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Abstract: We introduce the notion of continuous invertibility on a compact
set for volatility models driven by a Stochastic Recurrence Equation (SRE). We
prove in this context the strong consistency and the asymptotic normality of the
M-estimator associated with the Quasi-Likelihood criteria. We recover known
results on univariate and multivariate GARCH type models where the estima-
tor coincides with the classical QMLE. In EGARCH type models. our approach
gives a strongly consistence and asymptotically normal estimator when the
limiting covariance matrix exists. We provide a necessary and sufficient con-
dition for the existence of this limiting covariance matrix in the EGARCH(1,1)
model introduced in Nelson (1991). We exhibit for the first time sufficient con-
ditions for the asymptotic normality of the estimation procedure used in prac-
tice since Nelson (1991).
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1. Introduction

Since the seminal paper of Engle (1982) and Bollerslev (1986), the General Au-
toregressive Conditional Heteroskedasticity (GARCH) type models have been
successfully applied to volatility modeling. Nelson (1991) is the first attempt to
introduce non linearity into volatility models with the Exponential-GARCH(1,1)
type models. Since then, many other volatility models have been introduced:
APGARCH of Ding, Granger and Engle (1993), GJR-GARCH of Glosten, Jagannathan and Runkle
(1993), TGARCH of Zakoïan (1994), etc. Non linear volatility models have been
used extensively in empirical researches (see Brandt and Jones (2006) among
many others) and financial industry. Not surprisingly, theoretical investiga-
tions of EGARCH has attracted constant attention, see He, Teräsvirta and Malmsten
(2002), Harvey (2010) and Rodriguez and Ruiz (2009). However, the validity of
the estimation procedures used empirically in Nelson (1991) was not proved.
Our study provides the first satisfactory answer to this open question for non
linear volatility models including the EGARCH(1,1) model. We give sufficient
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conditions for the estimator to be strongly consistent and asymptotically nor-
mal. Our approach is based on the natural notion of continuous invertibility
that we introduce in a very general setting and thus will be applied in other
models in future works.

Consider a general volatility model of the form Xt = Σ1/2
t ·Zt where Σt is the

volatility and where the innovations Zt are normalized, centered independent
identical distributed (iid) random vectors. The natural filtrationFt is generated
by the past innovations (Zt, Zt−1, . . .). It is assumed that a transformation of the
volatility satisfies some (possibly non-linear) SRE, i.e. there exist a function h
and someFt−1 measurable random function ψt such that the following relation

(h(Σk))k≤t = ψt((h(Σk))k≤t−1, θ0) (1)

holds. It is the case of all classical models of GARCH and EGARCH types, ex-
tensions of the simplest GARCH(1,1) and EGARCH(1,1) univariate models. Let
us illustrate our propose in this introduction on these models (in the univariate
case, the volatility is denoted σ2

t ):

GARCH(1,1): σ2
t = α0 + β0σ2

t−1 + γ0X2
t−1, (2)

EGARCH(1,1): log(σ2
t ) = α0 + β0 log(σ2

t−1) + (γ0Zt−1 + δ0|Zt−1|). (3)

One can rewrite (2) as an SRE driven by the innovations: σ2
t = α0 + (β0 +

γ0Z2
t−1)σ

2
t−1, i.e. ψt(x, θ) = α+(β+γZ2

t−1)x. This SRE is used by Nelson (1990)
to obtain the Lyapunov condition E[log(β0 + γ0Z2

0)] < 0, necessary and suf-
ficient for the stationarity. In general, the functional process (ψt) driving the
SRE (1) is assumed to be a stationary ergodic process of Lipschitz functions.
Such a SRE is said to be convergent when its solution is unique, non antici-
pative (i.e. function of Ft at any time t) and its law does not depend on the
initial values. This last property, also called the "stability" of the SRE, ensures
the existence of the stationary process (Xt). It coincides with the ergodicity for
Markov chains. Sufficient conditions (also necessary in the linear Markov case)
for the convergence are the negativity of a Lyapunov coefficient and the ex-
istence of logarithmic moments, see Elton (1990), Bougerol and Picard (1992)
and Bougerol (1993).

Assume that the model have a non anticipative, stationary solution with
invertible volatility matrices Σt. Using the relation Zt = Σ−1

t · Xt in ψt, it is
possible to study a new SRE driven by the observations Xt

(h(Σk))k≤t = φt((h(Σk))k≤t−1, θ0). (4)

Here φt is an ergodic stationary process generated by (Gt−1), the sigma-field
of the past values (Xt−1, Xt−2, · · · ). The convergence of this new SRE is closely
related with the notion of invertibility (i.e. the existence of a non linear AR rep-
resentation of the observations) see Granger and Andersen (1978), Tong (1993),



O. Wintenberger and S. Cai/Inference under invertibility 3

Straumann (2005) and Straumann and Mikosch (2006). As previously, sufficient
conditions for the convergence are the negativity of a Lyapunov coefficient
and the existence of logarithmic moments; These conditions are expressed this
time on φ1 and not on ψ1. For instance, we obtain from (2) that φt(x, θ) =
α+ βx + γX2

t−1 and the GARCH(1,1) model is invertible as soon as 0 ≤ β0 < 1.
For the EGARCH(1,1) model, we obtain from (3) that

φt(x, θ) = α + βx + (γXt−1 + δ|Xt−1|) exp(−x/2). (5)

This SRE is less stable than in the GARCH(1,1) model because of the exponen-
tial function that explodes for large values. However, a sufficient condition for
invertibility is given in Straumann (2005) under restrictions on the parameters
(α0, β0, γ0, δ0), see (14) below.

In practice the parameter θ0 is unknown and is estimated using the SRE as
follow. An approximation of the SRE (h(gk))k≤t = φt((h(gk))k≤t−1, θ) gener-
ates recursively a forecast ĝt(θ) of the volatility Σt using only the past observa-
tions and the model at the point θ. Using Quasi-LIKelihood (QLIK) criteria to
quantify the error of the volatility forecasting:

nŜn(θ) =
n

∑
t=1

ŝt(θ) =
n

∑
t=1

2−1
(

XT
t `(ĝt(θ))

−1Xt + log(det(`(ĝt(θ)))
)

(6)

the best forecast corresponds to the M-estimator θ̂n satisfying

θ̂n = argminθ∈ΘŜn(θ). (7)

Under conditions ensuring the asymptotic regularity of Ŝn(·), θ̂n is a good can-
didate for estimating θ0. By construction, the asymptotic regularity of Ŝn(·) de-
pends on the regularity of gt(·) and on the stability of the corresponding SRE.
As θ0 is unknown, Straumann (2005) imposed the uniform invertibility over the
compact set Θ: The SRE is assumed to be stable in the Banach space of continu-
ous function on Θ (with the sup-norm). The consistency and the asymptotic
normality of θ̂n follows, see Straumann (2005) and Straumann and Mikosch
(2006). However, the notion of uniform invertibility is too restrictive; the asymp-
totic normality of the EGARCH(1,1) model is proved in the degenerate case
β0 = 0 only; there log(σ2

t ) = α0 + (γ0Zt−1 + δ0|Zt−1|) which is not realistic.

In this paper, we introduce the notion of continuous invertibility and ap-
ply it successfully to the EGARCH(1, 1) model: the asymptotic normality of the
procedure described above and used since Nelson (1990) is proved for the first
time. The notion of continuous invertibility is a very natural one: the SRE is
assumed to be stable at each point θ ∈ Θ and the functional solution (gt(·))
is assumed to be continuous. By definition, uniform invertibility implies the
weaker notion of continuous invertibility. We give sufficient conditions (CI)
for continuous invertibility and check it on volatility model that are non neces-
sarily uniformly invertible. We prove under (CI) and the identifiability of the
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model that θ̂n is a strongly consistent estimator of θ0 and that the natural fore-
cast ĝt(θ̂t) of the volatility Σt is also strongly consistent. We prove that θ̂n is
asymptotically normal if moreover the limiting variance exists. The proofs are
very general and also valid in the multidimensional case. In absence of uniform
invertibility, we use under (CI) new arguments following the ones of Jeantheau
(1993) for the strong consistency and of Bardet and Wintenberger (2009) for the
asymptotic normality. One crucial step in the proof is Theorem 2 below which
asserts the logarithmic moments properties of solutions of SRE. This results, by
its generality, is of independent interest for the study of probabilistic properties
of solutions of SRE (also called Iterated Random Functions).

The commonly used statistical procedure described above is only valid un-
der (CI). Fortunately condition (CI) is automatically satisfied for all invertible
GARCH and EGARCH type models known by the authors. The GARCH(1,1)
model satisfied (CI) on all compact sets of [0, ∞[3 satisfying β < 1 where it
is also uniformly invertible. The EGARCH(1,1) model satisfies (CI) on all com-
pact sets of points that satisfy the invertibility condition (13). It is not uniformly
invertible there but the statistical inference is still valid. Applying our approach
to other models, we recover the results of Berkes, Horvath and Kokoszka (2003)
and Francq and Zakoïan (2004) for GARCH(p,q) models, we recover the results
of Francq and Zakoïan (2011) for CCC-GARCH(p,q) models and for AGARCH(p,q)
models we refine the results of Straumann and Mikosch (2006). On the con-
trary, it is shown in Sorokin (2011) that forecasting the volatility with SRE may
be inconsistent when the SRE is unstable. Thus, if the model is not continuously
invertible on Θ the minimization (7) is unstable and the estimation procedure
is not valid. To sum up, one can think of the following "equivalences":

Stability of the SRE generated by ⇐⇒ stationarity, ergodicity
the innovations (Zt, Zt−1, . . .) (A) and log-moments
Stability of the SRE generated by ⇐⇒ invertibility, forecasting
the observations (Xt, Xt−1, . . .) (B) and statistical inference

The equivalence (A) is crucial when studying existence of stationary solu-
tions of volatility models. We want to emphasize the importance of the second
equivalence (B) for the volatility forecast and the statistical inference using the
QLIK criteria. For non uniformly invertible models, it is crucial to infer the
model only in the domain of invertibility otherwise the whole procedure can
fail. The consequences of this work on empirical study is huge as the equiva-
lence (B) has been negligible in most existing works, see Cai and Wintenberger
(2011) for the EGARCH(1,1) case (applications on other classical models are
also in progress). Finally, notice that the statistical inference of θ0 is possible
without assuming (CI): it has been done by Zaffaroni (2009) using Whittle’s
estimator.

An outline of the paper can be given as follows. In Section 2, we discuss
the standard notions of invertibility and introduce the continuous invertibility
and its sufficient condition (CI). In Section 3 our main results on the statistical
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inference based on the SRE are stated. We apply this results in some GARCH
type models and in the EGARCH(1,1) model in Section 4. The Appendix con-
tains the technical computation of the necessary and sufficient condition for
the existence of the asymptotic variance of θ̂n in the EGARCH(1,1) model.

2. Continuously invertible volatility models

2.1. The general volatility model

In this paper, (Zt) is a stationary ergodic sequence of real vectors called the in-
novations. Let us denote Ft the filtration generated by (Zt, Zt−1, . . .). Consider
the general volatility model Xt = Σ1/2

t · Zt where (1) is satisfied: (h(Σk))k≤t =
ψt((h(Σk))k≤t−1, θ0). The function h is injective from the space of real matri-
ces of size k× k to an auxiliary separable metric space F. The random function
ψt(·, θ0) is a Ft−1 adapted random function from the space of the sequences of
elements in the image of h to itself. Let us denote ` the inverse of h (from the
image of h to the space of real matrices of size k× k) and call it the link function.

2.2. Convergent SRE and stationarity

A first question regarding this very general model is wether or not a stationary
solution exists. As the sequence of the transformed volatilities (h(Σk))k≤t is a
solution of a fixed point problem, we recall the following result due to Elton
(1990) and Bougerol (1993). Let (E, d) be a complete separable metric space. A
map f : E → E is a Lipschitz map if Λ( f ) = sup(x,y)∈E2 d( f (x), f (y))/d(x, y)
is finite. For any sequence of random element in (E, d), (Xt) is said to be expo-

nential almost sure convergence to 0 Xt
e.a.s.−−−→ 0 as t → ∞ if for Xt = o(e−Ct)

a.s. for some C > 0.

Theorem 1. Let (Ψt) be a stationary ergodic sequence of Lipschitz maps from E to E.
Suppose that E[log+(d(Ψ0(x), x))] < ∞ for some x ∈ E, that E[log+ Λ(Ψ0)] < ∞
and that for some integer r ≥ 1,

E[log Λ(Ψ(r)
0 )] = E[log Λ(Ψ0 ◦ · · · ◦Ψ−r+1)] < 0.

Then the SRE Xt = Ψt(Xt−1) for all t ∈ Z is convergent: it admits a unique station-
ary solution (Yt)t∈Z which is ergodic and for any y ∈ E

Yt = lim
m→∞

Ψt ◦ · · · ◦Ψt−m(y), t ∈ Z.

The Yt are measurable with respect to the σ(Ψt−k, k ≥ 0) and

d(Ỹt, Yt)
e.a.s.−−−→ 0, t→ ∞

such that Ỹt = Ψt(Ỹt−1) for all t > 0.
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The sufficient Lyapunov assumptions E[log Λ(Ψ(r)
0 )] < 0 is also necessary

in the linear case, see Bougerol and Picard (1992).

The results of Theorem 1 does not guaranty any moment property on the
stationary solution. The following result ensures the existence of logarithmic
moments of the stationary solution under natural assumptions. It extends the
result of Alsmeyer and Fuh (2001) to a much more general context.

Theorem 2. Under the assumptions of Theorem (1) and E[(log+ d(Ψ0(x), x))2] <
∞ the unique stationary solution satisfies E[log+(d(Y0, y))] < ∞ for all y ∈ E.

Proof. The basic inequality log(1 + y + z) ≤ log(1 + y) + log(1 + z) will be
used several time. Notice that for any r.v. X ≥ 0 we have the equivalence
E[log(1 + X)] < ∞ iff E[log+(X)] < ∞. Thus E[log(1 + d(Y0, y))] < ∞ for
all y ∈ E iff E[log(1 + d(Y0, x))] < ∞ since d(Y0, y)) ≤ d(Y0, x)) + d(x, y).
We denote Ψ(−m) = Ψ0 ◦ · · · ◦ Ψ−m(x), w = d(y, Ψ(1−m)(x)) ≥ 0 and z =

Λ(Ψ(1−m))d(Ψ−m(x), x) ≥ 0. From the triangular inequality d(x, Ψ(−m)(x)) ≤
w + z we obtain that

log(1 + d(x, Ψ(−m)(x))) ≤ log(1 + w + z) ≤ log(1 + w) + log(1 + z).

Eqn. 27 in Bougerol and Picard (1992) asserts the existence of 0 < ρ < 1 and
ε > 0 satisfying

limm→∞
1
m

log(Λ(Ψ(−m))) ≤ log(ρ)− ε a.s.

Thus there exists a r.v. M ∈ N∗ such that Λ(Ψ(−m)) ≤ ρm for all m ≥ M.
Writing vm = log(1 + d(x, Ψ(−m)(x))), for all m ≥ M we have:

vm ≤ vm−1 + log(1 + ρm−1d(Ψ−m(x), x)).

A straightforward recurrence leads to the following upper bound of all (vm)m≥M

vm ≤ vM +
∞

∑
j=1

log(1 + ρj−1d(Ψ−j−M(x), x)).

As log(1 + d(x, Y0)) = limm→∞ vm a.s., it remains to prove that the series in
the upper bound is summable and that the upper bound is integrable to con-
clude by the dominated convergence Theorem. Using the stationarity of (vm),
we know that E[log(1 + ρj−1d(Ψ−j−M(x), x))] = E[log(1 + ρj−1d(Ψ0(x), x))]
does not depend on M and j. Thus E[vM] = E[log(1 + d(x, Ψ0(x)))] < ∞ by
assumption. We conclude the proof by comparing the series with an integral:

∑
j≥1

E[log(1 + ρj−1d(Ψ0(x), x))] ≤ 1
1− ρ

∫ 1

0

E[log(1 + ud(Ψ0(x), x))]
u

du.
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Let us prove that his integral converges as soon as E[(log+ d(Ψ0(x), x))2] < ∞.
Using that E[log(1 + ud(Ψ0(x), x))] =

∫ ∞
0 P(log(1 + ud(Ψ0(x), x)) ≥ t)dt and

denoting v = (et − 1)/u the integral becomes:∫ 1

0

∫ ∞

0

P(log(1 + ud(Ψ0(x), x)) ≥ t)
u

dtdu =
∫ 1

0

∫ ∞

0

P(d(Ψ0(x), x) ≥ v)
1 + uv

dvdu.

Using Fubini’s theorem and
∫ 1

0 (1 + uv)−1du = log(v + 1)/v for all v ≥ 0 we
get an upper bound in term of∫ ∞

0

log(1 + v)P(d(Ψ0(x), x) ≥ v)
v

dv.

This integral converges in +∞ as∫ ∞

0

log(1 + v)P(d(Ψ0(x), x) ≥ v)
1 + v

dv = E[log(1 + d(x, Ψ(x))2]

and the desired result follows.

In order to apply Theorem 1 in our case, let us denote by E the separable
metric space of the sequences of elements in the image of h. Equipped with the
metric ∑j≥1 2−jd(xj, yj)/(1 + d(xj, yj)), the space E is complete. A sufficient
condition for stationarity of (Xt) is that the SRE driven by (ψt) converges in
E. It simply expresses as the Lyapunov condition E[log Λ(ψ

(r)
0 )] < 0 for some

integer r ≥ 1 and some logarithmic moments. This assumption of stationarity
is sufficient but not optimal in many cases:

Remark 1. The state space of the SRE (1), denoted E, in its most general form,
is a space of infinite sequences. However in all classical models we can find a lag
p such that (h(Σk))t−p+1≤k≤t = ψt((h(Σk))t−p≤k≤t−1, θ0). The state space E is
now the finite product of p spaces. It can be equipped by unbounded metrics such that
p−1 ∑

p
j=1 d(xj, yj) or

√
∑

p
j=1 d2(xj, yj). The product metric has to be carefully chosen

as it changes the value of the Lipschitz coefficients of the φt. Yet, even if the prod-
ucts spaces are embedded, the smallest possible lag p in the SRE yields the sharpest
Lyapunov condition. Finally, if E has a finite dimension and if the condition of conver-
gence of the SRE expresses in term of the top Lyapunov coefficient, one can choose any
metric induced by any norm, see Bougerol (1993) for details.

In view of Remark 1, instead of choosing a specific metric space (E, d) we
prefer to work under the less explicit assumption

(ST) The process (Xt) satisfying (1) exists. It is a stationary, non anticipative
and ergodic process with finite logarithmic moments.

In view of Theorem 2, it is reasonable to require that the solution has finite
logarithmic moments. It is very useful when considering the invertibility of
the general model, see Proposition 2 below.
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2.3. The invertibility and the observable invertibility

Now that under (ST) the process (Xt) is stationary and ergodic, we investigate
the question of invertibility of the general model (1). We want to emphasize
that the classical notions of invertibility are related with convergences of SRE
and implied by Lyapunov conditions. Following Tong (1993), we say that a
volatility model is invertible if the volatility can be expressed as a function of
the past observed values:

Definition 1. The model is invertible if the sequence of the volatilities (Σt) is adapted
to the filtration (Gt−1) generated by (Xt−1, Xt−2, · · · ).

It is natural to assume invertibility to be able to forecast the volatility and
to ensure the so-called "predictability" of the model. This notion of invertibil-
ity is very weak and consists in restricting the underlying filtration (Ft) of the
SRE to (Gt−1). Indeed, under (ST) the filtration Gt ⊆ Ft is well defined. If the
volatility matrices are invertible, using Zt = Σ−1

t · Xt in ψt we can express (1)
as (4): (h(Σk))k≤t = φt((h(Σk))k≤t−1, θ0), a SRE driven by the whole past of the
observations. The sequence of random functions (φt) is an ergodic and station-
ary process adapted to (Gt−1). Using the sufficient conditions of convergence
of SREs given in Theorem 1, the invertibility follows if the φt(·, θ0) are Lipschitz
maps such that for some x ∈ E and r > 0,

E[log+(d(x, φ0(x, θ0)))] < ∞, E[log+ Λ(φ0(·, θ0))] < ∞

and E[log Λ(φ0(·, θ0)
(r))] < 0. (8)

The Remark 1 also holds for the SRE driven by (φt): the metric space (E, d)
must be chosen carefully. The conditions (8) (with the optimal metric space
(E, d)) are called the conditions of invertibility.

Proposition 1. Under (ST) and (8), the general model (4) is invertible.

Another notion of invertibility is introduced in Straumann (2005). We call it
observable invertibility. As φt(x, θ) = φθ,x(Xt, Xt−1, . . .) where φθ,x is measur-
able for any x, θ, denote φ̂t(x, θ) = φθ,x(Xt, . . . , X1, u) where u is an arbitrary
deterministic sequence of EN.

Definition 2. The model is observably invertible if and only if the SRE

(h(Σ̂k))k≤t = φ̂t((h(Σ̂k))k≤t−1, θ0) t ≥ 1 (9)

is convergent for any arbitrary initial values h(Σ̂k))k≤0 and such that ‖Σ̂t−Σt‖ → 0
in probability as t→ ∞.

Notice that in general the approximative SRE does not fit the conditions
of Theorem 1 and in particular (φ̂t) is not necessarily stationary and ergodic.
However, the Proposition below gives sufficient conditions for observable in-
vertibility. It is a very useful result for the sequel of the paper, see Remark 2.
Notice that logarithmic moments are assumed and Theorem 2 is very useful to
check this condition.
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Proposition 2. If (ST) and (8) hold, if the link function ` is continuous and it exists
x ∈ E such that d(φ̂t(x), φt(x)) e.a.s.−−−→ 0 and Λ(φ̂t(·, θ0) − φt(·, θ0))

e.a.s.−−−→ 0 as
t→ ∞, then the model is observably invertible.

Proof. One can extend the proof of Theorem 2.10 in Straumann and Mikosch
(2006) written for Banach spaces to the case of the complete separable met-

ric space (E, d). That d((h(Σk))k≤t), (h(Σ̂k))k≤t))
e.a.s.−−−→ 0 follows from the

proof of Theorem 2.10 in Straumann and Mikosch (2006) under the following
assumptions:

S1 E[log+(d(x, φ0(x, θ0)))] < ∞ for some x ∈ E,
S2 E[log Λ(φ0(·, θ0))] < ∞ and E[log Λ(φ0(·, θ0)

(r))] < 0 for some r > 0,
S2’ E[log+(d(y, (h(Σk))k≤t))] < ∞ for all y ∈ E,

S3 d(φ̂t(x), φt(x)) e.a.s.−−−→ 0 and Λ(φ̂t(·, θ0)− φt(·, θ0))
e.a.s.−−−→ 0 as t→ ∞.

The conditions S1-S2 are equivalent to the invertibility conditions (8). S3 holds
from the assumptions in Proposition 2 and S2’ follows from (ST). Finally, using
the continuity of the projection on the first coordinate and the one of the link
function `, the desired result follows.

Remark 2. Classical models such that GARCH(p,q) or EGARCH(p,q) models satisfy
an SRE for finite p lags (h(Σk))t−p+1≤k≤t = φt((h(Σk))t−p≤k≤t−1, θ0) and for some
φt generated by only a finite of past observation (Xt−1, . . . , Xt−q). In this context, the
approximative SRE coincides with the initial ones, i.e. one can choose φ̂t = φt for
t > q. Therefore, conditions of Proposition 2 hold systematically; invertibility and
observable invertibility are equivalent, i.e. they are induced by the same Lyapunov
condition. As for any initial values of φ̂t (for 0 ≤ t ≤ q) the conditions of Proposition
2 are satisfied, seeking simplicity we work in the sequel with φ̂t = φt for all t ≥ 1.

2.4. The continuous invertibility

Now we are interested in inferring the unknown parameter θ0. To that ends,
we extend the notions of invertibility at the point θ0 to the compact set Θ used
in the definition (7) of our estimator. For the sake of simplicity, we assume in
all the sequel that we are in the framework of Remark 2, i.e. φt is observable
for t > q and φ̂t = φt. For any θ ∈ Θ, let us consider from the functional SRE
of the form

(ĝk(θ))t−p+1≤k≤t = φt((ĝk(θ))t−p≤k≤t−1, θ), ∀t ≥ 1, (10)

with arbitrary initial values (ĝk(θ))1−p≤k≤0. If the model is invertible for all
θ ∈ Θ, the function ĝt(·) is well defined and converges to gt(·), the unique
stationary solution of (10). For statistical inference, the regularity of gt(·) is
required. We call uniform integrability the notion used in Straumann (2005)
and Straumann and Mikosch (2006):

Definition 3. The model is uniformly invertible on Θ if and only if the SRE (10) is
convergent when considering it on the Banach space of continuous functions C(Θ).
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This notion is too restrictive and we introduce the weaker notion of contin-
uous invertibility as follows

Definition 4. The model is continuously invertible on Θ if and only if the SRE (10)
is convergent for all θ ∈ Θ and the stationary solution gt(·) is continuous.

We have seen that sufficient conditions for pointwise invertibility are classi-
cally expressed in term of Lyapunov conditions. Let us consider models with
parametric functions having continuous Lipschitz coefficients:

(CL) For any metric spaces X , Y and Z , a function f : X × Y 7→ Z satis-
fies (CL) if there exists a continuous function Λ f : Y 7→ R+ such that
Λ( f (·, y)) ≤ Λ f (y) for all y ∈ Y .

In this context, the uniform invertibility holds under the Lyapunov condition
E[log supΘ Λ(r)

φ0
(θ)] < 0. This condition is too restrictive to handle EGARCH

type models because of the supremum inside the expectation. We introduce a
sufficient condition (CI) for continuous invertibility in term of a weaker Lya-
pounov condition than the preceding one:

(CI) Assume that the SRE (10) holds with φt satisfying (CL) for stationary
(Λφt) such that conditions there exists an positve integr r such that E[log Λ(r)

φ0
(θ)] <

0 on the compact set Θ. Assume moreover that E[supΘ log+ Λ(r)
φ0
(θ)] < ∞

and that there exists y ∈ E such that E[supΘ log+(d(φ0(y, θ), y))] < ∞.

The condition (CI) implies the convergence of the SRE (10) for all θ ∈ Θ. If
θ0 ∈ Θ it implies the invertibility of the model as described in Subsection 2.3.
It also implies the local uniform regularity of gt(·) and thus the continuous
invertibility:

Theorem 3. Assume that (ST) and (CI) hold. Then the functions gt(·) are continuous
for all θ ∈ Θ and all t ∈ Z. Moreover, for any θ ∈ Θ there exists an ε > 0 such that
ĝt(θ) satisfying (10) satisfies

lim sup
θ′∈B(θ,ε)∩Θ

d(ĝt(θ
′), gt(θ

′))
e.a.s.−−−→ 0. (11)

Proof. Without loss of generality, one can assume that E[log Λ(r)
φ0
(θ)] > −∞

such that limK→∞ E[log Λ(r)
φ0
(θ) ∨ (−K)] = E[log Λ(r)

φ0
(θ)] for any θ ∈ Θ. For

any ρ > 0, let us write Λ(r)
∗ (θ, ρ) = sup{Λ(r)

φ0
(θ′), θ′ ∈ B(θ, ρ) ∩ Θ}, where

B(θ, ρ) stands for the closed ball centered at θ with radius ρ. Noticing that
E[supΘ | log Λ(r)

φ0
(θ)∨ (−K)|] < ∞, using the dominated convergence Theorem

we obtain limρ→0 E(log Λ(r)
∗ (θ, ρ) ∨ (−K)) = E(limρ→0 log Λ(r)

∗ (θ, ρ) ∨ (−K)).

By continuity limρ→0 log Λ(r)
∗ (θ, ρ) = log Λ(r)

φ0
(θ) and for sufficiently large K

lim
ρ→0

E(log Λ(r)
∗ (θ, ρ) ∨ (−K)) = E(log Λ(r)

φ0
(θ) ∨ (−K)) < 0.
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Thus, there exists an ε > 0 such that

E(log Λ(r)
∗ (θ, ε)) ≤ E(log Λ(r)

∗ (θ, ε) ∨ (−K)) < 0.

Let us now work on C(B(θ, ε) ∩ Θ), the complete metric space of continu-
ous functions from B(θ, ε) ∩Θ to R equipped with the supremum norm d∞ =
supB(θ,ε)∩Θ d. In this setting (ĝt) satisfy a functional SRE (ĝk)k≤t = φ̃t((ĝk)k≤t−1)

with Lipschitz constants satisfying

Λ∞(φ̃
(r)
t (·)) ≤ sup

s1,s2∈C(B(θ,ε)∩Θ)

d∞(φ̃
(r)
t (s1), φ̃

(r)
t (s2))

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ d(φ(r)
t (s1(θ

′), θ′), φ
(r)
t (s2(θ

′), θ′)

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ Λ(φ
(r)
t (·, θ′))d(s1(θ

′)s2(θ
′))

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ Λ(φ
(r)
t (·, θ′))d∞(s1, s2)

d∞(s1, s2)

≤ Λ(r)
∗ (θ, ε).

As E[supB(θ,ε)∩Θ log+(d(φt(y, θ′), y))] ≤ E[supΘ log+(d(φt(y, θ), y))] is finite

and E(log Λ(r)
φ0
(θ)) < 0 we apply Theorem 1. By recurrence φt ◦ · · · ◦φt−m(ζ0) ∈

C(B(θ, ε) ∩ Θ) is continuous in θ and so is gt as the convergence holds uni-
formly on B(θ, ε) ∩Θ. It is true for any θ ∈ Θ and the result follows.

3. Statistical inference under continuous invertibility

Consider θ̂n = argminθ∈ΘŜn(θ) the M-estimator associated with the QLIK cri-
teria (6) where (ĝt) is obtained from the approximative SRE (10).

Remark 3. The statistical procedure described here does not coincide with the Quasi
Maximum Likelihood for non uniformly invertible models. For a detailed discussion in
the EGARCH(1,1) case see Cai and Wintenberger (2011).

3.1. Strong consistency of the parametric inference

From now on, we assume that the innovations process (Zt) is iid:

(IN) The Zt are iid variables such that E[ZT
0 Z0] is the identity matrix.

The next assumption implies that the volatility matrices are invertible and that
the link function ` is continuous:
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(IV) The functions `−1 and log(det(`)) are Lipschitz satisfying det(`(g0(θ))) ≥
C(θ) for some continuous function C : Θ 7→ (0, ∞).

Remark 4. The SRE criteria converges to the possibly degenerate limit

S(θ) = E[s0(θ)] = 2−1E
[

XT
0 `(g0(θ))

−1X0 + log(det[`(g0(θ))])
]

Notice that S(θ0) = 2−1E[ZT
0 Z0 + log(det(Σ0))] is finite under (ST), (IN) and

(IV) because h(Σ0) has logarithmic moments and log(det(`)) is Lipschitz. It is a
considerable advantage of the QLIK criteria: it does not need moments of any order to
be defined in θ0. Even if S(θ) may be equal to +∞ for θ 6= θ0, it does not disturb the
statistical procedure that defines θ̂n as a minimizer.

If the model is identifiable, the estimator θ̂n is strongly consistent:

Theorem 4. Assume that (ST) and (CI) are satisfied on the compact set Θ. If (IN)
and (IV) are satisfied and the model is identifiable, i.e. g0(θ) = h(Σ0) iff θ = θ0, then
θ̂n → θ0 a.s. for any θ0 ∈ Θ.

Proof. With no loss of generality we restrict our propose to θ ∈ Θ satisfy-
ing the relation det(`(φ̂t(·, θ))) ≥ C(θ) for all t ≤ 0. We adapt the proof
of Jeantheau (1993) and its notation s∗t(θ, ρ) = inf{st(θ′), θ′ ∈ B(θ, ρ)} and
ŝ∗t(θ, ρ) = inf{ŝt(θ′), θ′ ∈ B(θ, ρ)}. Let us recall Theorem 5.1 in Jeantheau
(1993) : The M-estimator associated with the loss (6) is strongly consistent un-
der the hypothesis H1-H6:

H1 Θ is compact.
H2 Ŝn(θ)→ S(θ) a.s. under the stationary law Pθ0 .
H3 S(θ) admits a unique minimum for θ = θ0 in Θ. Moreover for any θ1 6= θ0

we have:
lim inf

θ→θ1
S(θ) > S(θ1).

H4 ∀θ ∈ Θ and sufficiently small ρ > 0 the process (ŝ∗t(θ, ρ)))t is ergodic.
H5 ∀θ ∈ Θ, Eθ0 [s∗1(θ, ρ)] > −∞.
H6 limρ→0 Eθ0 [s∗1(θ, ρ)] = E[s∗1(θ)].

Let us check H1-H6 in our case. H1 is satisfied by assumption. H2 is verified
in two steps. First, by the e.a.s. convergence given by Theorem 3, arguments
of Straumann (2005) and the Lipschitz properties of `−1 and log(det(`)) we
obtain

1
n

n

∑
t=1

sup
B(θ,ε)

|ŝt(θ
′)− st(θ

′)| → 0 Pθ0 − a.s.

Second we use that (st) is an ergodic sequence and Proposition 1.1 of Jeantheau
(1993). As the st are bounded from below n−1 ∑n

t=1 st(θ) converges Pθ0 -a.s. to
S(θ) (taking values in R∪ {+∞})

1
n

n

∑
t=1
|st(θ)− S(θ)| → 0 Pθ0 − a.s.
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Combining this two steps leads to H2. The first part of H3 is checked simi-
larly than in (ii) p.2474 of Straumann and Mikosch (2006) and with the help of
the Remark 4. Notice that S has a unique minimum iff E[Tr(Σ0 · `(g0(θ))

−1)−
log(det(Σ0 · `(g0(θ))

−1))] has a unique minimum. As this criteria is the inte-
grand of a sum of the λi − log(λi) where the λi are positive eigenvalues, we
conclude under the identifiability condition from the property x− log(x) ≥ 1
for all x > 0 with equality iff x = 1. The second part is checked using the fact
that

lim inf
θ→θ1

S(θ) ≥ E[lim inf
θ→θ1

s0(θ)] = E[s0(θ1)] = S(θ1)

where the first inequality was already used for proving Theorem 3 and the
first equality comes from the local continuity of g0 and `. H4 is satisfied from
the ergodicity of (ŝt). H5 and H6 follows from Theorem 3 that ensures the
continuity of the function s∗1 and by the lower bounded assumption on det(`),
see Proposition 1.3 of Jeantheau (1993).

3.2. Volatility forecasting

From the inference of θ0, we deduce a natural forecast of the volatility Σ̂t =
`(ĝt(θ̂t)). It is strongly consistent:

Theorem 5. Under the conditions of Theorem 4 then ‖Σ̂t − Σt‖ → 0 a.s. as t→ ∞.

Proof. It is a consequence of Theorems 3 and 4 that assert the a.s. convergence
of θ̂t toward θ0 and the local uniform convergence of ĝt toward gt. Notice that
for t sufficiently large such that θ̂t ∈ B(θ, ε), a ball where the uniform Lyapunov
condition E[log Λ∞(φt(·))] < 0 is satisfied. Thus ĝt(θ̂t)− gt(θt) → 0 a.s. and
by continuity of ` and gt and from the identification Σt = `(gt(θ0)) the result
follows if gt(θ̂t) converges to gt(θ0). For proving it, we use

d(gt(θ̂t), gt(θ0)) ≤ Λ∞(φt(·))d(gt−1(θ̂t), gt−1(θ0)) + wt(θ̂t)

where wt(θ̂t) = d(φt(gt−1(θ0), θ̂t), φt(gt−1(θ0), θ0)). The quantity d(gt(θ̂t), gt(θ0))
is upper bounded by vt satisfying the SRE of linear stationary maps vt =
Λ∞(φt(·))vt−1 + wt(θ̂t). We apply Theorem 1 as E[log(Λ∞(φt(·)))] < 0 and
E log+(w0(θ̂t)) ≤ E[supΘ log+(2d(φt(y, θ), y))] < ∞. We get

d(gt(θ̂t), gt(θ0)) ≤
∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t).

Conditioning on (θ̂t), the upper bound is a stationary normally convergent
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series of functions and

P
( ∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t)→ 0
)

= E
[
P
( ∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t)→ 0 | (θ̂t)
)]

= E
[
P
( ∞

∑
i=0

Λ∞(φ0(·)) · · ·Λ∞(φ−i+1(·))w−i(θ̂t)→ 0 | (θ̂t)
)]

= E[1] = 1,

the last inequalities following from the continuity of normally convergent se-
ries of functions, θ̂t → θ0 and wi(θ̂t)→ wi(θ0) = 0 for all i a.s. as t→ ∞.

3.3. Asymptotic normality of the parametric inference

Classical computations show that if the M-estimator θ̂n is asymptotically nor-
mal then the asymptotic variance is given by the expression

V = P−1QP−1

with P = E[Hs0(θ0)] and Q = E[∇s0(θ0)∇s0(θ0)
T ], where Hs0(θ0) and ∇s0

are the Hessian matrix and the gradient vector of s0(θ0).

(AV) Assume that E(‖Z0ZT
0 ‖2) < ∞ and that the functions ` and φt are 2-times

continuously differentiable on the compact set Θ that coincides with the
closure of its interior.

The following moments assumptions ensure the existence of Q and P:

(MM) Assume that E[‖∇s0(θ0)‖2] < ∞ and E[‖Hs0(θ0)‖] < ∞.

These moments assumptions holds only for θ = θ0; they are simpler to ver-
ify than for the moment conditions for θ 6= θ0 due to the specific form of the
derivatives of the SRE criteria at θ0, see Remark 4 for details. The next assump-
tion is classical and ensures to the existence of P−1:

(LI) The components of the vector ∇g0(θ0) are linearly independent.

Let V = B(θ0, ε) ⊂ Θ with θ0 ∈
◦
Θ and ε > 0 chosen in accordance with The-

orem 3, i.e. such that E[log(supV Λφ0)] < 0. The two next assumptions are
specific to the SRE approach. They ensure that∇ŝt(θ) is a good approximation
of ∇st(θ) uniformly on the neighborhood V of θ0:

(DL) The partial derivatives Φt = Dx(φt), = Dθ(φt), = D2
x2(φ0), D2

θ,x(φ0) or
D2

θ2(φ0) satisfy (CL) for stationary (ΛΦt) with E[supV log(ΛΦ0)] < ∞.
Assume there exists y ∈ E such that E[supV (log+(d(φ0(y, θ), y)))2] < ∞.

(LM) Assume that y→ ∇`−1(y) and y→ ∇ log(det(`(y))) are Lipschitz func-
tions.
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Now that V is well defined in terms of derivatives of s0 that are well approxi-
mated by derivatives of the SRE, the procedure is asymptotically normal:

Theorem 6. Under the assumptions of Theorem 4, (AV), (MM), (LI), (DL) and (LM)
then the asymptotic variance V is a well defined invertible matrix and

√
n(θ̂n − θ̂0)

d→ N (0, V) if θ0 ∈
◦
Θ .

Proof. Under (CI) and (LM) we apply Theorem 2 to (supV gt(θ)). We obtain
E[log+(supV g0(θ))] < ∞. From the Lipschitz condition in (DL) we have that
E[supV log+(‖Φ0(θ)‖)] < ∞ for Φ0(θ) = Dθ(φ0)(g0(θ), θ) or D2

x2(φ0)(g0(θ), θ)

or D2
θ,x(φ0)(g0(θ), θ) or D2

θ2(φ0)(g0(θ), θ). Using the existence of these loga-
rithmic moments and the relation E[log(supV Λφ0)] < 0, we apply recursively
the Theorem 1 and prove the existence of continuous first and second deriva-
tives of (gt(θ)) on V as solutions of functional SRE. The asymptotic normality
follows from the Taylor development of Section 5 of Bardet and Wintenberger
(2009) on the first partial derivatives ∇i of Sn

∇iSn(θ̂n)−∇iSn(θ0) = HSn(θ̃n,i)(θ̂n − θ0) for all 1 ≤ i ≤ d.

Then the asymptotic normality follows from the following sufficient condi-
tions:

1. n−1/2∇Sn(θ0)→ N (0, Q),
2. ‖n−1HSn(θ̃n)− P‖ converges a.s. to 0 for any sequence (θ̃n) converging

a.s. to θ0 and P is invertible,
3. n−1/2‖∇Ŝn(θ̂n)−∇Sn(θ̂n)‖ converges a.s. to 0.

Due to its specific expression and Assumption (IN) the process (∇Sn(θ0)) is a
martingale. Under (MM), the CLT for martingales applied to (∇Sn(θ0)) leads
to the first condition. The first part of the second condition is derived from
similar arguments than in the proof of Theorem 5 and an application of the Ce-
saro mean theorem ensuring that n−1‖HSn(θ̃n)−∑n

t=1 Hst(θ0)‖ → 0 a.s. The
ergodic Theorem on (Hst(θ0)) with (MM) leads to ‖n−1HSn(θ̃n) − P‖ → 0
a.s. The fact that P is invertible follows from (LI), see Bardet and Wintenberger
(2009) for detailed computations. Finally the third condition is obtained by
applying Theorem 2.10 of Straumann and Mikosch (2006) to the SRE satisfied
by (∇gt) and its approximative SRE satisfied by (∇ĝt) uniformly on V . Thus

supV ‖∇ĝt −∇gt‖
e.a.s.−−−→ 0 as t → ∞ and Lipschitz conditions on ∇`−1 and

∇ log(det(`)) in (LM) and arguments similar than in Straumann (2005) leads
to the desired result.

4. Applications to GARCH and EGARCH type models

4.1. Some applications to GARCH type models

In GARCH type models, the stationarity assumption (ST) is crucial, whereas
the continuous invertibility condition (CI) is automatically satisfied on well
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chosen compact sets Θ due to the form of the model (they are also uniformly
invertible). The asymptotic properties of the QMLE (that coincides with the
procedure described here in these cases, see Remark 3) follow from Theorems 4
and 6. Thus, we recover and slightly refine existing results in the AGARCH and
CCC-GARCH models (we refer the reader to Straumann (2005) and Francq and Zakoïan
(2011) respectively for details). Moreover, we prove also for the first time the
strong consistency of the natural volatility forecast in both cases under the con-
ditions of strong consistency of θ̂n.

First, let us detail the case of the univariate APGARCH(p, q) model intro-
duced in Ding, Granger and Engle (1993), Zakoïan (1994) and studied in Straumann
(2005):

σ2
t = α0 +

p

∑
i=1

αi(|Xt−i| − γXt−i)
2 +

q

∑
j=1

β jσ
2
t−j, t ∈ Z,

where α0 > 0, αi, β j ≥ 0 and |γ| ≤ 1 (it coincides with the GARCH(p, q) model
if γ = 0. Then we derive the strong consistency and the asymptotic normal-
ity directly from our Theorems 4 and 6. The conditions we obtained coincides
with these of Theorem 5.5 and Theorem 8.1 of Straumann and Mikosch (2006)
except their useless condition (8.1) as one does not need moment of any order.

Second, let us consider the multivariate CCC-GARCH(p, q) model intro-
duced by Bollerslev (1990), first studied in Jeantheau (1998) and refined in
Francq and Zakoïan (2011)

Diag(Σ2
t ) = A0 +

q

∑
i=1

AiDiag(Xt−iXT
t−1) +

p

∑
i=1

BiDiag(Σ2
t−i)

and (Σ2
t )i,j = ρi,j

√
(Σ2

t )i,i(Σ2
t )j,j) for all (i, j), where Diag(M) is the vector of the

diagonal elements of M. A necessary and sufficient conditions for (ST) is given
in term of top Lyapunov condition in Francq and Zakoïan (2011). We recover
the strong consistency and the asymptotic normality of Francq and Zakoïan
(2011) directly from our Theorems 4 and 6.

4.2. Application to the EGARCH(1, 1) model

Let (Zt) be an iid sequence of random variables not concentrated on two points
such that E(Z2

0) = 1. The EGARCH(1, 1) model introduced by Nelson (1991) is
an AR(1) model for log σ2

t ,

Xt = σtZt with log σ2
t = α0 + β0 log σ2

t−1 + Wt−1(θ0)

where Wt(θ0) = γ0Zt + δ0 |Zt| are the innovations of this AR(1) model. Let
θ0 = (α0, β0, γ0, δ0) be the unknown parameter. Assume that |β0| < 1 such that
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there exists a stationary solution having a MA(∞) representation:

log σ2
t = α0(1− β0)

−1 +
∞

∑
k=1

βk−1
0 Wt−k(θ0). (12)

The moments assumptions on Zt ensures that the process (log σ2
t ) is ergodic,

strongly and weakly stationary. Then the volatilities process (σ2
t ) is also ergodic

and strongly stationary and (ST) holds. However, it does not necessarily have
finite moment of any order.

The invertibility of the stationary solution of the EGARCH(1, 1) model does
not hold in general. A sufficient condition for invertibility is given in Straumann and Mikosch
(2006). As (log σ2

t ) satisfies the SRE

log σ2
t = α0 + β0 log σ2

t−1 + (δ0Xt−1 + γ0|Xt−1|) exp(−log σ2
t−1/2),

if it has a non anticipative solution the model is invertible. Keeping the notation
of Section 2, the function h is now the logarithmic function and the SRE (9)
holds with (φt) defined by

φt(·; θ) : s 7→ α + βs + (γXt−1 + δ |Xt−1|) exp(−s/2)

We check that the φt are random functions generated by Gt−1. For any θ ∈
R×R+ × {γ ≥ |δ|}we restrict φt(·; θ) on the complete separable metric space
[α/(1− β), ∞) equipped with d(x, y) = |x − y|. The process (φt(·; θ)) is a sta-
tionary ergodic sequence of Lipschitz maps from [α/(1 − β), ∞) to [α/(1 −
β), ∞) with Lipschitz coefficients

Λ(φt(·, θ0)) ≤ max{β, 2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β}.

The technical smoothness assumption (CL) is automatically satisfied as

(Λφt(θ))t = (max(β, 2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β))t

is a stationary process of continuous functions of θ. The EGARCH(1,1) is con-
tinuously invertible on any compact set Θ ⊂ R×R+ × {γ ≥ |δ|} such that

E[log(max{β, 2−1(γX0 + δ|X0|) exp(−2−1α/(1− β))− β})] < 0. (13)

This sufficient condition for continuous invertibility depends on the distribu-
tion of the observations (Xt). Notice that if θ0 ∈ Θ then it satisfies the condition
of stationarity β0 < 1 and, from the MA(∞) representation (12) of log σ2

t , our
condition (13) expressed at θ0 implies that

E
[

log
(

max
{

β0, 2−1 exp
(

2−1
∞

∑
k=0

βk
0(γ0Z−k−1 + δ0 |Z−k−1|)

)
× (γ0Z0 + δ0 |Z0|)− β0

})]
< 0. (14)

It is the condition of invertibility of the EGARCH(1,1) model given in Straumann and Mikosch
(2006). Applying our results of Theorem 4 and Theorem 5, we obtain
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Theorem 7. For any compact subset Θ of R×R+ × {γ ≥ |δ|} satisfying (13) then
θ̂n → θ0 and σ̂2

n − σ2
n → 0 a.s. as n→ ∞ with σ̂2

t = exp(ĝt(θ̂n)) if θ0 ∈ Θ.

Proof. The condition (CI) follows from E[log Λ(φt(, θ))] < 0 by assumption of
Θ and E[supΘ log Λ(φt(, θ))] < ∞ since E log |Xt−1| = E(log σ + log |Zt−1|) <
∞ as log σ2

t has a MA(∞) representation (12) and Z is integrable. Moreover as
log+(d(φ0(0, θ), 0)) = log+ |α + (γX−1 + δ|X−1|)| then fixing y = 0 one has
E[supΘ(log+(d(φ0(y, θ), y))2] < ∞.
In the EGARCH(1, 1) model the link function is the exponential function `(x) =
exp(x) and since we have log σ2

t ≥ α/(1− β), 1/`(x) = exp(−x) is a Lipschitz
function (log(det(`)) = id is also a Lipschitz function). Moreover the volatility
process (σ2

t ) is bounded from below by C(θ) = exp(α/(1 − β)). Finally, the
identifiability condition g0(θ) = h(θ0) iff θ = θ0 is checked in Section 5.1 of
Straumann and Mikosch (2006).

Notice that the procedure is valid only if θ ∈ Θ satisfies (13). In practice, we
suggest to optimize the QLIK criteria under the empirical constraint

n

∑
t=1

log(β, 2−1(γXt + δ|Xt|) exp(−2−1α/(1− β))− β) < 0.

Existing procedures does not constrain the model to be invertible. The corre-
sponding empirical results are not asymptotically valid since the underlying
SREs are not stable, see Cai and Wintenberger (2011) for evidences on simula-
tions. Notice also that the strong consistency of θ̂n has already been proved in
Straumann (2005) and Straumann and Mikosch (2006) under the uniform in-
vertibility condition

E[sup
Θ

log(max{β, 2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β})] < 0.

We share the appreciation of the authors that this condition is very restrictive
and might not be satisfied for reasonable compact sets Θ with β 6= 0 and non
empty interior.

As a corollary of Theorem 6 we get the asymptotic normality of the statis-
tical inference in the EGARCH(1, 1) model. The only existing result was Theo-
rem 5.7.9 of Straumann (2005) valid only for degenerate EGARCH(1,1) models
with β = 0. Our result holds under consistency assumptions and the following
necessary and sufficient condition for the existence of V:

(MM’) E[Z4
0 ] < ∞ and E[(β0 − 2−1(γ0Z0 + δ0 |Z0|)2] < 1.

Theorem 8. Assume that assumptions of Theorem 7 are satisfied and that (MM’)

holds. Then
√

n(θ̂n − θ0)
d→ N (0, V) where V is an invertible matrix if θ0 ∈

◦
Θ.

Proof. By definition, (φt) is 2-times continuously differentiable and simple com-
putations give Dx(φt)(x, θ) = β− 2−1(γXt−1 + δ|Xt−1|) exp(−x/2), Dθ(φt)(x, θ) =
(1, x, Xt−1 exp(−x/2), |Xt−1| exp(−x/2))T , D2

x2(φt)(x, θ) = 4−1(γXt−1 + δ|Xt−1|)
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exp(−x/2), D2
x,θ(φt)(x, θ) = (0, 1, 2−1Xt−1 exp(−x/2), 2−1|Xt−1| exp(−x/2))T

and D2
θ2(φt)(x, θ) = 0. Moreover, as the link function is `(x) = exp(x) is also

2-times continuously differentiable, the last assertion of the condition (AV) of
Theorem 6 holds. The fact that (MM) holds iff (MM’) holds is technical and
postponed to the Appendix. The fact that (LI) holds if Z0 is not concentrated on
two points is classical, see for instance Lemma 8.2 of Straumann and Mikosch
(2006). Assumption (DL) is satisfied from the expressions of the derivatives
(that are Lipschitz functions) and as all the logarithmic moments are finite due
to E[log(X2

t−1)] < ∞. Finally (LM) is automatically satisfied due to the specific
expression of the link function. Thus Theorem 6 applies.
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Appendix: (MM) holds in the EGARCH(1,1) model iff (MM’) holds

To check (MM) is technical as we have to compute explicitly the diagonal terms
the matrix B = E[∇gt(θ0)(∇gt(θ0))

T ]. Similar computations have been done
in Demos and Kyriakopoulou (2009). Remember that V = P−1QP−1 with P =
E[Hs0(θ0)] and Q = E[∇s0(θ0)∇s0(θ0)

T ]. Let us first prove the three identities
P = 2−1B, Q = 4−1(EZ4

0 − 1)B and thus V = (EZ4
0 − 1)B−1. For the first

identity, we compute

P = 2−1E
[
(∇gt(θ0)(∇gt(θ0))

TZ2
0 + Hgt(θ0)(1− Z2

0)
]

= 2−1E[∇gt(θ0)(∇gt(θ0))
T ] = 2−1B.

For the second identity, we compute

Q = E

[
1
4

E
[
∇gt(θ0)(∇gt(θ0))

T(1−Z2
t )

2
]
|Ft−1

]
= 4−1E[(1−Z2

0)
2]E[∇gt(θ0)(∇gt(θ0))

T ] = 4−1(EZ4
0 − 1)B

and the third identity follows the first ones. Thus, for checking the assumption
(MM), it is enough to check that diagonal coefficients Bii are well defined when
E(Z4

0) < ∞. Let us denote Wt = γ0Zt + δ0|Zt|, Ut = (1, log σ2
t , Zt, |Zt|) and

Vt = β0 − 2−1(γ0Zt + δ0 |Zt|). Then (∇gt(θ0)) is the solution of the linear SRE

∇gt(θ0) = Ut−1 + Vt−1∇gt−1(θ0) =
∞

∑
l=1

(
Ut−l

l−1

∏
k=1

Vt−k

)
.

Using the convention ∏0
k=1 Vt−k = 1, we obtain the expression

∇gt(θ0) =
∞

∑
l=1

(
Ut−l

l−1

∏
k=1

Vt−k

)
.

More precisely, we have the expressions: then

B11 = E

(
∂gt(θ0)

∂θ1

)2

= E

[
∞

∑
l=1

l−1

∏
k=1

Vt−k

]2

,

B22 = E

(
∂gt(θ0)

∂θ2

)2

= E

[
∞

∑
l=1

log σ2
t−l

l−1

∏
k=1

Vt−k

]2

,

B33 = E

(
∂gt(θ0)

∂θ3

)2

= E

[
∞

∑
l=1

Zt−l

l−1

∏
k=1

Vt−k

]2

,

B44 = E

(
∂gt(θ0)

∂θi

)2

= E

[
∞

∑
l=1
|Zt−l |

l−1

∏
k=1

Vt−k

]2

.

To prove that condition (MM) is satisfied, i.e. that ∑4
i=1 Bii < ∞, we use the

following Lemma
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Lemma 1. ∑4
i=1 Bii < ∞ iff EV2

0 < 1.

Proof. That the first coefficient B11 is finite comes easily from the identities

B11 = E(
∞

∑
l=1

l−1

∏
k=1

Vt−k)
2 = E(

∞

∑
l=1

∞

∑
l′=1

l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ )

= E(2
∞

∑
l≥1

(
l−1

∏
k=1

Vt−k)
2

∞

∑
l′>l

l
′−1

∏
k′=l

Vt−k′ + E
∞

∑
l=1

(
l−1

∏
k=1

Vt−k
2)

= 2
∞

∑
l≥1

(EV2
0 )

l−1 EV0

1−EV0
+

1
1−EV2

0

= 2
1

1−EV2
0
× EV0

1−EV0
+

1
1−EV2

0
.

For the second coefficient B22, it is more complicated. We need some prelimi-
nary work. We know that Wt = γ0Zt + δ0 |Zt| = 2(β0 −Vt), and

log σ2
t =

α0

1− β0
+

∞

∑
k=1

βk−1
0 Wt−k =

α0 + 2β0

1− β0
− 2

∞

∑
k=1

βk−1Vt−k

so, we decompose B22 into three parts,

B22 =E

[
∞

∑
l=1

log σ2
t−l

l−1

∏
k=1

Vt−k

]2

=E

[
∞

∑
l=1

(
α0 + 2β0

1− β0
− 2

∞

∑
k=1

βk−1
0 Vt−l−k

)
l−1

∏
k′=1

Vt−k′

]2

=(
α0 + 2β0

1− β0
)2E

[
∞

∑
l=1

l−1

∏
k′=1

Vt−k′

]2

+ 4E

[
∞

∑
l=1

∞

∑
k=1

βk−1
0 Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

− 4× α0 + 2β0

1− β0
E

[
∞

∑
l=1

∞

∑
k=1

βk−1
0 Vt−l−k

l−1

∏
k′=1

Vt−k′

]
.

That the first term of the sum is finite is already known. For the last term, it is
straightforward from E ∑∞

l=1 ∑∞
k=1 βk−1

0 Vt−l−k ∏l−1
k′=1

Vt−k′ = (1− β0)
−1EV0/(1−
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EV0). For the second term of the sum, we need an expansion[
∞

∑
l=1

∞

∑
k=1

βk−1
0 Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

=2×
∞

∑
1≤l<l′<∞1

∞

∑
p,q=1

β
p+q−2
0 Vt−l−pVt−l′−q

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+
∞

∑
l=1

∞

∑
p,q=1

β
p+q−2
0 Vt−l−pVt−l−q

l−1

∏
p′=1

V2
t−p′

=4× ∑
1≤l<l′<∞

∑
1≤p<q<∞

β
p+q−2
0 Vt−l−pVt−l′−q

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+ 2× ∑
1≤l<l′<∞

∞

∑
p=1

β
2p−2
0 Vt−l−pVt−l′−p

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+ 2
∞

∑
l=1

∑
1≤p<q<∞

β
p+q−2
0 Vt−l−pVt−l−q

l−1

∏
p′=1

V2
t−p′

+
∞

∑
l=1

∞

∑
p=1

β
2p−2
0 V2

t−l−p

l−1

∏
p′=1

V2
t−p′

and in expectation we obtain a bounded term if EV2
0 < 1:

E

[
∞

∑
l=1

∞

∑
k=1

βk−1
0 Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

=4×
EV2

0
1−EV2

0

[
β0

(1− β0)(1− β2
0)

EV0

1−EV0
− 1

(1− β0)(1− β2
0)

EV0β

1− β2
0EV0

]

+ 4× β0(EV0)
3

(1− β0)(1− β2
0)(1− β2

0EV0)

1
1−EV2

0

+ 2× 1
1− β2

0

EV2
0

1−EV2
0

[
EV0

1−EV0
− EV0

1− β2
0EV0

]

+ 2
1

1−EV2
0

(EV0)
3

(1− β2
0)(1− β2

0EV0)

+ 2
1

1−EV2
0
(EV0)

2 β0

(1− β0)(1− β2
0)

+
EV2

0
1−EV2

0

1
1− β2

0
.
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That B33 is finite under EV2
0 < 1 comes from

B33 =E

[
∞

∑
l=1

Zt−l

l−1

∏
k=1

Vt−k

]2

=2E
∞

∑
l=1

∞

∑
l′>l

Zt−lZt−l′
l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ + E
∞

∑
l=1

Z2
t−l(

l−1

∏
k=1

Vt−k)
2

=EZ2
0

∞

∑
l=1

(EV2
0 )

l−1 =
EZ2

0
1−EV2

0
.

That the last coefficient is also finite comes form the computation

B44 =E

[
∞

∑
l=1
|Zt−l |

l−1

∏
k=1

Vt−k

]2

=2E
∞

∑
l=1

∞

∑
l′>l

|Zt−l |
∣∣∣Zt−l′

∣∣∣ l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ + E
∞

∑
l=1

Z2
t−l(

l−1

∏
k=1

Vt−k)
2

=2
∞

∑
l=1

∞

∑
l′>l

E

∣∣∣Zt−l′
∣∣∣E

(
l−1

∏
k=1

V2
t−k

)
E

|Zt−l |
l
′−1

∏
k′=l

Vt−k′

+
EZ2

0
1−EV2

0

=2
∞

∑
l=1

∞

∑
l′>l

(E |Z0|)(EV2
0 )

l−1(E |Z0|V0)EV l
′−l−1

0 +
EZ2

0
1−EV2

0

=
2E |Z0| (E |Z0|V0)

(1−EV0)(1−EV2
0 )

+
EZ2

0
1−EV2

0
.


