For instan/@,90°]
denotes a 2-ply laminate where the lower ply fibers are agkint the bending direction. The consti-
tutive behavior of a ply is assumed to be transversely ipatralong the direction of the fibers and
engineering constants are chosen similar to those of Pdiano

EL =25x1CPpsi, Er =1x10°psi Gur =0.5x1Ppsi, Gyt =0.4x 10°psi,
Vit =vr71=0.25

whereGt 1 has been changed to preserve transversely isotropic syminet the longitudinal direc-
tion oriented in theéxs,Xx2) plane a9 with respec‘{ t@(, T is the transverse direction.
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4.2. Cylindrical bending

Pagano|__[J1] gives an exact solution for cylindrical bendifhgimply supported composite laminates.
We choose the same configuration for the Bending-Gradiedem®he plate is invariant and infinite
in X direction. It is out-of-plane loaded withs(x1) = —poSinkx;. The plate is simply supported at
x1 = 0 andx; = L with traction free edges.

NB: Paganomﬂﬂ3] derived exact 3D elasticity solutiorhag problem for a laminate loaded only
on the upper face and free on the lower face. In the presert werassume the plate is identically
loaded on its upper and lower face to comply with the plateeh&] X T3+ =T; = % whereT3i is

the normal traction on the upper and lower face of the plate.

Closed-form solutions using the Bending-Gradient and thissher-Mindlin model were derived. For
the latter, the work of Whitneﬂi4] was used for derivingisgerse shear stress distributions. Shear
correction factors were taken into account into the sheastdoitive equation of the Reissner-Mindlin
plate model.

A comparison with a finite elements solution was also peréation ABAQUS]. Since the Bending-
Gradient is an Equivalent Single Layer theory, conventishall elements were chosen (3 displace-
ments and 3 rotations). Transverse shear fields with slesti@hts i are derived using an
approach very similar to Whitneﬁlm] where it is furtherrm@ssumed that the plate overall constitu-
tive equation is orthotropic with respect to the main begdimection.+4, linear quadrangle with full
integration elements, were used. A convergence test wésrperd. This study enforced the typical
size of an elementha = h/5 whereh is the plate thickness. For instance when the slenderness is
h/L = 1/4 there are 20 elements. Finally, section integration ifopered during the analysis.

4.3. Results

We consider first a symmetric cross po7,90°,0°,90°,0°,90°,0°,90°,0°] laminate. In this case, the
plate configuration fulfills the assumptions made for thedilements approximation (orthotropic
laminate). In Figur€l2, shear stress distributiorat O in Direction 1 is plotted for the exact solution
from Pagand [1] 65, the Bending-Gradient solutios®, \Whitney’s shear distributiona@-W and
the finite elements solutiona!Q)F&, The slenderness ratio is setltph = 4 as conventionally done
when benchmarking plate models. The three approximateicotuyield the same distribution. The
discrepancy with the exact solution is well-known and asded to edge effects.

In Figurel3 is plotted the in-plane displacement;at 0 in Direction 1. The displacement is normali-
zed with the mid-span Kirchhoff-Love deflectid.ﬂé“. The Bending-Gradient approximation follows
closely the exact solution.

In Figure[4 the mid-span deflection error is plotted versesdlenderness ratio for the Bending-
Gradient solutionBG), the finite elements solutiolRM, FE) and the closed-form Reissner-Mindlin
solution RM,WE). Kirchhoff-Love deflection is also plotted as referenchisTerror is defined as :

A(U3) = ng(b@(zys)(u 2), whereU£X(x, ) is the plate deflection taken for the exact solution. Thegthre
3

approximate solutions yield almost the same error.

Now we take the initial 9-ply configuration and simply rot#té5° with respect to the bending direc-
tion. It becomes a symmetric and non-orthotropi6’, —45°,45°, —45° 45° —45° 45’ —45° 45°]
laminate. This configuration does not comply with the asdionp made for the finite elements ap-
proach. In Figurél6 shear distributions are compared to xaetesolution. The Bending-Gradient
solution remains close to the exact solution. However fieieenents anmy’s solution yield a
different distribution which is not as accurate as the Begdbradient. More precisely, in Direction 2,
the FE solution does not capture the change of slope assd¢@mthe change of ply orientation.

In Figure[T is plotted the in-plane displacement in bothaioss. The Bending-Gradient approxi-
mation matches accurately the exact solution. Especiallpirection 2 the distribution follows a
Zig-Zag shape. Thus the Bending-Gradient approximati@iis to capture this well-known feature

5
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Fig. 2. Normalized shear distributiooi3 at x; = O for

a [0°,90°,0°,90°,0°,90°,0°,90°,0°] laminate, L/h = 4,

(023 = 0: symmetry).
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Fig. 3. In-plane displacement distributiom wat 3 = 0
fora[0°,90°,0°,90°,0°,90°,0°,90°,0°] laminate, L/h =4,
(uz = 0: symmetry).

Deflection error, A(Us)
Deflection error, A(Us)

10
Slenderness L/h 0 1ot 102
Slenderness L/h
Fig. 4. Deflection error versus slenderness ratio
for a [0°,90°,0°,90°,0°,90°,0°,90°,0°] laminate
(BG : Bending-Gradient, R\MFE : finite elements,
RM,W :[IQ], KL : Kirchhoff-Love)

Fig. 5. Deflection error versus slenderness ratio for a
[45°,—45° 45° —45° 45 —45° 45° —45° 45°] laminate

of laminates displacement fields. In Figlfe 5 the mid-spdleckon error is plotted versus the slen-
derness ratio. The Bending-Gradient solution is the masirate one for conventional slenderness.

4.4. Discussion

We have numerically compared three approaches for derauirgpproximation of the exact solution
for cylindrical bending suggested by Page{ﬂch_[_i, 13]iadpib a symmetric cross-ply configuration
in two bending directions.

The first main observation which comes out of this analysthescritical influence of the assump-
tion of orthotropy with respect to the bending direction. &dhthis assumption is fullfilled, the three
approximations lead to almost identical results. Othavvix)t’s and Finite Element ap-
proximations lead to poor estimation of transverse sheasstistribution and deflection. In the case
of finite elements this is because we do not respect the assumab the model. In the case of Whit-
ney ml], the main reason for this discrepancy comes fronaslsemption of cylindrical bending. This
assumption neglects the influence of the pure warping unkaomcluded in the bending gradient :

6
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Fig. 6. Normalized shear distribution in both directionsxat= 0 for a [45°, —45°,45°, —45° 45°, —45° 45° —A45° A5°]
laminate, L/h =4, a) 013 b) 023.
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Fig. 7. In-plane displacement distribution ag x O for a [45°,—45° 45° —45°,45° —45° 45° —45° 45°] laminate,
L/h=4,a) w b) u.

R112 andRy21 and generates the difference in shear stress distributidtiheerefore in deflection.

The second observation is that a simple rotation of the platerespect to the bending direction leads
to very different transverse shear stress distributioms $hows clearly the necessity to distinguish
between torsion and cylindrical bending components in tadignt of the bending moment. In most
plate models they are mixed into shear foro®s € R111+ R122) whereas the componerig; 1 and
R127 lead to different transverse shear stress distributiohgs &xplains the significant difference
when changing the bending direction. More generally, thisas the question of the relevence of
benchmarking plate models in configurations where only ytiedrical part of the bending gradient
is involved (assuming orthotropy with respect to the begdimection is a typical example) whereas
laminated plate engineering applications involves muchengeneral configurations.

Finally, the Bending-Gradient solution was presented f@lade which follows mirror symmetry.
This model gives a very good approximation of both local aratmscopic fields at a rather low
computational cost (no post-process integration throbghihiickness and Reissner-Mindlin-like par-
tial derivative equations).

When the laminate is not mirror-symmetric, the Bendingdbsrat gives less accurate results (details
are given in |L_;Lb]) : the transverse shear distribution orrilated in-plane displacement might not
exactly converge to the exact solution but still leads todjapproximation. Several explanations are

7
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currently under investigation. Especially, the contnbatto the stress energy of the membrane stress
gradientN @ O was ignored when deriving the Bending-Gradient model. Biggig this contribution
explains the discrepancy when the membrane stress in rmtwhich occurs when the plate is not
mirror-symmetric.

5. Conclusion

In the present work we provided first applications using tleadng-Gradient plate theory. Closed-

form solutions for cylindrical bending were applied to laxaies and compared to Reissner-Mindlin
and finite elements approximations. The main conclusiohas the Bending-Gradient gives good

predictions of both deflection and shear stress distribgatio many material configuration especially

when the plate is mirror-symmetric.

Several outlooks are under consideration. First, thisepla¢ory can be extended to periodic plates
such as sandwich paneE[@ 17]. Second, the estimatiomeoihtluence of the membrane stress
gradient on the quality of the shear stress estimation wiktoidied in detail.
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