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We introduce the notion of continuous invertibility on a compact
set for volatility models driven by a Stochastic Recurrence Equation
(SRE). We prove in this context the strong consistency and the asymp-
totic normality of the estimator based on the SRE given in Straumann
(2005). We recover known results on univariate and multivariate GARCH
type models where the estimator coincides with the classical QMLE.
In EGARCH type models. our approach gives a strongly consistence
and asymptotically normal estimator when the limiting covariance
matrix exists. We provide a necessary and sufficient condition for the
existence of this limiting covariance matrix in the EGARCH(1,1) model.

1. Introduction. Since the seminal paper of Engle (1982) and Bollerslev
(1986), the General Autoregressive Conditional Heteroskedasticity (GARCH)
type models have been successfully applied to volatility modeling. Nelson
(1991) is the first attempt to introduce non linearity into volatility mod-
els with the Exponential-GARCH(1,1) type models. Since then, many other
volatility models have been introduced: APGARCH of Ding, Granger and Engle
(1993), GJR-GARCH of Glosten, Jagannathan and Runkle (1993), TGARCH
of Zakoïan (1994), etc. Non linear volatility models have been used exten-
sively in empirical researches (see Brandt and Jones (2006) among many
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others) and financial industry. Not surprisingly, theoretical investigations
of EGARCH has attracted constant attention, see He, Teräsvirta and Malmsten
(2002), Harvey (2010) and Rodriguez and Ruiz (2009). However, the valid-
ity of the estimation procedures used empirically in Nelson (1991) was not
proved. Our study provides the first satisfactory answer to this open ques-
tion for non linear volatility models including the EGARCH(1,1) model. We
provide sufficient conditions for the estimator to be strongly consistent and
asymptotically normal.

Consider a general volatility model of the form Xt = Σ1/2
t · Zt where Σt

is the volatility and where the innovations Zt are normalized, centered in-
dependent identical distributed (iid) random vectors. The natural filtration
Ft is generated by the past innovations (Zt, Zt−1, . . .). It is assumed that
a transformation of the volatility satisfies some (possibly non-linear) SRE,
i.e. there exist a function h and some Ft−1 measurable random function ψt
such that the following relation

(1) (h(Σk))k≤t = ψt((h(Σk))k≤t−1, θ0)

holds. It is the case of all classical models of GARCH and EGARCH types,
extensions of the simplest GARCH(1,1) and EGARCH(1,1) univariate mod-
els. To make our explanation clearer, let us recall the definitions of these
models (in the univariate case, the volatility is denoted σ2

t ):

GARCH(1,1): σ2
t = α0 + β0σ2

t−1 + γ0X2
t−1,(2)

EGARCH(1,1): log(σ2
t ) = α0 + β0 log(σ2

t−1) + (γ0Zt−1 + δ0|Zt−1|).
(3)

One can rewrite (2) as an SRE driven by the innovations: σ2
t = α0 + (β0 +

γ0Z2
t−1)σ

2
t−1, i.e. ψt(x, θ) = α + (β + γZ2

t−1)x. This SRE is used by Nelson
(1990) to obtain the Lyapunov condition E[log(β0 + γ0Z2

0)] < 0, necessary
and sufficient for the stationarity. In general, the functional process (ψt)
driving the SRE (1) is assumed to be a stationary ergodic process of Lip-
schitz functions. Such a SRE is said to be convergent when its solution is
unique, non anticipative (i.e. function of Ft at any time t) and its law does
not depend on the initial values. This last property, also called "stability"
of the SRE, ensures that the convergence of the SRE driven by (ψt) leads
to the existence of the stationary process (Xt). Sufficient conditions (also
necessary in the linear case) for the convergence are the strict negativity
of the Lyapunov coefficient and the existence of logarithmic moments, see
Bougerol and Picard (1992) and Bougerol (1993).
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Assume that the model have a non anticipative, stationary solution with
invertible volatility matrices Σt. Using the relation Zt = Σ−1

t · Xt in ψt, it is
possible to study a new SRE driven by the observations Xt

(4) (h(Σk))k≤t = φt((h(Σk))k≤t−1, θ0).

Here φt is an ergodic stationary process generated by (Gt−1), the sigma-
field of the past values (Xt−1, Xt−2, · · · ). The convergence of this new SRE
is closely related with the notion of invertibility (i.e. the existence of a non
linear AR representation of the observations) see Granger and Andersen
(1978), Straumann (2005) and Straumann and Mikosch (2006). Based on the
result of Bougerol (1993), sufficient conditions on Lipschitz functions φt are
the negativity of the Lyapunov coefficient and the existence of logarithmic
moments. One easily check on (2) that φt(x, θ) = α + βx + γX2

t−1 and the
univariate GARCH(1,1) model is invertible as soon as 0 ≤ β0 < 1. For
the EGARCH(1,1) model, Straumann (2005) rewrite the SRE such that it is
driven by the observations:
(5)

log(σ2
t ) = α0 + β0 log(σ2

t−1) + (γ0Xt−1 + δ0|Xt−1|) exp(− log(σ2
t−1)/2).

A sufficient condition for invertibility follows under restrictions on the pa-
rameters (α0, β0, γ0, δ0), see (13) below.

We introduce in this paper the notion of continuous invertibility (CI) for
models that are invertible on each point θ of a given compact set Θ and
a technical smoothness assumption on the function θ 7→ φ0(x, θ), see con-
dition (CI) below for details. This technical assumption is automatically
satisfied for all GARCH and EGARCH type models known by the authors.
Thus the GARCH(1,1) model is continuously invertible on all compact sets
of θ = (α, β, γ) ∈ [0, ∞[3 satisfying β < 1 and the EGARCH(1,1) is con-
tinuously invertible on all compact sets satisfying (12). Under (CI), one can
compute recursively a forecast ĝt(θ) of the volatility Σt using only the past
observations. The convergence of the SRE (4) ensures the stability of this
recursive procedure with respect to the initial values chosen arbitrarily.
Then one can reasonably study the error of forecasting using the Quasi-
LIKelihood (QLIK) criteria:

(6) nŜn(θ) =
n

∑
t=1

ŝt(θ) =
n

∑
t=1

2−1
(

XT
t `(ĝt(θ))

−1Xt + log(det(`(ĝt(θ)))
)

.

We study the M-estimator θ̂n of the unknown parameter θ0

θ̂n = argminθ∈ΘŜn(θ).
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We prove under (CI) and the identifiability of the model that θ̂n is a strongly
consistent estimator of θ0 (assumed to belong in Θ and to satisfy the station-
ary condition) and that the natural forecast ĝt(θ̂t) of the volatility Σt is also
strongly consistent. We prove that θ̂n is asymptotically normal if moreover
the limiting variance exists.

Continuous invertibility is proved to be a sufficient condition for infer-
ring and forecasting volatility efficiently in GARCH and EGARCH type
models. We apply our result to recover existing results in the GARCH case
where the inference procedure coincides with the classical Quasi Maximum
Likelihood Estimator (QMLE). In the GARCH(1,1) case, we recover the al-
ready known result: If Θ is a compact subset of [0, ∞[3 with the constraint
β < 1, the recursive forecast defined by (2) is stable and the inference is
strongly consistent if θ0 ∈ Θ and E[log(β0 + γZ2

0)] < 0. Remark that the
invertibility problem does not matter since the stationary condition implies
the invertibility one. For more general models, we recover the results of
Francq and Zakoïan (2004) that slightly refine Berkes, Horvath and Kokoszka
(2003) for GARCH(p,q) models, we recover the results of Francq and Zakoïan
(2011) for CCC-GARCH(p,q) models and for AGARCH(p,q) models we re-
fine the results of Straumann and Mikosch (2006). We also apply our results
in the EGARCH(1,1) model and give the first proof of the strong consis-
tency and the asymptotic normality of the estimator used in Nelson (1991).
The theoretical validity of this commonly used procedure only holds under
(CI), i.e. when the SRE (5) is stable with respect to its initial values. On the
contrary, it is shown in Sorokin (2011) that forecasting the volatility with
SRE may be inconsistent when the SRE is unstable. To sum up, one can
think of the following "equivalences":

Convergence of the SRE generated by ⇐⇒ stationarity, ergodicity
the innovations (Zt, Zt−1, . . .) (A) and log-moments
Convergence of the SRE generated by ⇐⇒ invertibility, forecasting
the observations (Xt, Xt−1, . . .) (B) and statistical inference

The equivalence (A) is crucial when studying existence of stationary so-
lutions of volatility models. We want to emphasize the importance of the
second equivalence (B) for the statistical inference and the volatility fore-
cas. The inference procedure described here is the most commonly used in
practice and the high generality of our model allows to apply our approach
in almost all volatility models. The consequences of this work on empirical
study is huge, see Wintenberger and Cai (2011) for the EGARCH(1,1) case
(applications on other classical models are also in progress). Finally, notice
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that the statistical inference of θ0 is possible without assuming (CI): it has
been done by Zaffaroni (2009) using Whittle’s estimator.

An outline of the paper can be given as follows. In Section 2, we discuss
the standard notions of invertibility and introduce the continuous invert-
ibility. In Section 3 our main results on the statistical inference based on the
SRE are stated. We apply this results in some GARCH type models and in
the EGARCH(1,1) model in Section 4. The Appendix contains the technical
computation of the necessary and sufficient condition for the existence of
the asymptotic variance of θ̂n in the EGARCH(1,1) model.

2. Continuously invertible volatility models.

2.1. The general volatility model. In this paper, (Zt) is a stationary ergodic
sequence of real vectors called the innovations. Let us denote Ft the fil-
tration generated by (Zt, Zt−1, . . .). Consider the general volatility model
Xt = Σ1/2

t · Zt where (1) is satisfied: (h(Σk))k≤t = ψt((h(Σk))k≤t−1, θ0). The
function h is injective from the space of real matrices of size k × k to an
auxiliary separable metric space F. The random function ψt(·, θ0) is a Ft−1
adapted random function from the space of the sequences of elements in
the image of h to itself. Let us denote ` the inverse of h (from the image of
h to the space of real matrices of size k× k) and call it the link function.

2.2. Convergent SRE and stationarity. A first question regarding this very
general model is wether or not a stationary solution exists. As the sequence
of the transformed volatilities (h(Σk))k≤t is a solution of a fixed point prob-
lem, we recall the following result due to Bougerol (1993). Let (E, d) be a
complete separable metric space. A map f : E → E is a Lipschitz map if
Λ( f ) = sup(x,y)∈E2 d( f (x), f (y))/d(x, y) is finite. For any sequence of ran-
dom element in (E, d), (Xt) is said to be exponential almost sure conver-

gence to 0 Xt
e.a.s.−−−→ 0 as t→ ∞ if for Xt = o(e−Ct) a.s. for some C > 0.

THEOREM 1. Let (Ψt) be a stationary ergodic sequence of Lipschitz maps
from E to E. Suppose that E[log+(d(Ψ0(x), x))] < ∞ for some x ∈ E, that
E[log+ Λ(Ψ0)] < ∞ and that for some integer r ≥ 1,

E[log Λ(Ψ(r)
0 )] = E[log Λ(Ψ0 ◦ · · · ◦Ψ−r+1)] < 0.

Then the SRE Xt = Ψt(Xt−1) for all t ∈ Z is convergent: it admits a unique
stationary solution (Yt)t∈Z which is ergodic and for any y ∈ E

Yt = lim
m→∞

Ψt ◦ · · · ◦Ψt−m(y), t ∈ Z.
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The Yt are measurable with respect to the σ(Ψt−k, k ≥ 0) and

d(Ỹt, Yt)
e.a.s.−−−→ 0, t→ ∞

such that Ỹt = Ψt(Ỹt−1) for all t > 0.

The sufficient Lyapunov assumptions E[log Λ(Ψ(r)
0 )] < 0 is also neces-

sary in the linear case, see Bougerol and Picard (1992). The logarithmic mo-
ments of the solution of a convergent SRE is proved in the following result
that seems to be new:

THEOREM 2. Under the assumptions of Theorem (1) and E[(log+ d(Ψ0(x), x))2] <
∞ the unique stationary solution satisfies E[log+(d(Y0, y))] < ∞ for all y ∈ E.

PROOF. The basic inequality log(1 + y + z) ≤ log(1 + y) + log(1 + z)
will be used several time. Remark also that for any r.v. X ≥ 0 we have
the equivalence E[log(1 + X)] < ∞ iff E[log+(X)] < ∞. Thus E[log(1 +
d(Ψ0(y), y))] < ∞ for all y ∈ E as d(Ψ0(y), y)) ≤ d(Ψ0(x), x))+Λ(Ψ0)d(x, y).
For any y ∈ E, one denotes Ψ(−m) = Ψ0 ◦ · · · ◦Ψ−m(y), w = d(y, Ψ(1−m)(y)) ≥
0 and z = Λ(Ψ(1−m))d(Ψ−m(y), y) ≥ 0. From the triangular inequality one
obtains d(y, Ψ(−m)(y)) ≤ w + z and using we derive that

log(1 + d(y, Ψ(−m)(y))) ≤ log(1 + w + z) ≤ log(1 + w) + log(1 + z).

Eqn. 27 in Bougerol and Picard (1992) asserts the existence of 0 < ρ < 1
and ε > 0 satisfying

limm→∞
1
m

log(Λ(Ψ(−m))) ≤ log(ρ)− ε a.s.

Thus Λ(Ψ(−m)) ≤ ρm a.s. for all m larger than some fixed M > 0. Writing
vm = log(1 + d(y, Ψ(−m)(y))), for all m ≥ M we have:

vm ≤ vm−1 + log(1 + ρm−1d(Ψ−m(y), y)).

A straightforward recurrence leads to the following upper bound of all
(vm)m≥M

vm ≤ vM +
∞

∑
j=1

log(1 + ρj−1d(Ψ−j−M(y), y)).

As log(1 + d(y, Y0) = limm→∞ vm a.s., it remains to prove that the upper
bound is integrable to conclude by the dominated integration Theorem. Us-
ing the stationarity of (vm), we know that E[log(1+ ρj−1d(Ψ−j−M(y), y))] =
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E[log(1+ ρj−1d(Ψ0(y), y))] for all m ≥ M. Thus E[vM] = E[log(1+ d(y, Ψ0(y)))] <
∞ by assumption. We conclude the proof by comparing the series with an
integral:

∑
j≥1

E[log(1 + ρj−1d(Ψ0(y), y))] ≤ 1
1− ρ

∫ 1

0

E[log(1 + ud(Ψ0(y), y))]
u

du.

Let us prove that his integral converges as soon as E[(log+ Λ(Ψ0))2] < ∞.
Using that E[log(1 + ud(Ψ0(y), y))] =

∫ ∞
0 P(log(1 + ud(Ψ0(y), y)) ≥ t)dt

and denoting v = (et − 1)/u the integral becomes:∫ 1

0

∫ ∞

0

P(log(1 + ud(Ψ0(y), y)) ≥ t)
u

dtdu =
∫ 1

0

∫ ∞

0

P(d(Ψ0(y), y) ≥ v)
1 + uv

dvdu.

Using Fubini’s theorem and
∫ 1

0 (1 + uv)−1du = log(v + 1)/v for all v ≥ 0
we get an upper bound in term of∫ ∞

0

log(1 + v)P(d(Ψ0(y), y) ≥ v)
v

dv.

This integral converges in +∞ as∫ ∞

0

log(1 + v)P(d(Ψ0(y), y) ≥ v)
1 + v

dv = E[log(1 + d(y, Ψ(y))2]

and the desired result follows.

In order to apply Theorem 1 in our case, let us denote by E the separable
metric space of the sequences of elements in the image of h. Equipped with
the metric ∑j≥1 2−jd(xj, yj)/(1 + d(xj, yj)), the space E is complete. A suf-
ficient condition for stationarity of (Xt) is that the SRE driven by (ψt) con-
verges in E. It simply expresses as the Lyapunov condition E[log Λ(ψ

(r)
0 )] <

0 for some integer r ≥ 1 and some logarithmic moments. This assumption
of stationarity is sufficient but not optimal in many cases:

REMARK 1. The state space of the SRE (1), denoted E, in its most general
form, is a space of infinite sequences. However in all classical models we can find
a lag p such that (h(Σk))t−p+1≤k≤t = ψt((h(Σk))t−p≤k≤t−1, θ0). The state space
E is now the finite product of p spaces. It can be equipped by unbounded metrics
such that p−1 ∑

p
j=1 d(xj, yj) or

√
∑

p
j=1 d2(xj, yj). The product metric has to be

carefully chosen as it changes the value of the Lipschitz coefficients of the φt. Yet,
even if the products spaces are embedded, the smallest possible lag p in the SRE
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yields the sharpest Lyapunov condition. Finally, if E has a finite dimension and
if the condition of convergence of the SRE expresses in term of the top Lyapunov
coefficient, one can choose any metric induced by any norm, see Bougerol (1993)
for details.

In view of Remark 1, instead of choosing a specific metric space (E, d)
we prefer to work under the less explicit assumption

(ST) The process (Xt) satisfying (1) exists. It is a stationary, non anticipa-
tive and ergodic process with finite logarithmic moments.

In view of Theorem 2, it is reasonable to require that the solution has finite
logarithmic moments. It is very useful when considering the invertibility
of the general model, see Theorem 2 below.

2.3. The invertibility and the observable invertibility. Now that under (ST)
the process (Xt) is stationary and ergodic, we investigate the question of in-
vertibility of the general model (1). We want to emphasize that the notions
of invertibility is linked with convergences of SREs, governed by Lyapunov
conditions. Following Tong (1993), we say that a volatility model is invert-
ible if the volatility can be expressed as a function of the past observed
values:

DEFINITION 1. The model is invertible if the sequence of the volatilities (Σt)
is adapted to the filtration (Gt−1) generated by (Xt−1, Xt−2, · · · ).

It is natural to assume invertibility to be able to forecast the volatil-
ity. This notion of invertibility is very weak and consists in restricting the
underlying filtration (Ft) of the SRE to (Gt−1). Indeed, under (ST) then
Gt ⊆ Ft is well defined. If the volatility matrices are invertible, using Zt =
Σ−1

t · Xt in ψt we can express (1) as (4): (h(Σk))k≤t = φt((h(Σk))k≤t−1, θ0),
a SRE driven by the whole past of the observations. The sequence of ran-
dom functions (φt) is an ergodic and stationary process adapted to (Gt−1).
Using the sufficient conditions of convergence of SREs given in Theorem
1, the invertibility follows if the φt(·, θ0) are Lipschitz maps such that for
some x ∈ E and r > 0,

E[log+(d(x, φ0(x, θ0)))] < ∞, E[log+ Λ(φ0(·, θ0))] < ∞
and E[log Λ(φ0(·, θ0)(r))] < 0.(7)

The Remark 1 also holds for the SRE driven by (φt): the metric space (E, d)
must be chosen carefully. The conditions (7) (with the optimal metric space
(E, d)) are called the conditions of invertibility.
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PROPOSITION 1. Under (ST) and (7), the general model (4) is invertible.

Another notion of invertibility is introduced in Straumann and Mikosch
(2006). We call it observable invertibility. Let us assume that there exists
some approximations φ̂t of φt such that φ̂t is a measurable function of the
past observations (Xt−1, Xt−2, . . . , X1) and not the whole past (Xt−1, Xt−2, . . .).

DEFINITION 2. The model is observably invertible if and only if the solution
of the approximative SRE

(8) (h(Σ̂k))k≤t = φ̂t((h(Σ̂k))k≤t−1, θ0)

is convergent, i.e. ‖Σ̂t − Σt‖ → 0 in probability as t→ ∞.

Remark that in general the approximative SRE does not fit the condi-
tions of Theorem 1 and in particular (φ̂t) is not necessarily stationary and
ergodic. However, the Proposition below gives sufficient conditions for ob-
servable invertibility. It is a very useful result for the sequel of the paper, see
Remark 2. Remark that the logarithmic moments are needed in the proof
and that the only known effective way of checking it is given in our Theo-
rem 2.

PROPOSITION 2. If (ST) and (7) hold, if the link function ` is continuous and
it exists x ∈ E such that d(φ̂t(x), φt(x)) e.a.s.−−−→ 0 and Λ(φ̂t(·, θ0)−φt(·, θ0))

e.a.s.−−−→
0 as t→ ∞, then the model is observably invertible.

PROOF. One can extend the proof of Theorem 2.10 in Straumann and Mikosch
(2006) written for Banach spaces to the case of the complete separable met-

ric space (E, d). That d((h(Σk))k≤t), (h(Σ̂k))k≤t))
e.a.s.−−−→ 0 follows from the

proof of Theorem 2.10 in Straumann and Mikosch (2006) under the follow-
ing assumptions:

S1 E[log+(d(x, φ0(x, θ0)))] < ∞ for some x ∈ E,
S2 E[log Λ(φ0(·, θ0))] < ∞ and E[log Λ(φ0(·, θ0)(r))] < 0 for some r > 0,
S2’ E[log+(d(y, (h(Σk))k≤t))] < ∞ for all y ∈ E,

S3 d(φ̂t(x), φt(x)) e.a.s.−−−→ 0 and Λ(φ̂t(·, θ0)− φt(·, θ0))
e.a.s.−−−→ 0 as t→ ∞.

The conditions S1-S2 are equivalent to the invertibility conditions (7). S3
holds from the assumptions in Proposition 2 and S2’ follows from (ST).
Finally, using the continuity of the projection on the first coordinate and
the one of the link function `, the desired result follows.
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REMARK 2. Classical models such that GARCH(p,q) or EGARCH(p,q) mod-
els satisfy an SRE for finite p lags (h(Σk))t−p+1≤k≤t = φt((h(Σk))t−p≤k≤t−1, θ0)
and for some φt generated by only a finite of past observation (Xt−1, . . . , Xt−q).
In this context, the approximative SRE coincides with the initial ones, i.e. one can
choose φ̂t = φt for t > q. Therefore, conditions of Proposition 2 hold systemati-
cally; invertibility and observable invertibility are equivalent, i.e. they are induced
by the same Lyapunov condition. As for any initial values of φ̂t (for 0 ≤ t ≤ q) the
conditions of Propositon 2 are satisfied, seeking simplicity we work in the sequel
with φ̂t = φt for all t ≥ 1.

2.4. The continuous invertibility. We have seen that the existing invert-
ibility notions can be expressed in term of Lyapunov conditions. We intro-
duce the notion of continuous invertibility in term of a Lyapunov condition
and some smoothness assumtion. Let us consider models with parametric
functions having continuous Lipschitz coefficients:

(CL) For any metric spacesX , Y andZ , a function f : X ×Y 7→ Z satisfies
(CL) if there exists a continuous function Λ f : Y 7→ R+ such that
Λ( f (·, y)) ≤ Λ f (y) for all y ∈ Y .

As we want to infer the unknown parameter θ0, let us consider from Re-
mark 2 the functional SRE of the form

(9) (ĝk(θ))t−p+1≤k≤t = φt((ĝk(θ))t−p≤k≤t−1, θ), ∀t ≥ 1,

on some θ with arbitrary initial values (ĝk(θ))1−p≤k≤0. We introduce the
condition of continuous invertibility on a compact set Θ where the SRE (9)
is stable:

(CI) Assume that the SRE (9) holds with φt satisfying (CL) for stationary
(Λφt) such that conditions E[log Λ(r)

φ0
(θ)] < 0 on the compact set Θ.

Assume moreover that E[supΘ log+ Λ(r)
φ0
(θ)] < ∞ and that there ex-

ists y ∈ E such that E[supΘ log+(d(φ0(y, θ), y))] < ∞.

The condition (CI) implies the invertibility and the observable invertibility
studied in Subsection 2.3 for all θ ∈ Θ. Then the law of the volatility ap-
proximation ĝt(θ) forgets exponentially fast their arbitrary initial values. It
also implies the local uniform regularity of the solution gt(·) of the func-
tional SRE (gk(·))t−p+1≤k≤t = φt((gk(·))t−p≤k≤t−1, ·) for all t ∈ Z. On the
contrary of Straumann (2005), the uniform continuity is not needed here.
Our conditions are weaker than in Straumann (2005) and Straumann and Mikosch
(2006).
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THEOREM 3. Assume that (ST) and (CI) hold. Then the functions gt(·) are
continuous for all θ ∈ Θ and all t ∈ Z. Moreover, for any θ ∈ Θ there exists an
ε > 0 such that ĝt(θ) satisfying (9) satisfies

(10) lim sup
θ′∈B(θ,ε)∩Θ

d(ĝt(θ
′), gt(θ

′))
e.a.s.−−−→ 0.

PROOF. For any ρ > 0, let us write Λ(r)
∗ (θ, ρ) = sup{Λ(r)

φ0
(θ′), θ′ ∈ B(θ, ρ)∩

Θ}, where B(θ, ρ) stands for the closed ball centered at θ with radius ρ. As
E[supΘ log Λ(r)

φ0
(θ)] < ∞, by the dominated convergence Theorem we ob-

tain limρ→0 E(Λ(r)
∗ (θ, ρ)) = E(limρ→0 Λ(r)

∗ (θ, ρ)). But limρ→0 Λ(r)
∗ (θ, ρ) =

Λ(r)
φ0
(θ) by continuity of Λ(r)

φ0
(θ) , we finally obtain

lim
ρ→0

E(Λ(r)
∗ (θ, ρ)) = E(lim sup

θ′→θ

Λ(r)
φ0
(θ))) = E(Λ(r)

φ0
(θ)) < 0.

Thus, there exists an ε > 0 such that E(Λ(r)
∗ (θ, ε)) < 0.

Let us now work on C(B(θ, ε)∩Θ), the complete metric space of contin-
uous functions from B(θ, ε) ∩ Θ to R equipped with the supremum norm
d∞ = supB(θ,ε)∩Θ d. In this setting (ĝt) satisfy a functional SRE (ĝk)k≤t =

φt((ĝk)k≤t−1) with Lipschitz constants satisfying

Λ∞(φ
(r)
t (·)) ≤ sup

s1,s2∈C(B(θ,ε)∩Θ)

d∞(φ
(r)
t (s1), φ

(r)
t (s2))

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ d(φ(r)
t (s1(θ

′), θ′), φ
(r)
t (s2(θ′), θ′)

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ Λ(φ
(r)
t (·, θ′))d(s1(θ

′)s2(θ′))

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ Λ(φ
(r)
t (·, θ′))d∞(s1, s2)

d∞(s1, s2)

≤ sup
B(θ,ε)∩Θ

Λ(φ
(r)
t (·, θ′)) ≤ sup

B(θ,ε)∩Θ
Λ(r)

φt
(θ′) ≤ Λ(r)

∗ (θ, ε)).

As E[supB(θ,ε)∩Θ log+(d(φt(y, θ′), y))] ≤ E[supΘ log+(d(φt(y, θ), y))] is fi-
nite we can apply Theorem 1. By recurrence φt ◦ · · · ◦φt−m(ζ0) ∈ C(B(θ, ε)∩
Θ) is continuous in θ and so is gt as the convergence holds uniformly on
B(θ, ε) ∩Θ. It is true for any θ ∈ Θ and the result follows.
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3. Statistical inference under continuous invertibility.

3.1. Statistical inference based on the SRE. Here we describe the approach
in Straumann (2005). Assume that (9) holds with θ0 unknown and θ0 be-
longs in the compact set Θ of stability, i.e. such that (CI) holds. Consider

θ̂n = argminθ∈ΘŜn(θ)

the M-estimator associated with the QLIK criteria (6) where (ĝt) is obtained
from the approximative SRE (9).

REMARK 3. This statistical procedure does not coincide with the Quasi Maxi-
mum Likelihood as it is not always efficient when the innovations are normally dis-
tributed. For a detailed discussion in the EGARCH(1,1) case see Wintenberger and Cai
(2011).

3.2. Strong consistency of the parametric inference. From now on, we as-
sume that the innovations process (Zt) is iid:

(IN) The Zt are iid variables such that E[ZT
0 Z0] is the identity matrix.

The next assumption implies that the volatility matrices are invertible and
that the link function ` is continuous:

(IV) The functions `−1 and log(det(`)) are Lipschitz satisfying det(`(g0(θ))) ≥
C(θ) for some continuous function C : Θ 7→ (0, ∞).

REMARK 4. The SRE criteria converges to the possibly degenerate limit

S(θ) = E[s0(θ)] = 2−1E
[

XT
0 `(g0(θ))

−1X0 + log(det[`(g0(θ))])
]

Remark that S(θ0) = 2−1E[ZT
0 Z0 + log(det(Σ0))] is finite under (ST), (IN) and

(IV) because h(Σ0) has logarithmic moments and log(det(`)) is Lipschitz. It is
a considerable advantage of the QLIK criteria: it does not need moments of any
order to be defined in θ0. Even if S(θ) may be equal to +∞ for θ 6= θ0, it does not
interfere the statistical procedure by definition of θ̂n as a minimizer.

If the model is identifiable, the estimator θ̂n is strongly consistent:

THEOREM 4. Assume that (ST) and (CI) are satisfied on the compact set Θ.
If (IN) and (IV) are satisfied and the model is identifiable, i.e. g0(θ) = h(Σ0) iff
θ = θ0, then θ̂n → θ0 a.s. for any θ0 ∈ Θ.
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PROOF. First, remark that with no loss of generality we can always re-
strict (9) to θ satisfying det(`(φ̂t(·, θ))) ≥ C(θ). We adapt the proof of
Jeantheau (1993) and its notation s∗t(θ, ρ) = inf{st(θ′), θ′ ∈ B(θ, ρ)} and
ŝ∗t(θ, ρ) = inf{ŝt(θ′), θ′ ∈ B(θ, ρ)}. Let us recall Theorem 5.1 in Jeantheau
(1993) : The M-estimator associated with the loss (6) is strongly consistent
under the hypothesis H1-H6:

H1 Θ is compact.
H2 Ŝn(θ)→ S(θ) a.s. under the stationary law Pθ0 .
H3 S(θ) admits a unique minimum for θ = θ0 in Θ. Moreover for any

θ1 6= θ0 we have:
lim inf

θ→θ1
S(θ) > S(θ1).

H4 ∀θ ∈ Θ and sufficiently small ρ > 0 the process (ŝ∗t(θ, ρ)))t is ergodic.
H5 ∀θ ∈ Θ, Eθ0 [s∗1(θ, ρ)] > −∞.
H6 limρ→0 Eθ0 [s∗1(θ, ρ)] = E[s∗1(θ)].

Let us check H1-H6 in our case. H1 is satisfied by assumption. H2 is verified
in two steps. First, by the e.a.s. convergence given by Theorem 3, arguments
of Straumann (2005) and the Lipschitz properties of `−1 and log(det(`)) we
obtain

1
n

n

∑
t=1

sup
B(θ,ε)

|ŝt(θ
′)− st(θ

′)| → 0 Pθ0 − a.s.

Second we use that (st) is an ergodic sequence. Using Proposition 1.1 of
Jeantheau (1993), n−1 ∑n

t=1 st(θ) converges Pθ0-a.s. to S(θ) (taking values in
R∪ {+∞}) as the st are bounded from below:

1
n

n

∑
t=1
|st(θ)− S(θ)| → 0 Pθ0 − a.s.

Combining this two steps leads to H2. The first part of H3 is checked sim-
ilarly than in (ii) p.2474 of Straumann and Mikosch (2006) and with the
help of the Remark 4. Remark that S has a unique minimum iff E[Tr(Σ0 ·
`(g0(θ))−1)− log(det(Σ0 · `(g0(θ))−1))] has a unique minimum. As this cri-
teria is the integrand of a sum of the λi − log(λi) where the λi are positive
eigenvalues, we conclude under the identifiability condition from the prop-
erty x− log(x) ≥ 1 for all x > 0 with equality iff x = 1. The second part is
checked using the fact that

lim inf
θ→θ1

S(θ) ≥ E[lim inf
θ→θ1

s0(θ)] = E[s0(θ1)] = S(θ1)

where the first inequality was already used for proving Theorem 3 and
the first equality comes from the local continuity of g0 and `. H4 is satisfied



14 O. WINTENBERGER AND S. CAI

from the ergodicity of (ŝt). H5 and H6 follows from Theorem 3 that ensures
the continuity of the function s∗1 and by the lower bounded assumption on
det(`), see Proposition 1.3 of Jeantheau (1993).

3.3. Volatility forecasting. From the inference of θ0, we deduce a natural
forecast of the volatility Σ̂t = `(ĝt(θ̂t)). It is strongly consistent:

THEOREM 5. Under the conditions of Theorem 4 then ‖Σ̂t − Σt‖ → 0 a.s. as
t→ ∞.

PROOF. It is a direct consequence of Theorems 3 and 4 that assert the
a.s. convergence of θ̂t toward θ0 and the local uniform convergence of ĝt
toward gt. Remark that for t sufficiently large such that θ̂t ∈ B(θ, ε), a ball
where the uniform Lyapunov condition E[log Λ∞(φt(·))] < 0 is satisfied.
Thus ĝt(θ̂t) − gt(θt) → 0 a.s. and by continuity of ` and gt and from the
identification Σt = `(gt(θ0)) the result follows if gt(θ̂t) converges to gt(θ0).
For proving it, we use

d(gt(θ̂t), gt(θ0)) ≤ Λ∞(φt(·))d(gt−1(θ̂t), gt−1(θ0)) + wt(θ̂t)

where wt(θ̂t) = d(φt(gt−1(θ0), θ̂t), φt(gt−1(θ0), θ0)). The RHS term satisfies
an SRE of linear stationary maps satisfying the Lyapunov condition. We
apply Theorem 1 as for any θ̂t, by assumption E log+(w0(θ̂t)) is uniformly
bounded by E[supΘ log+(2d(φt(y, θ), y))] < ∞. We get

d(gt(θ̂t), gt(θ0)) ≤
∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t).

Conditioning on (θ̂t), the upper bound is a stationary normally convergent
series of functions and

P
( ∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t)→ 0
)

= E
[
P
( ∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t)→ 0 | (θ̂t)
)]

= E
[
P
( ∞

∑
i=0

Λ∞(φ0(·)) · · ·Λ∞(φ−i+1(·))w−i(θ̂t)→ 0 | (θ̂t)
)]

= E[1] = 1,

the last inequalities following from the continuity of normally convergent
series of functions, θ̂t → θ0 and wi(θ̂t) → wi(θ0) = 0 for all i a.s. as t →
∞.
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3.4. Asymptotic normality of the parametric inference. Classical computa-
tions show that if the M-estimator θ̂n is asymptotically normal then the
asymptotic variance is given by the expression

V = P−1QP−1

with P = E[Hs0(θ0)] and Q = E[∇s0(θ0)∇s0(θ0)T], where Hs0(θ0) is the
Hessian matrix of s0(θ0).

(AV) Assume that E(‖Z0ZT
0 ‖2) < ∞ and that the functions ` and φt are 2-

times continuously differentiable on the compact set Θ that coincides
with the closure of its interior.

The following moments assumptions ensure the existence of Q and P:

(MM) Assume that E[‖∇s0(θ0)‖2] < ∞ and E[‖Hs0(θ0)‖] < ∞.

These moments assumptions holds only for θ = θ0; they are simpler to
verify than for the moment conditions for θ 6= θ0 due to the specific form
of the derivatives of the SRE criteria , see Remark 4 and computations in
Bardet and Wintenberger (2009). The next assumption is classical and en-
sures to the existence of P−1:

(LI) The components of the vector ∇g0(θ0) are linearly independent.

Let V = B(θ0, ε) ⊂ Θ with θ0 ∈
◦
Θ and ε > 0 chosen in accordance with

Theorem 3, i.e. such that E[log(supV Λφ0)] < 0. The two next assumptions
are specific to the SRE approach. They ensure that∇ŝt(θ) is a good approx-
imation of ∇st(θ) uniformly on the neighborhood V of θ0:

(DL) The partial derivatives Φt = Dx(φt), = Dθ(φt), = D2
x2(φ0), D2

θ,x(φ0)

or D2
θ2(φ0) satisfy (CL) for stationary (ΛΦt) with E[supV log(ΛΦ0)] <

∞. Assume there exists y ∈ E such that E[supV (log+(d(φ0(y, θ), y)))2] <
∞.

(LM) Assume that y → ∇`−1(y) and y → ∇ log(det(`(y))) are Lipschitz
functions.

Now that V is well defined in terms of derivatives of s0 that are well ap-
proximated using the SRE approach, the procedure is asymptotically nor-
mal:

THEOREM 6. Under the assumptions of Theorem 4, (AV), (MM), (LI), (DL)
and (LM) then the asymptotic variance V is well defined and the statistical infer-
ence is asymptotically normal, i.e.

√
n(θ̂n − θ̂0)→ N (0, V)
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in distribution for any θ0 ∈
◦
Θ with the asymptotic matrix V that is invertible.

PROOF. Under (CI) and (LM) one applies our Theorem 2 to (supV gt(θ)).
Then E[log+(supV g0(θ))] < ∞ and from the Lipschitz condition in (DL)
we have E[supV log+(‖Φ0(θ)‖)] < ∞ for Φ0(θ) = Dθ(φ0)(g0(θ), θ) or
D2

x2(φ0)(g0(θ), θ) or D2
θ,x(φ0)(g0(θ), θ) or D2

θ2(φ0)(g0(θ), θ). Using the exis-
tence of these logarithmic moments and the relation E[log(supV Λφ0)] < 0,
we apply recursively the Theorem 1 and prove the existence of continuous
first and second derivatives of (gt(θ)) on V as solutions of functional SRE.
The asymptotic normality follows from a Taylor development on the first
partial derivatives of Sn (see Section 5 of Bardet and Wintenberger (2009)
for more details):

∇iSn(θ̂n)−∇iSn(θ0) = HSn(θ̃n,i)(θ̂n − θ0)

Then the asymptotic normality follows from the following sufficient condi-
tions:

1. n−1/2∇Sn(θ0)→ N (0, Q),
2. ‖n−1HSn(θ̃n)− P‖ converges a.s. to 0 for any sequence (θ̃n) converg-

ing a.s. to θ0 and P is invertible,
3. n−1/2‖∇Ŝn(θ̂n)−∇Sn(θ̂n)‖ converges a.s. to 0.

Due to its specific expression and that (Zt) is a normalized difference of
martingales sequence with finite moments of order 4, (∇Sn(θ0)) is a mar-
tingale, see Bardet and Wintenberger (2009) for detailed computations. Un-
der (MM), the CLT for differences of martingale applied to (∇Sn(θ0)) leads
to the first condition. The first part of the second condition are derived from
similar arguments than in the proof of Theorem 5 and an application of the
Cesaro mean theorem ensuring that n−1‖HSn(θ̃n) − ∑n

t=1 Hst(θ0)‖ → 0
a.s. The ergodic Theorem on (Hst(θ0)) with (MM) leads to ‖n−1HSn(θ̃n)−
P‖ → 0 a.s. The fact that P is invertible follows from (LI), see Bardet and Wintenberger
(2009) for detailed computations. Finally the third condition is obtained by
applying Theorem 2.10 of Straumann and Mikosch (2006) to the SRE satis-
fied by (∇gt) and its approximative SRE satisfied by (∇ĝt) uniformly on

V . Thus supV ‖∇ĝt −∇gt‖
e.a.s.−−−→ 0 as t → ∞ and Lipschitz conditions on

∇`−1 and∇ log(det(`)) in (LM) and arguments similar than in Straumann
(2005) leads to the desired result.

4. Applications to GARCH and EGARCH type models.
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4.1. Some applications to GARCH type models. In the GARCH type mod-
els, the stationarity assumption (ST) is crucial, whereas the continuous in-
vertibility condition (CI) is automatically satisfied due to the form of the
model. Sufficient conditions for (ST) have been extensively studied in the
literature and they can be necessary in linear cases. The asymptotic prop-
erties of the QMLE (that coincides with the SRE based inference in these
cases) follow from Theorems 4 and 6. Thus, we recover and slightly refine
existing results in the AGARCH and CCC-GARCH models (we refer the
reader to Straumann (2005) and Francq and Zakoïan (2011) respectively for
details in these both cases).

First, let us consider the univariate APGARCH(p, q) model introduced in
Ding, Granger and Engle (1993), Zakoïan (1994) and studied in Straumann
(2005):

σ2
t = α0 +

p

∑
i=1

αi(|Xt−i| − γXt−i)
2 +

q

∑
j=1

β jσ
2
t−j, t ∈ Z,

where α0 > 0, αi, β j ≥ 0 and |γ| ≤ 1 (it coincides with the GARCH(p, q)
model if γ = 0. Then we derive the strong consistency and the asymptotic
normality directly from our Theorems 4 and 6. The conditions we obtained
coincides with these of Theorem 5.5 and Theorem 8.1 of Straumann and Mikosch
(2006) except their useless condition (8.1) as one does not need moments of
any order.

Second, let us consider the multivariate CCC-GARCH(p, q) model intro-
duced by Bollerslev (1990), first studied in Jeantheau (1998) and refined in
Francq and Zakoïan (2011)

Diag(Σ2
t ) = A0 +

q

∑
i=1

AiDiag(Xt−iXT
t−1) +

p

∑
i=1

BiDiag(Σ2
t−i)

and (Σ2
t )i,j = ρi,j

√
(Σ2

t )i,i(Σ2
t )j,j) for all (i, j), where Diag(M) is the vector

of the diagonal elements of M. A necessary and sufficient conditions for
(ST) is given in term of top Lyapunov condition in Francq and Zakoïan
(2011). We recover the strong consistency and the asymptotic normality of
Francq and Zakoïan (2011) directly from our Theorems 4 and 6.

4.2. Application to the EGARCH(1, 1) model. Let (Zt) be an iid sequence
of random variables not concentrated on two points such that E(Z2

0) = 1.
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The EGARCH(1, 1) model introduced by Nelson (1991) is an AR(1) model
for log σ2

t ,

Xt = σtZt with log σ2
t = α0 + β0 log σ2

t−1 + Wt−1(θ0)

where Wt(θ0) = γ0Zt + δ0 |Zt| are the innovations of this AR(1) model. Let
θ0 = (α0, β0, γ0, δ0) be the unknown parameter. Assume that |β0| < 1 such
that there exists a stationary solution having a MA(∞) representation:

(11) log σ2
t = α0(1− β0)

−1 +
∞

∑
k=1

βk−1
0 Wt−k(θ0).

The moments assumptions on Zt ensures that the process (log σ2
t ) is er-

godic, strongly and weakly stationary. Then the volatilities process (σ2
t ) is

also ergodic and strongly stationary and (ST) holds. However, it does not
necessarily have finite moment of any order.

The invertibility of the stationary solution of the EGARCH(1, 1) model
does not hold in general. A sufficient condition for invertibility is given
in Straumann and Mikosch (2006). Let us study its link with our condition
(CI). As (log σ2

t ) satisfies the SRE

log σ2
t = α0 + β0 log σ2

t−1 + (δ0Xt−1 + γ0|Xt−1|) exp(−log σ2
t−1/2),

if it has a non anticipative solution the model is invertible. Keeping the
notation of Section 2, the function h is now the logarithmic function and
the SRE (8) holds with (φt) defined by

φt(·; θ) : s 7→ α + βs + (γXt−1 + δ |Xt−1|) exp(−s/2)

We check that the φt are random functions generated by Gt−1. For any θ ∈
R×R+ × {γ ≥ |δ|} we restrict φt(·; θ) on the complete separable metric
space [α/(1− β), ∞) equipped with d(x, y) = |x− y|. The process (φt(·; θ))
is a stationary ergodic sequence of Lipschitz maps from [α/(1− β), ∞) to
[α/(1− β), ∞) with Lipschitz coefficients

Λ(φt(·, θ0)) ≤ max{β, 2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β}.

The technical smoothness assumption (CL) is automatically satisfied as

(Λφt(θ))t = (max(β, 2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β))t
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is a stationary process of continuous functions of θ. The EGARCH(1,1) is
continuously invertible on any compact set Θ ⊂ R×R+ × {γ ≥ |δ|} such
that

(12) E[log(max{β, 2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β})] < 0.

This sufficient condition for continuous invertibility depends on the distri-
bution of the observations (Xt). Remark that if θ0 ∈ Θ then it satisfies the
condition of stationarity β0 < 1 and, from the MA(∞) representation (11)
of log σ2

t , our condition (12) expressed at θ0 implies that

(13) E
[

log
(

max
{

β0, 2−1 exp
(

2−1
∞

∑
k=0

βk
0(γ0Z−k−1 + δ0 |Z−k−1|)

)
× (γ0Z0 + δ0 |Z0|)− β0

})]
< 0.

It is the condition of invertibility of the EGARCH(1,1) model given in Straumann and Mikosch
(2006). Applying our results of Theorem 4 and Theorem 5, we obtain

THEOREM 7. For any compact subset Θ of R×R+ × {γ ≥ |δ|} satisfying
(12) then θ̂n → θ0 and σ̂2

n − σ2
n → 0 a.s. as n → ∞ with σ̂2

t = exp(ĝt(θ̂n)) if
θ0 ∈ Θ.

PROOF. The condition (CI) follows from E[log Λ(φt(, θ))] < 0 by as-
sumption of Θ and E[supΘ log Λ(φt(, θ))] < ∞ since E log |Xt−1| = E(log σ+
log |Zt−1|) < ∞ as log σ2

t has a MA(∞) representation (11) and Z is inte-
grable. Moreover as log+(d(φ0(0, θ), 0)) = log+ |α+ (γX−1 + δ|X−1|)| then
fixing y = 0 one has E[supΘ(log+(d(φ0(y, θ), y))2] < ∞.
In the EGARCH(1, 1) model the link function is the exponential function
`(x) = exp(x) and since we have log σ2

t ≥ α/(1− β), 1/`(x) = exp(−x)
is a Lipschitz function (log(det(`)) = id is also a Lipschitz function). More-
over the volatility process (σ2

t ) is bounded from below by C(θ) = exp(α/(1−
β)). Finally, the identifiability condition g0(θ) = h(θ0) iff θ = θ0 is checked
in Section 5.1 of Straumann and Mikosch (2006).

As a corollary of Theorem 6 we get the asymptotic normality of the sta-
tistical inference in the EGARCH(1, 1) model. It holds under the following
necessary and sufficient condition of the existence of the asymptotic vari-
ance V:

(MM’) E[Z4
0 ] < ∞ and E[(β0 − 2−1(γ0Z0 + δ0 |Z0|)2] < 1.
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THEOREM 8. Assume that Θ is well chosen as in Corollary 7 and that (MM’)
holds then

√
n(θ̂n − θ0) → N (0, V) in law with an invertible matrix V for any

θ0 ∈
◦
Θ.

PROOF. By definition, (φt) is 2-times continuously differentiable and sim-
ple computations give Dx(φt)(x, θ) = β− 2−1(γXt−1 + δ|Xt−1|) exp(−x/2), Dθ(φt)(x, θ) =
(1, x, Xt−1 exp(−x/2), |Xt−1| exp(−x/2))T, D2

x2(φt)(x, θ) = 4−1(γXt−1 + δ|Xt−1|)
exp(−x/2), D2

x,θ(φt)(x, θ) = (0, 1, 2−1Xt−1 exp(−x/2), 2−1|Xt−1| exp(−x/2))T

and D2
θ2(φt)(x, θ) = 0. Moreover, as the link function is `(x) = exp(x) is

also 2-times continuously differentiable, the last assertion of the condition
(AV) of Theorem 6 holds. The fact that (MM) holds under the conditions
E[Z4

0 ] < ∞ and β2
0 − δ0E|Z0|+ (δ2

0 + γ2
0)/4 < 1 is technical and postponed

to the Appendix. The fact that (LI) holds if Z0 is not concentrated on two
points is classical, see for instance Lemma 8.2 of Straumann and Mikosch
(2006). Assumption (DL) is satisfied from the expressions of the derivatives
(that are Lipschitz functions) and as all the logarithmic moments are finite
due to E[log(X2

t−1)] < ∞. Finally (LM) is automatically satisfied due to the
specific expression of the link function. Thus Theorem 6 applies.
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Appendix: checking (MM) in the EGARCH(1,1) model under (MM’).
To check (MM) is technical as we have to compute explicitly the diag-
onal terms the matrix B = E[∇gt(θ0)(∇gt(θ0))T]. Similar computations
have been done in Demos and Kyriakopoulou (2009). Remember that V =
P−1QP−1 with P = E[Hs0(θ0)] and Q = E[∇s0(θ0)∇s0(θ0)T]. Let us first
prove the three identities P = 2−1B, Q = 4−1(EZ4

0 − 1)B and thus V =
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(EZ4
0 − 1)B−1. For the first identity, we compute

P = 2−1E
[
(∇gt(θ0)(∇gt(θ0))

TZ2
0 + Hgt(θ0)(1− Z2

0)
]

= 2−1E[∇gt(θ0)(∇gt(θ0))
T] = 2−1B.

For the second identity, we compute

Q = E

[
1
4

E
[
∇gt(θ0)(∇gt(θ0))

T(1−Z2
t )

2
]
|Ft−1

]
= 4−1E[(1−Z2

0)
2]E[∇gt(θ0)(∇gt(θ0))

T] = 4−1(EZ4
0 − 1)B

and the third identity follows the first ones. Thus, for checking the as-
sumption (MM), it is enough to check that diagonal coefficients Bii are
well defined when E(Z4

0) < ∞. Let us denote Wt = γ0Zt + δ0|Zt|, Ut =
(1, log σ2

t , Zt, |Zt|) and Vt = β0 − 2−1(γ0Zt + δ0 |Zt|). Then (∇gt(θ0)) is the
solution of the linear SRE

∇gt(θ0) = Ut−1 + Vt−1∇gt−1(θ0) =
∞

∑
l=1

(
Ut−l

l−1

∏
k=1

Vt−k

)
.

Using the convention ∏0
k=1 Vt−k = 1, we obtain the expression

∇gt(θ0) =
∞

∑
l=1

(
Ut−l

l−1

∏
k=1

Vt−k

)
.

More precisely, we have the expressions: then

B11 = E

(
∂gt(θ0)

∂θ1

)2

= E

[
∞

∑
l=1

l−1

∏
k=1

Vt−k

]2

,

B22 = E

(
∂gt(θ0)

∂θ2

)2

= E

[
∞

∑
l=1

log σ2
t−l

l−1

∏
k=1

Vt−k

]2

,

B33 = E

(
∂gt(θ0)

∂θ3

)2

= E

[
∞

∑
l=1

Zt−l

l−1

∏
k=1

Vt−k

]2

,

B44 = E

(
∂gt(θ0)

∂θi

)2

= E

[
∞

∑
l=1
|Zt−l |

l−1

∏
k=1

Vt−k

]2

.

To prove that condition (MM) is satisfied, i.e. that ∑4
i=1 Bii < ∞, we use the

following Lemma
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LEMMA 1. ∑4
i=1 Bii < ∞ iff EV2

0 < 1.

PROOF. That the first coefficient B11 is finite comes easily:

B11 = E(
∞

∑
l=1

l−1

∏
k=1

Vt−k)
2 = E(

∞

∑
l=1

∞

∑
l′=1

l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ )

= E(2
∞

∑
l≥1

(
l−1

∏
k=1

Vt−k)
2

∞

∑
l′>l

l
′−1

∏
k′=l

Vt−k′ + E
∞

∑
l=1

(
l−1

∏
k=1

Vt−k
2)

= 2
∞

∑
l≥1

(EV2
0 )

l−1 EV0

1−EV0
+

1
1−EV2

0

= 2
1

1−EV2
0
× EV0

1−EV0
+

1
1−EV2

0
.

For the second coefficient B22, it is more complicated. We need some pre-
liminary work. We know that Wt = γ0Zt + δ0 |Zt| = 2(β0 −Vt), and

log σ2
t =

α0

1− β0
+

∞

∑
k=1

βk−1
0 Wt−k =

α0 + 2β0

1− β0
− 2

∞

∑
k=1

βk−1Vt−k

so, we decompose B22 into three parts,

B22 =E

[
∞

∑
l=1

log σ2
t−l

l−1

∏
k=1

Vt−k

]2

=E

[
∞

∑
l=1

(
α0 + 2β0

1− β0
− 2

∞

∑
k=1

βk−1
0 Vt−l−k

)
l−1

∏
k′=1

Vt−k′

]2

=(
α0 + 2β0

1− β0
)2E

[
∞

∑
l=1

l−1

∏
k′=1

Vt−k′

]2

+ 4E

[
∞

∑
l=1

∞

∑
k=1

βk−1
0 Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

− 4× α0 + 2β0

1− β0
E

[
∞

∑
l=1

∞

∑
k=1

βk−1
0 Vt−l−k

l−1

∏
k′=1

Vt−k′

]
.

That the first term of the sum is finite is already known. For the last
term, it is straightforward from E ∑∞

l=1 ∑∞
k=1 βk−1

0 Vt−l−k ∏l−1
k′=1

Vt−k′ = (1−
β0)−1EV0/(1−EV0). For the second term of the sum, we need an expan-
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sion[
∞

∑
l=1

∞

∑
k=1

βk−1
0 Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

=2×
∞

∑
1≤l<l′<∞1

∞

∑
p,q=1

β
p+q−2
0 Vt−l−pVt−l′−q

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+
∞

∑
l=1

∞

∑
p,q=1

β
p+q−2
0 Vt−l−pVt−l−q

l−1

∏
p′=1

V2
t−p′

=4× ∑
1≤l<l′<∞

∑
1≤p<q<∞

β
p+q−2
0 Vt−l−pVt−l′−q

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+ 2× ∑
1≤l<l′<∞

∞

∑
p=1

β
2p−2
0 Vt−l−pVt−l′−p

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+ 2
∞

∑
l=1

∑
1≤p<q<∞

β
p+q−2
0 Vt−l−pVt−l−q

l−1

∏
p′=1

V2
t−p′ +

∞

∑
l=1

∞

∑
p=1

β
2p−2
0 V2

t−l−p

l−1

∏
p′=1

V2
t−p′

and in expectation we obtain a bounded term if EV2
0 < 1:

E

[
∞

∑
l=1

∞

∑
k=1

βk−1
0 Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

=4× EV2
0

1−EV2
0

[
β0

(1− β0)(1− β2
0)

EV0

1−EV0
− 1

(1− β0)(1− β2
0)

EV0β

1− β2
0EV0

]
+ 4× β0(EV0)3

(1− β0)(1− β2
0)(1− β2

0EV0)

1
1−EV2

0

+ 2× 1
1− β2

0

EV2
0

1−EV2
0

[
EV0

1−EV0
− EV0

1− β2
0EV0

]
+ 2

1
1−EV2

0

(EV0)3

(1− β2
0)(1− β2

0EV0)

+ 2
1

1−EV2
0
(EV0)

2 β0

(1− β0)(1− β2
0)

+
EV2

0

1−EV2
0

1
1− β2

0
.
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That B33 is finite under EV2
0 < 1 comes from

B33 =E

[
∞

∑
l=1

Zt−l

l−1

∏
k=1

Vt−k

]2

=2E
∞

∑
l=1

∞

∑
l′>l

Zt−lZt−l′
l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ + E
∞

∑
l=1

Z2
t−l(

l−1

∏
k=1

Vt−k)
2

=EZ2
0

∞

∑
l=1

(EV2
0 )

l−1 =
EZ2

0

1−EV2
0

.

That the last coefficient is also finite comes form the computation

B44 =E

[
∞

∑
l=1
|Zt−l |

l−1

∏
k=1

Vt−k

]2

=2E
∞

∑
l=1

∞

∑
l′>l

|Zt−l |
∣∣Zt−l′

∣∣ l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ + E
∞

∑
l=1

Z2
t−l(

l−1

∏
k=1

Vt−k)
2

=2
∞

∑
l=1

∞

∑
l′>l

E
∣∣Zt−l′

∣∣E

(
l−1

∏
k=1

V2
t−k

)
E

|Zt−l |
l
′−1

∏
k′=l

Vt−k′

+
EZ2

0

1−EV2
0

=2
∞

∑
l=1

∞

∑
l′>l

(E |Z0|)(EV2
0 )

l−1(E |Z0|V0)EV l
′−l−1

0 +
EZ2

0

1−EV2
0

=
2E |Z0| (E |Z0|V0)

(1−EV0)(1−EV2
0 )

+
EZ2

0

1−EV2
0

.


