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Abstract: We introduce the notion of continuously invertible volatility models
that relies on some Lyapunov condition and some regularity condition. We
show that it is almost equivalent to the volatilities forecasting efficiency of the
parametric inference approach based on the Stochastic Recurrence Equation
(SRE) given in Straumann (2005). Under very weak assumptions, we prove
the strong consistency and the asymptotic normality of an estimator based on
the SRE. From this parametric estimation, we deduce a natural forecast of the
volatility that is strongly consistent. We successfully apply this approach to
recover known results on univariate and multivariate GARCH type models
where our estimator coincides with the QMLE. In the EGARCH(1,1) model, we
apply this approach to find a strongly consistence forecast and to prove that
our estimator is asymptotically normal when the limiting covariance matrix
exists. Finally, we give some encouraging empirical results of our approach on
simulations and real data.
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strong consistency, asymptotic normality, asymmetric GARCH, exponential GARCH,
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1. Introduction

Since the seminal papers of Engle (1982) and Bollerslev (1986), the General Au-
toregressive Conditional Heteroskedasticity (GARCH) type models have been
successfully applied to volatility modeling. One of the drawback of GARCH
type models is that they could not capture the leverage effect, the asymmetry
and negative correlation between the movement in the rate of return on as-
set prices and volatility, documented by several researches (see Cont (2001),
Bouchaud and Potters (2001)). Nelson (1991) is the first attempt to introduce
the leverage effect to the ARCH models, see Remark 5 for details. EGARCH
has inspired several authors to introduce other nonlinear GARCH models : AP-
GARCH of Ding, Granger and Engle (1993), GJR-GARCH of Glosten, Jagannathan and Runkle
(1993), TGARCH of Zakoïan (1994), etc. Since then, EGARCH types models
have been used extensively in empirical researches (see Brandt and Jones (2006)
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among many others) and financial industry. Not surprisingly, theoretical inves-
tigations of EGARCH has attracted constant attention, see He, Teräsvirta and Malmsten
(2002), Harvey (2010) and Rodriguez and Ruiz (2009). However, apart from
some very special cases studied in Straumann and Mikosch (2006), the asymp-
totic theory of the estimator for EGARCH remains underdeveloped. Our study
provides a first attempt to fully understand the asymptotic of the estimator
based on the SRE given in Straumann (2005) for general volatility models in-
cluding EGARCH. We provide sufficient conditions under which the estimator
is asymptotically normal, a condition that most empirical studies do not verify,
see Remark 6. Our study suggests that, for empirical purpose, a parsimonious
variant of EGARCH (12) should be used instead.

Let us work in a general volatility mode of the form Xt = Σ1/2
t · Zt where

Σt is the covariance matrix and where the innovations Zt are normalized, cen-
tered independent identical distributed (iid) random vectors. The natural fil-
tration {Ft}t∈Z is generated by this innovation process {Zt}t∈Z. Moreover, it
is assumed that the transformed covariances satisfy some (possibly non-linear)
SRE, i.e. there exist a function h and some Ft−1 measurable random function
ψt such that the following relation (h(Σk))k≤t = ψt((h(Σk))k≤t−1, θ0) holds. All
the randomness of the process (Xt) comes from the innovations Zt. It is assume
that the expression of ψt with respect to (Zk)k≤t−1 is known, but the parame-
ter of interest θ0 is unknown. In this parametric framework, which includes all
the classical models of GARCH and EGARCH types, forecasting the volatil-
ity completely relies on the ability of inferring θ0. The present paper gives a
general procedure based on the asymptotic properties of the SREs to computes
an approximation θ̂n as a measurable function of the observations (Xt)1≤t≤n
which converge to θ0.

A SRE is said to be convergent if it has a unique stationary non anticipa-
tive solution. The functional process (ψt) is generated by the filtration of the
innovations σ((Zk)k≤t−1). It is then a well-defined stationary ergodic process.
The convergence of a SRE such as the one associated to the ψt leads to the
existence of the stationary process (Xt). If the functions ψt are Lipschitz, suf-
ficient Lyapunov conditions (also necessary in the linear case) are stated in
Bougerol and Picard (1992) and Bougerol (1993). However, the volatility pro-
cess does not satisfy a unique SRE, see Remark 1. Optimal stationary condi-
tions might apply to another SRE (think of the GARCH(p,q) model case). In
the sequel, we assume that the optimal SRE generated by the innovations is
both known and convergent. Then the process (Xt) is well defined, stationary
and ergodic. Our first result in Proposition 1 asserts that, as any solutions of a
convergent SRE, (Xt) has finite log-moments.

Assuming that the model to be continuously invertible (CI), we study the
estimator θ̂n given by the procedure based on the SRE of Straumann (2005).
Using only log-moments properties ensured by Proposition 1 and the locally
uniform convergence of regular functions, we prove that θ̂n is strongly con-
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sistent as soon as the model is identifiable. We then give a natural strongly
consistent forecaster of the volatility. The estimator θ̂n is moreover asymptot-
ically normal as soon as the limiting variance exists. Modulo these weak and
technical assumptions, we have the "equivalences"

Convergence of the SRE generated by ⇐⇒ stationarity, ergodicity
the innovations (Zt, Zt−1, . . .) (A) and log-moments
Convergence of the SRE generated by ⇐⇒ invertibility, forecasting
the observations (Xt, Xt−1, . . .) (B) and statistical inference

Let us detail the consequences of this table in the GARCH and EGARCH
type models:
The equivalence (A) has been extensively studied in GARCH type models
since the seminal papers Nelson (1990) and Bougerol and Picard (1992) in the
univariate case. For multivariate GARCH models the equivalence (A) has re-
cently been studied by Francq and Zakoïan (2011). That the SRE generated by
the observations converges for GARCH type models is straightforward, see
Straumann and Mikosch (2006) for discussions in the AGARCH case. Thus the
equivalence (B) directly gives asymptotic properties of the statistical inference
based on the SRE for these models. As the inference based on the SRE coin-
cides with the Quasi Maximum Likelihood Estimator (QMLE), we recover ex-
isting results in Subsection 3.5: for GARCH(p,q) models we recover the same
results of Francq and Zakoïan (2004) that refine Berkes, Horvath and Kokoszka
(2003), for AGARCH(p,q) and CCC-GARCH(p,q) models we refine the results
of Straumann and Mikosch (2006) and Francq and Zakoïan (2011).
In the EGARCH type models, the SRE generated by the innovations converges
as it coincides with the SRE of an ARMA process. Thus it admits a stationary
ergodic solution with finite moments, see Nelson (1991). The right implication
(B) proved in Section 3 is new for that type of process as the inference based
on the SRE differs from the QMLE (see Subsection 4.5 for details). It enables us
to prove in Section 4 the asymptotic properties of the inference and the fore-
casting of the volatility for invertible EGARCH(1,1) models. For proving the
asymptotic normality, we show a necessary and sufficient condition for the
existence of the asymptotic variance. Then we provide some encouraging em-
pirical results of our approach in Section 5 on simulations and on real data.
A first step on the reverse part of the equivalence (B) has been done recently
by Sorokin (2011). He proves that forecast of the volatility based on the SRE is
inconsistent for some non invertible models. Finally, notice that the statistical
inference of θ0 is possible without assuming the invertibility: it has been suc-
cessfully done by Zaffaroni (2009) using the approach of Whittle.

An outline of the paper can be given as follows. In Section 2, we discuss
the standard notions of invertibility and introduce the continuous invertibility.
In Section 3 our main results on the statistical inference based on the SRE are
stated. We apply this results to the EGARCH(1,1) model in Section 4. Finally,
in Section 4, we report and discuss simulations results and empirical findings.
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The Appendices contain technical proofs and calculations.

2. Continuously invertible volatility models

2.1. The general volatility model

In this paper, (Zt) is a stationary ergodic sequence of real vectors called the
innovations. Let us denote Ft the filtration generated by (Zt, Zt−1, . . .) and let
us consider the general volatility model

Xt = Σ1/2
t · Zt, where (h(Σk))k≤t = ψt((h(Σk))k≤t−1, θ0) (1)

with an injective function h from the space of real matrices of size k × k to
an auxiliary separable metric space F and ψt(·, θ0) is a Ft−1 adapted random
function from the space of the sequences of elements in the image of h to itself.
Let us denote ` the inverse of h (from the image of h to the space of real matrices
of size k× k) and call it the link function.

2.2. Convergent SRE and stationarity

A first question regarding this very general model is wether or not a stationary
solution exists. As the sequence of the transformed volatilities (h(Σk))k≤t is a
solution of a fixed point problem, we recall the following result due to Bougerol
(1993). Let (E, d) be a complete separable metric space. A map f : E → E is
a Lipschitz map if Λ( f ) = sup(x,y)∈E2 d( f (x), f (y))/d(x, y) is finite. For any
sequence of random element in (E, d), (Xt) is said to be exponential almost

sure convergence to 0 Xt
e.a.s.−−−→ 0 as t → ∞ if for Xt = o(e−Ct) a.s. for some

C > 0.

Theorem 1. Let (Ψt) be a stationary ergodic sequence of Lipschitz maps from E to E.
Suppose that E[log+(d(Ψ0(x), x))] < ∞ for some x ∈ E, that E[log+ Λ(Ψ0)] < ∞
and that for some integer r ≥ 1,

E[log Λ(Ψ(r)
0 )] = E[log Λ(Ψ0 ◦ · · · ◦Ψ−r+1)] < 0.

Then the SRE Xt = Ψt(Xt−1) for all t ∈ Z is convergent: it admits a unique station-
ary solution (Yt)t∈Z which is ergodic and for any y ∈ E

Yt = lim
m→∞

Ψt ◦ · · · ◦Ψt−m(y), t ∈ Z.

The Yt are measurable with respect to the σ(Ψt−k, k ≥ 0) and

d(Ỹt, Yt)
e.a.s.−−−→ 0, t→ ∞

such that Ỹt = Ψt(Ỹt−1) for all t > 0.
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Remark that the sufficient Lyapunov assumptions E[log Λ(Ψ(r)
0 )] < 0 is nec-

essary in the linear case, see Bougerol and Picard (1992). The logarithmic mo-
ments of the solution of a convergent SRE is proved in the following result that
seems to be new:

Proposition 1. Under the assumptions of Theorem (1) the unique stationary solution
also satisfies E[log+(d(Y0, x))] < ∞.

Proof. See Appendix 1.

In order to apply Theorem 1 in our case, let us denote by E the separable
metric space of the sequences of elements in the image of h. Equipped with the
metric ∑j≥1 2−jd(xj, yj)/(1 + d(xj, yj)), the space E is complete. A sufficient
condition for stationarity of (Xt) is that the SRE driven by (ψt) converges in
E. It simply expresses as the Lyapunov condition E[log Λ(ψ

(r)
0 )] < 0 for some

integer r ≥ 1 and some logarithmic moments. This assumption of stationarity
is sufficient but not optimal in many cases:

Remark 1. The state space of the SRE (1), denoted E, in its most general form,
is a space of infinite sequences. However in all classical models we can find a lag
p such that (h(Σk))t−p+1≤k≤t = ψt((h(Σk))t−p≤k≤t−1, θ0). The state space E is
now the finite product of p spaces. It can be equipped by unbounded metrics such that
p−1 ∑

p
j=1 d(xj, yj) or

√
∑

p
j=1 d2(xj, yj). The product metric has to be carefully chosen

as it changes the value of the Lipschitz coefficients of the φt. Yet, even if the prod-
ucts spaces are embedded, the smallest possible lag p in the SRE yields the sharpest
Lyapunov condition. Finally, if E has a finite dimension and if the condition of conver-
gence of the SRE expresses in term of the top Lyapunov coefficient, one can choose any
metric induced by any norm, see Bougerol (1993) for details.

We prefer to work under the less explicit assumption

(ST) The process (Xt) satisfying (1) exists. It is a stationary, non anticipative
and ergodic process with finite logarithmic moments.

In view of Proposition 1, it is reasonable to require that solution have finite
logarithmic moments.

2.3. The invertibility and the observable invertibility

Now that under (ST) the process (Xt) is stationary and ergodic, we investigate
the question of invertibility. We want to emphasis that the invertibility depends
on the convergence of the SRE, governed by a Lyapunov condition. Following
Tong (1993), we say that a volatility model is invertible if the volatility can be
expressed as a function of the past observed values:

Definition 1. The model is invertible if the sequence of the volatilities (Σt) is adapted
to the filtration (Gt−1) generated by (Xt−1, Xt−2, · · · ).
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It is natural to assume invertibility to be able to forecast the volatility. This
notion of invertibility is very weak and consists in restricting the underlying
filtration (Ft) of the SRE to (Gt−1). Indeed, under (ST) then Gt ⊆ Ft is well
defined and by using Zt = Σ−1

t · Xt in ψt we can transform the general model
as

(h(Σk))k≤t = φt((h(Σk))k≤t−1, θ0) (2)

for some ergodic and stationary sequence (φt) adapted to (Gt−1). Thus the in-
vertibility is implied by Theorem 1 if the φt are Lipschitz maps such that for
some r > 0,

E[log Λ(φ0(·, θ0)
(r))] < 0. (3)

The Remark 1 also holds for the SRE driven by (φt): the state space E of the
SRE and the product metric must be chosen carefully. The condition (3) (with
the optimal choice of the state space E and its metric) is called the condition of
invertibility.

Proposition 2. Under (ST) and (3), the general model (2) is invertible.

Another notion of invertibility is the one introduced in Straumann and Mikosch
(2006). We call it observable invertibility. Let us assume that there exists some
approximations φ̂t of φt such that φ̂t is a measurable function of the observa-
tions (Xt−1, Xt−2, . . . , X1).

Definition 2. The model is observably invertible if and only if the solution of the
approximative SRE

(h(Σ̂k))k≤t = φ̂t((h(Σ̂k))k≤t−1, θ0) (4)

is convergent, i.e. ‖Σ̂t − Σt‖ → 0 in probability as t→ ∞.

Remark that in general the approximative SRE does not fit the conditions
of Theorem 1 and in particular (φ̂t) is not necessarily stationary and ergodic.
However, the useful Property below ensures that an invertible model is also ob-
servably invertible. It is a straightforward Corollary of Theorem 2.10 of Straumann and Mikosch
(2006) and our Proposition 1

Proposition 3. If (ST) and (3) hold, the link function ` is continuous and it exists
x ∈ E such that d(φ̂t(x), φt(x)) e.a.s.−−−→ 0 and Λ(φ̂t(·, θ0) − φt(·, θ0))

e.a.s.−−−→ 0 as
t→ ∞, then the model is observably invertible.

Remark 2. Classical models satisfy an SRE for finite p lags of volatilities (h(Σk))t−p+1≤k≤t =
φt((h(Σk))t−p≤k≤t−1, θ0) and for some φt generated by only a finite of past observa-
tion (Xt−1, . . . , Xt−q). In this context, the approximative SRE coincides with the ini-
tial ones, i.e. one can choose φ̂t = φt for t > q. Therefore, conditions of Proposition
3 hold systematically; invertibility and observable invertibility are equivalent, i.e. they
are induced by the same Lyapunov condition. As the initial values (for 0 ≤ t ≤ q) in
the SRE can be chosen arbitrarily from Theorem 1, with some abuse of notation we will
work in the sequel with φ̂t = φt for t ≥ 1.
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2.4. The continuous invertibility

We have seen that the existing invertibility notions can be expressed in term
of Lyapunov conditions. We introduce the notion of continuous invertibility
in term of a Lyapunov condition and some regularity on the model. Let us
consider models with parametric functions having continuous Lipschitz coef-
ficients:

(CL) For any metric spaces X , Y and Z , a function f : X × Y 7→ Z satis-
fies (CL) if there exists a continuous function Λ f : Y 7→ R+ such that
Λ( f (·, y)) ≤ Λ f (y) for all y ∈ Y .

From Remark 2, let us consider the functional SRE of the form

(ĝk(θ))t−p+1≤k≤t = φt((ĝk(θ))t−p≤k≤t−1, θ), ∀θ ∈ Θ, ∀t ≥ 1, (5)

with any fixed initial value (ĝk(θ))1−p≤k≤0. We introduce the condition of con-
tinuous invertibility:

(CI) Assume that the SRE (5) holds with φt satisfying (CL) for stationary (Λφt)

under Lyapunov condition supΘ E[log Λ(r)
φ0
(θ)] < 0 and E[supΘ log Λ(r)

φ0
(θ)] <

∞. Assume there exists an y ∈ E such that E[supΘ log+(d(φ0(y, θ), y))] <
∞.

The condition (CI) implies the standard invertible conditions given in Sub-
section 2.3 for all θ ∈ Θ and in particular for the unknown θ0. It also im-
plies the local uniform regularity of the solution gt(·) of the functional SRE
(gk(·))t−p+1≤k≤t = φt((gk(·))t−p≤k≤t−1, ·) for all t ∈ Z.

Theorem 2. Assume that (Σ2
t ) is a stationary and ergodic process such that (CI)

holds. Then the functions gt(·) are continuous for all θ ∈ Θ and all t ∈ Z. Moreover,
for any θ ∈ Θ there exists an ε > 0 such that ĝt(θ) satisfying (5) satisfies

lim sup
θ′∈B(θ,ε)∩Θ

d(ĝt(θ
′), gt(θ

′))
e.a.s.−−−→ 0. (6)

Proof. See Appendix 1.

3. Statistical inference under continuous invertibility

3.1. Statistical inference based on the SRE

Here we describe the approach in Straumann (2005). Assume that (5) holds
with θ0 unknown and θ0 belonging in a known compact set Θ. Consider

θ̂n = argminθ∈ΘŜn(θ)
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the M-estimator associated with the SRE criteria function

nŜn(θ) =
n

∑
t=1

ŝt(θ) =
n

∑
t=1

2−1
(

XT
t `(ĝt(θ))

−1Xt + log(det(`(ĝt(θ)))
)

. (7)

where (ĝt) is obtained from the approximative SRE (5).

Remark 3. This statistical procedure does not coincides with the Quasi Maximum
Likelihood approach that is not always observable, see Subsection 4.5 for the EGARCH(1,1)
example.

3.2. Strong consistency of the parametric inference

From now on, we assume that the innovations process (Zt) is iid:

(IN) The Zt are iid variables such that E[ZT
1 Z1] = is the identity matrix.

Under (ST) and (IN), E[XT
t · Xt | F0] = Σt in agreement with the definition of

the volatility. The following assumption implies that the volatilities are invert-
ible matrices:

(IV) The functions `−1 and log(det(`)) are Lipschitz satisfying det(`(g0(θ))) ≥
C(θ) for some continuous function C : Θ 7→ (0, ∞).

Remark 4. The SRE criteria converges to the a possibly degenerate limit

S(θ) = E[s0(θ)] = 2−1E
[

XT
0 `(g0(θ))

−1X0 + log(det[`(g0(θ))])
]

Remark that S(θ0) = 2−1E[ZT
0 Z0 + log(det(Σ0))] is finite under (ST) and (IN)

because the volatilities have finite log moments as solutions of an SRE, see Proposition
1. But S(θ) may be infinite for θ 6= θ0.

If the model is identifiable, the estimator θ̂n is strongly consistent:

Theorem 3. Assume that (ST) and (CI) are satisfied on the compact set Θ. If (IN)
and (IV) are satisfied and the model is identifiable, i.e. g0(θ) = h(Σ0) iff θ = θ0, then
θ̂n → θ0 a.s. for any θ0 ∈ Θ.

Proof. First, remark that with no loss of generality we can always restrict in
(5) to det(`(φ̂t(·, θ))) ≥ C(θ). We adapt the proof of Jeantheau (1993), keeping
his notation, s∗t(θ, ρ) = inf{st(θ′), θ′ ∈ B(θ, ρ)} and ŝ∗t(θ, ρ) = inf{ŝt(θ′), θ′ ∈
B(θ, ρ)}. Let us recall Theorem 5.1 in Jeantheau (1993) : The M-estimator asso-
ciated with the loss (7) is strongly consistent under the hypothesis H1-H6:

H1 Θ is compact.
H2 Ŝn(θ)→ S(θ) a.s. under the stationary law Pθ0 .
H3 S(θ) admits a unique minimum for θ = θ0 in Θ. Moreover for any θ1 6= θ0

we have:
lim inf

θ→θ1
S(θ) > S(θ1).
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H4 ∀θ ∈ Θ and sufficiently small ρ > 0 the process (ŝ∗t(θ, ρ)))t is ergodic.
H5 ∀θ ∈ Θ, Eθ0 [s∗1(θ, ρ)] > −∞.
H5 limρ→0 Eθ0 [s∗1(θ, ρ)] = E[s∗1(θ)].

Let us check H1-H6 in our case. H1 is satisfied by assumption. H2 is verified
in two steps. First, by the e.a.s. convergence given by Theorem 2, arguments
of Straumann (2005) and the Lipschitz properties of `−1 and log(det(`)) we
obtain

1
n

n

∑
t=1

sup
B(θ,ε)

|ŝt(θ
′)− st(θ

′)| → 0 Pθ0 − a.s.

Second we use that (st) is an ergodic sequence. Using Proposition 1.1 of Jeantheau
(1993), n−1 ∑n

t=1 st(θ) converges Pθ0 -a.s. to S(θ) (taking values in R∪ {+∞}) as
the st are bounded from below:

1
n

n

∑
t=1
|st(θ)− S(θ)| → 0 Pθ0 − a.s.

Combining this two steps leads to H2. The first part of H3 is checked similarly
than in (ii) p.2474 of Straumann and Mikosch (2006) and with the help of the
Remark 4. Remark that S has a unique minimum iff E[Tr(Σ0 · `(g0(θ))

−1) −
log(det(Σ0 · `(g0(θ))

−1))] has a unique minimum. As this criteria is the inte-
grand of a sum of the λi − log(λi) where the λi are positive eigenvalues, we
conclude under the identifiability condition from the property x− log(x) ≥ 1
for all x > 0 with equality iff x = 1. The second part is checked using the fact
that

lim inf
θ→θ1

S(θ) ≥ E[lim inf
θ→θ1

s0(θ)] = E[s0(θ1)] = S(θ1)

where the first inequality was already used for proving Theorem 2 and the
first equality comes from the local continuity of g0 and `. H4 is satisfied from
the ergodicity of (ŝt). H5 and H6 follows from Theorem 2 that ensures the
continuity of the function s∗1 and by the lower bounded assumption on det(`),
see Proposition 1.3 of Jeantheau (1993).

3.3. Volatility forecasting

From the inference of θ0, we deduce a natural forecast of the volatility Σ̂t =
`(ĝt(θ̂t)). It is strongly consistent:

Proposition 4. Under the conditions of Theorem 3 then ‖Σ̂t − Σt‖ → 0 a.s. as t →
∞.

Proof. It is a direct consequence of Theorems 2 and 3 that assert the a.s. conver-
gence of θ̂t toward θ0 and the local uniform convergence of ĝt toward gt. Re-
mark that for t sufficiently large such that θ̂t ∈ B(θ, ε), a ball where the uniform
Lyapunov condition E[log Λ∞(φt(·))] < 0 is satisfied. Thus ĝt(θ̂t)− gt(θt)→ 0
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a.s. and by continuity of ` and gt and from the identification Σt = `(gt(θ0)) the
result follows if gt(θ̂t) converges to gt(θ0). For proving it, we use

d(gt(θ̂t), gt(θ0)) ≤ Λ∞(φt(·))d(gt−1(θ̂t), gt−1(θ0)) + wt(θ̂t)

where wt(θ̂t) = d(φt(gt−1(θ0), θ̂t), φt(gt−1(θ0), θ0)). The RHS term satisfies an
SRE of linear stationary maps satisfying the Lyapunov condition. We apply
Theorem 1 as for any θ̂t, by assumption E log+(w0(θ̂t)) is uniformly bounded
by E[supΘ log+(2d(φt(y, θ), y))] < ∞. We get

d(gt(θ̂t), gt(θ0)) ≤
∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t).

Conditioning on (θ̂t), the upper bound is a stationary normally convergent
series of functions and

P
( ∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t)→ 0
)

= E
[
P
( ∞

∑
i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t)→ 0 | (θ̂t)
)]

= E
[
P
( ∞

∑
i=0

Λ∞(φ0(·)) · · ·Λ∞(φ−i+1(·))w−i(θ̂t)→ 0 | (θ̂t)
)]

= E[1] = 1,

the last inequalities following from the continuity of normally convergent se-
ries of functions, θ̂t → θ0 and wi(θ̂t)→ wi(θ0) = 0 for all i a.s. as t→ ∞.

3.4. Asymptotic normality of the parametric inference

Classical computations show easily that if the M-estimator θ̂n is asymptotically
normal then the asymptotic variance is given by the expression

V = P−1QP−1

with P = E[Hs0(θ0)] and Q = E[∇s0(θ0)∇s0(θ0)
T ], where Hs0(θ0) is the Hes-

sian matrix of s0(θ0). Let V = B(θ0, ε) ⊂ Θ with θ0 ∈
◦
Θ with ε > 0 chosen in

accordance with Theorem 2, i.e. such that E[log(supV Λφ0)] < 0.

(AV) Assume that E(‖Z0ZT
0 ‖2) < ∞ and that the functions ` and φt are 2-times

continuously differentiable on the compact set Θ that coincides with the
closure of its interior.

The next assumption is used to ensure that g0 is 2-times differentiable.

(DL) The partial derivatives Φt = Dx(φt), = Dθ(φt), = D2
x2(φ0), D2

θ,x(φ0) or
D2

θ2(φ0) satisfy (CL) for stationary (ΛΦt) with E[supV log(ΛΦ0)] < ∞.
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The following moments assumptions ensure the existence of Q and P:

(MM) Assume that E[‖∇s0(θ0)‖2] < ∞ and E[‖Hs0(θ0)‖] < ∞.

These moments assumptions holds only for θ = θ0; they are simpler to ver-
ify than for the moment conditions for θ 6= θ0 due to the specific form of the
derivatives of the SRE criteria , see Remark 4 and computations in Bardet and Wintenberger
(2009). The next assumption is classical and ensures to the existence of P−1:

(LI) The components of the vector ∇g0(θ0) are linearly independent.

Finally, the last assumption is specific to the SRE approach. It ensures that
∇ŝt(θ) is a good approximation of ∇st(θ) uniformly on V :

(LM) Assume that y→ ∇`−1(y) and y→ ∇ log(det(`(y))) are Lipschitz func-
tions.

Theorem 4. Under the assumptions of Theorem 3, (AV), (DL), (MM), (LI) and (LM)
then the asymptotic variance V is well defined and the statistical inference is asymp-
totically normal, i.e. √

n(θ̂n − θ̂0)→ N (0, V)

in distribution for any θ0 ∈
◦
Θ with V that is invertible.

Proof. First, remark that from (DL) and Proposition 1 applied to supV g0(θ)

then E[supV log+(‖Φ0(θ)‖)] < ∞ for Φ0(θ) = Dθ(φ0)(g0(θ), θ) or D2
x2(φ0)(g0(θ), θ)

or D2
θ,x(φ0)(g0(θ), θ) or D2

θ2(φ0)(g0(θ), θ). Using the existence of these logarith-
mic moments and the relation E[log(supV Λφ0)] < 0, we apply recursively the
Theorem 1 and prove the existence of continuous first and second derivatives
of (gt(θ)) on V as solutions of functional SRE. The asymptotic normality fol-
lows from a Taylor development on the first partial derivatives of Sn (see Sec-
tion 5 of Bardet and Wintenberger (2009) for more details):

∇iSn(θ̂n)−∇iSn(θ0) = HSn(θ̃n,i)(θ̂n − θ0)

Then the asymptotic normality follows from the following sufficient condi-
tions:

1. n−1/2∇Sn(θ0)→ N (0, Q),
2. ‖n−1HSn(θ̃n)− P‖ converges a.s. to 0 for any sequence (θ̃n) converging

a.s. to θ0 and P is invertible,
3. n−1/2‖∇Ŝn(θ̂n)−∇Sn(θ̂n)‖ converges a.s. to 0.

Due to its specific expression and that (Zt) is a normalized difference of martin-
gales sequence with finite moments of order 4, (∇Sn(θ0)) is a martingale, see
Bardet and Wintenberger (2009) for detailed computations. Under (MM), the
CLT for differences of martingale applied to (∇Sn(θ0)) leads to the first condi-
tion. The first part of the second condition are derived from similar arguments
than in the proof of Proposition 4 and an application of the Cesaro mean the-
orem ensuring that n−1‖HSn(θ̃n)− ∑n

t=1 Hst(θ0)‖ → 0 a.s. The ergodic The-
orem on (Hst(θ0)) with (MM) leads to ‖n−1HSn(θ̃n) − P‖ → 0 a.s. The fact
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that P is invertible follows from (LI), see Bardet and Wintenberger (2009) for
detailed computations. Finally the third condition is obtained by applying The-
orem 2.10 of Straumann and Mikosch (2006) on the SRE satisfied by (∇gt) and
its approximative SRE satisfied by (∇ĝt) uniformly on V . Remark that the con-
dition E[log(supV ‖∇g0‖)] < ∞ of Theorem 2.10 of Straumann and Mikosch
(2006) is automatically satisfied using the Proposition 1 on the functional SRE

of ∇gt and the local uniform norm on V . Thus supV ‖∇ĝt − ∇gt‖
e.a.s.−−−→ 0

as t → ∞ and Lipschitz conditions on ∇`−1 and ∇ log(det(`)) in (LM) and
arguments similar than in Straumann (2005) leads to the desired result.

3.5. A first application to GARCH type models

In the GARCH type models, the stationarity assumption (ST) is crucial, whereas
the continuous invertibility condition (CI) is automatically satisfied due to the
form of the model. Sufficient conditions for (ST) have been extensively stud-
ied in the literature and they can be necessary in linear cases. The asymptotic
properties of the QMLE (that coincides with the SRE based inference in these
cases) follow from Theorems 3 and 4. Thus, we recover and slightly refine ex-
isting results in the AGARCH and CCC-GARCH models (we refer the reader
to Straumann (2005) and Francq and Zakoïan (2011) respectively for details in
these both cases).

First, let us consider the univariate APGARCH(p, q) model introduced in
Ding, Granger and Engle (1993), Zakoïan (1994) and studied in Straumann (2005):

σ2
t = α0 +

p

∑
i=1

αi(|Xt−i| − γXt−i)
2 +

q

∑
j=1

β jσ
2
t−j, t ∈ Z,

where α0 > 0, αi, β j ≥ 0 and |γ| ≤ 1 (it coincides with the GARCH(p, q) model
if γ = 0. Then we derive the strong consistency and the asymptotic normality
directly from our Theorems 3 and 4. The conditions we obtained coincides with
these of Theorem 5.5 and Theorem 8.1 of Straumann and Mikosch (2006) except
that the technical (and superfluous) condition (8.1) of Straumann and Mikosch
(2006) is not needed in our approach.

Second, let us consider the multivariate CCC-GARCH(p, q) model intro-
duced by Bollerslev (1990), first studied in Jeantheau (1998) and refined in
Francq and Zakoïan (2011)

Diag(Σ2
t ) = A0 +

q

∑
i=1

AiDiag(Xt−iXT
t−1) +

p

∑
i=1

BiDiag(Σ2
t−i)

and (Σ2
t )i,j = ρi,j

√
(Σ2

t )i,i(Σ2
t )j,j) for all (i, j), where Diag(M) is the vector of the

diagonal elements of M. A necessary and sufficient conditions for (ST) is given
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in term of top Lyapunov condition in Francq and Zakoïan (2011). We recover
the strong consistency and the asymptotic normality of Francq and Zakoïan
(2011) directly from our Theorems 3 and 4.

4. Application to the EGARCH(1, 1) model

4.1. Definition of the model

Let (Zt) be an iid sequence of random variables not concentrated on two points
such that E(Z2

0) = 1. The EGARCH(1, 1) model introduced by Nelson (1991) is
an AR(1) model for log σ2

t ,

Xt = σtZt with log σ2
t = α0 + β0 log σ2

t−1 + Wt−1(θ0)

where Wt(θ0) = γ0Zt + δ0 |Zt| are the innovations of this AR(1) model. Let
θ0 = (α0, β0, γ0, δ0) be the unknown parameter. Assume that θ0 ∈ Θ where Θ
is a compact subset of R×]− 1, 1[×{(δ, γ) ∈ R2; δ ≥ |γ|} (see the next sub-
section for a discussion on Θ). The restriction on the parameter β0 (|β0| < 1)
is sufficient for the existence of a stationary solution (assumption (ST) holds).
Then we have a MA(∞) representation for the logarithm of the squared volatil-
ity:

log σ2
t = α0(1− β0)

−1 +
∞

∑
k=1

βk−1
0 Wt−k(θ0). (8)

The moments assumptions on Zt ensures that the process (log σ2
t ) is ergodic,

strongly and weakly stationary. Then the volatilities process (σ2
t ) is also ergodic

and strongly stationary. However, it does not necessarily have finite variance.

Remark 5. The EGARCH(1, 1) model takes into account some stylized facts such as
the asymmetry in the squared volatility: if Zt > 0, then log σ2

t = α0 + β0 log σ2
t−1 +

(γ0 + δ0)Zt−1 and log σ2
t = α0 + β0 log σ2

t−1 + (γ0 − δ0)Zt−1 otherwise. So condi-
tioning on the sign of the innovation, Zt, the change of the log-volatility log(σ2

t+1/σ2
t )

is asymmetric.

4.2. Invertibility

The invertibility of the stationary solution of the EGARCH(1, 1) model does not
hold in general. A sufficient condition for invertibility is given in Straumann and Mikosch
(2006): as (log σ2

t ) satisfies the SRE

log σ2
t = α0 + β0 log σ2

t−1 + Wt−1(θ0) exp
(
−

log σ2
t−1

2

)
, for all t ∈ Z,

if the above SRE admits a unique stationary solution, then the model is invert-
ible. Keeping the notation of our Section 2, the function h is here the logarithmic
function and the SRE (4) holds with (φt) defined by

φt(·; θ) : s 7→ α + βs + (γXt−1 + δ |Xt−1|) exp(−s/2) (9)
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We check that the φt are random functions generated by Gt−1. As in Straumann and Mikosch
(2006) we restrict φt(·; θ) on the complete separable metric space [α/(1− β), ∞)
equipped with d(x, y) = |x − y|. Then for any θ0 ∈ Θ, as (ST) is satisfied,
(φt(·; θ0)) is a stationary ergodic sequence of Lipschitz maps from [α0/(1 −
β0), ∞) to [α0/(1− β0), ∞) with the Lipschitz coefficient

Λ(φt(·, θ0)) ≤ max{|β0|, |2−1(γ0Xt−1 + δ0|Xt−1|) exp(−2−1α0(1− β0))− β0|}.

Thus a sufficient condition for the invertibility condition (3) (with r = 1) is

E[log(max{|β0|, |2−1(γ0Xt−1 + δ0|Xt−1|) exp(−2−1α0/(1− β0))− β0|})] < 0.
(10)

Remark 6. The condition δ ≥ |γ| is fundamental. If it is not satisfied and Z is
unbounded, the innovations Wt(θ) may take any negative values. The logarithms of
the squared volatility in (8) may also take any negative values and the φt are no longer
globally Lipschitz functions. Empirical studies as Brandt and Jones (2006) do not work
under this constraint and the model is not invertible (the volatilities forecasts based on
the SRE are unstable). We suggest to use a parsimonious variant of EGARCH (12) to
avoid this phenomena.

4.3. Condition on the compact set Θ

Let us detail in the sequel the compact sets Θ such that the relation (10) is sat-
isfied for any θ0 ∈ Θ. From the MA(∞) representation (8) of log σ2

t we rewrite
the condition (10) as

E
[

log
(

max
{
|β|,

∣∣∣2−1 exp
(

2−1
∞

∑
k=0

βk(γZ−k−1 + δ |Z−k−1|)
)

× (γZ0 + δ |Z0|)− β
∣∣∣})] < 0 (11)

which does not depend on α and is easier to check. Using the Monte Carlo
algorithm, assuming the Zt to be normally distributed, we report in Figure 1
the largest values of β that satisfies the condition (11) on a grid of values of γ
and δ.

Graphically, it seems that the most restrictive condition on β is when (γ, δ)
is far away from (0, 0). However, notice that |β| is never constrained to 0 as
for β = γ = 0 the condition (11) becomes E[log(δ|Z0|/2)] < E[δ|Z0|/2]
which is always satisfied as log(x) ≤ x − 1 for all x > 0. We then conjec-
ture that the admissible set for θ is unbounded. Finally, remark that when
β = 0, the EGARCH(1, 1) model degenerates to a sub-model Yt = exp(α +
γZt−1 + δ |Zt−1|)Zt for which the admissible parameters set is well known, see
Straumann (2005) for details.
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FIG 1. Perspective and contour plots of the admissible region for continuous invertibility.

4.4. Asymptotic properties of the parametric inference and forecast

With the reasonable choice of Θ made in the last subsection, we know that (ST)
is satisfied. Moreover, (CL) is automatically satisfied as

(Λφt(θ)) = (max(|β|, |2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β|))

are stationary continuous functions of θ. Thus, as a corollary of Theorem 3 and
Proposition 4, we get

Corollary 1. If Θ satisfying the condition (11) and θ0 ∈ Θ, then θ̂n → θ0 and
σ̂2

n − σ2
n → 0 a.s. as n→ ∞ with σ̂2

t = exp(ĝt(θ̂n)).

Proof. The condition (CI) follows from E[log Λ(φt(, θ))] < 0 by assumption of
Θ and E[supΘ log Λ(φt(, θ))] < ∞ since E log |Xt−1| = E(log σ + log |Zt−1|) <
∞ as log σ2

t has a MA(∞) representation (8) and Z is integrable. Moreover as
log+(d(φ0(0, θ), 0)) = log+ |α+(γX−1 + δ|X−1|)| then E[supΘ log+(d(φ0(y, θ), y)] <
∞ for y = 0.
In the EGARCH(1, 1) model the link function is the exponential function `(x) =
exp(x) and since we have log σ2

t ≥ α/(1− β), 1/`(x) = exp(−x) is a Lipschitz
function (log(det(`)) = id is also a Lipschitz function). Moreover the volatility
process (σ2

t ) is bounded from below by C(θ) = exp(α/(1 − β)). Finally, the
identifiability condition g0(θ) = h(θ0) iff θ = θ0 is checked in Section 5.1 of
Straumann and Mikosch (2006).

As a corollary of Theorem 4 we get the asymptotic normality of the inference
in the EGARCH(1, 1) model. It holds under the following necessary and suffi-
cient condition of the existence of the asymptotic variance V which is detailled
in Appendix 2 and 3 :

(MM’) The innovation satisfy E[Z4
0 ] < ∞ and β2 − δE|Z0|+ (δ2 + γ2)/4on <

1.
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Corollary 2. Assume that Θ is well chosen as in Corollary 1 and that (MM’) holds
then
√

n(θ̂n − θ0)→ N (0, V) in law with an invertible matrix V.

Proof. By definition, (φt) is 2-times continuously differentiable and simple com-
putations give Dx(φt)(x, θ) = β− 2−1(γXt−1 + δ|Xt−1|) exp(−x/2), Dθ(φt)(x, θ) =
(1, x, Xt−1 exp(−x/2), |Xt−1| exp(−x/2))T , D2

x2(φt)(x, θ) = 4−1(γXt−1 + δ|Xt−1|)
exp(−x/2), D2

x,θ(φt)(x, θ) = (0, 1, 2−1Xt−1 exp(−x/2), 2−1|Xt−1| exp(−x/2))T

and D2
θ2(φt)(x, θ) = 0. Moreover, as the link function is `(x) = exp(x) is also

2-times continuously differentiable, the last assertion of the condition (AV) of
Theorem 4 holds. The fact that (MM) holds under the conditions E[Z4

0 ] < ∞
and β2− δE|Z0|+ (δ2 + γ2)/4 < 1 is technical and postponed to the Appendix
2. The fact that (LI) holds if Z0 is not concentrated on two points is classical and
proved in the Appendix 3 for the sake of completeness. Assumption (DL) is
satisfied from the expressions of the derivatives (that are Lipschitz functions)
and as all the logarithmic moments are finite due to E[log(X2

t−1)] < ∞. Fi-
nally (LM) is automatically satisfied due to the specific expression of the link
function. Thus Theorem 4 applies.

4.5. The asymptotic variance V

Computations give V = (EZ4
0− 1)B−1 with B = E[∇gt(θ0)(∇gt(θ0))

T ]. Lemma
1 in Appendix 2 states that the conditions β2 − δE|Z0|+ (δ2 + γ2)/4 < 1 and
E[Z2

0 ] = 1 are necessary and sufficient for the existence of B. Assuming the Zt
to be normally distributed, we report in Figure 2 the largest values of β that
satisfies the conditions (11) and β2− δE|Z0|+ (δ2 + γ2)/4 < 1 on a grid of val-
ues of γ and δ such that γ2 + δ2 ≤ 4. The additional condition does not affect
much the constraint of β on this region of (γ, δ). However, for γ2 + δ2 > 4, the
condition of existence of V imposes to exclude also small values of β starting
from β = 0. Then the resulting admissible region is now bounded and seems
to be convex.

The explicit computation of B is technical and is given in the Appendix 4.
Remark that the quasi likelihood (computable if the observations Zt were ob-
servable) is equal to 2−1 ∑n

t=1(X2
t /ĥt(θ) + log(ĥt(θ))) where

ĥt(θ) = α + βĥt−1(θ) + (γZt−1 + δ|Zt−1|), t > 1, and ĥ1(θ) = ζ(θ) fixed.

The likelihood 2−1 ∑n
t=1(X2

t /ht(θ)+ log(ht(θ))) coincides with SRE criteria Sn(θ)
at the point θ0 as ht(θ0) = gt(θ0) = σ2

t . However, the two criteria differ for
θ 6= θ0. To see it, from the MA(∞) representation (8) we can easily compute the
partial derivative of h0 with respect to β:

∂h0

∂β
(θ) =

αβ

(1− β)2 + ∑
k≥1

kβk−1(γZ−k−1 + δ|Z−k−1|).

The value of this partial derivative is different from ∂h0/∂β(θ), even for θ = θ0.
Thus the estimator given by our SRE approach and the QMLE are different.
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FIG 2. Perspective and contour plots of the admissible region for the asymptotic normality.

Moreover, the asymptotic variances of the two estimators differ and even for
gaussian innovations (Zt) our estimator θ̂n is not asymptotically efficient in the
EGARCH(1, 1) case.

5. Numerical parametric inferences and forecasting

5.1. Monte Carlo analysis of the estimation risk

Let us study, by Monte Carlo simulation of 1000 replications of the sample path
of different sizes T = 512, 1034 or 2048, the risk for estimating a parameter
θ0 ∈ Θ. We assume the innovations that drive Egarch model are iid standard
normal. See Table 1. The columns "rmse" give the empirical Root Mean Square

TABLE 1
Statistical inference and normal approximation

T= 512 1024 2048
θ θ0 mean rmse napp mean rmse napp mean rmse napp
α -0.399 -.381 .127 .059 -.393 .041 .042 -.396 .030 .030
β .9 .874 .170 .023 .897 .017 .016 .899 .012 .011
γ -.3 -.300 .057 .045 -.301 .033 .032 -.299 .023 .023
δ .5 .488 .097 .075 .492 .052 .053 .496 .038 .038

Error (RMSE) computed over the 1000 replications. The columns "napp" give
the normal approximation of the RMSE. From the exact computation of V in
Appendix 4, we compute the value of the asymptotic variance at the point θ0
and divide the corresponding standard deviation by

√
T. From Table 1, the nor-

mal approximation seems to hold for T larger than 1024. Also, in accordance
with our theoretical results, the mean values of the estimators θ̂n over monte
carlo replications are more concentrated as the sample size is larger.
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5.2. Estimation of the asymptotic covariance matrix

Assuming that E[Z4
0 ] = 3 in the EGARCH(1,1) model, we have two ways of

estimating the asymptotic covariance matrix of our estimator θ̂n. The first one
relies on the plug-in VTH(θ̂n) in the explicit formula θ → VTH(θ) given in the
Appendix 4. The second one relies on the SRE satisfied by ĝt(θ):

∇ĝt(θ) = (1, ĝt−1(θ), Xt−1 exp(−ĝt−1(θ)/2), |Xt−1| exp(−ĝt−1(θ)/2))T

+ (β− (γXt−1 + δ|Xt−1|) exp(−ĝt−1(θ)/2)/2)∇ĝt−1(θ).

Running the SRE over 1 ≤ t ≤ n we obtain n values ∇ĝt(θ), then we approxi-
mate B by n−1 ∑n

t=1∇ĝt(θ)∇ĝt(θ)T and finally an approximation of V = 2B−1

by inverting numerically the approximation of B.

We compare the risk of the two estimation procedure associated with the
Riemannian distance for symmetric positives definitive matrix defined by

d(A, B) =

√√√√ 4

∑
k=1

log2 νk(AB−1)

where ν1(AB−1), . . . , ν4(AB−1) are the eigenvalues of the matrix AB−1. To esti-
mate the risk we sample randomly 100 parameters θ1, . . . , θ100 in a compact set
satisfying the conditions for the convergence of the SRE and the existence of B.
For each θk we simulate a path of n = 512, 1024 and 2048 observations and ob-
tain the estimated values θ̂k. Then we calculate the errors d(VTH(θk), VSRE(θk)),
d(VTH(θk), VTH(θ̂k)),d(VTH(θk), VSRE(θ̂k)). We report the means of these dis-
tances in Table 2

TABLE 2

n d(VTH(θk), VSRE(θk)) d(VTH(θk), VTH(θ̂k)) d(VTH(θk), VSRE(θ̂k))

512 .074 .788 .924
1024 .065 .767 .780
2048 .064 .426 .457

The table show that it is very safe to use VSRE(θ̂k). This might suggests that
for general volatility models, we can safely use VSRE(θ̂k) if the explicit formula
for V is not known.

5.3. Forecasting the volatility on real data

We investigate the filtering and the forecasting problem of the daily log-return
of the Standard & Poor’s 500 data from Jan 4th, 2000 to Jul 22th, 2003 (n =
890).We also use the high frequency intra-day return(5 mins, 15mins, 65 mins)
to calculate the daily realized volatilities as a proxies of the daily volatilities.
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FIG 3. The daily log-return of the Standard & Poor’s 500 data from Jan 4th, 2000 to Jul 22th, 2003.
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More precisely, we consider the process (Xt) of the log difference of the daily
close prices. The period has been chosen in order that the stationary condition
might be reasonable (it is a period of high volatility). To test the stationarity, we
perform a KPSS test and an augmented Dickey-Fuller on the logarithm of the
X2

t (plotted in Figure 3) that give p-values 0.098 and less than 0.01 respectively.
The unit root hypothesis can thus be reasonably rejected.

From now we assume that the general volatility model (1) is satisfied by the
real data, i.e. Xt = σtZt with a known parametric form ψt. Below we investigate
some of the more classical models: the GARCH(1,1) model,the GARCH(1,1)
model with Student innovations, the APGARCH(1,1) model and the EGARCH(1,1)
model. Let us consider the classical in sample and out of sample procedures
with two steps: for the in sample procedure, first we estimate θ̂n on the 890
first observations and then we investigate the performance of the natural fore-
cast σ̂t = `(ĝt(θ̂n)) of the volatility σt for 1 ≤ t ≤ 890. For the out of sample
procedure, first we estimate θ̂n on the 880 first observations and then we inves-
tigate the performance of the natural forecast σ̂t = `(ĝt(θ̂n)) of the volatility
σt for 881 ≤ t ≤ 890 (the red line in figure 3 splits the training and validation
data sets). One difficulty of evaluating the forecasting performance is that we
could not observe the true volatility process. However, with the 5 mins high
frequency prices data in hand, we bypass the problem: the Realized Volatil-
ity (RV) is used as a consistent proxy of the conditional volatility. To measure
the forecasting performance we use the quasi likelihood (QLIK) criteria. As
noticed by Patton (2011), it is robust with respect to unbiased proxy. More-
over, we claim that it is more relevant than the Mean Square Error criteria as it
does not involve moments of order larger than one of the volatilities. For the
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TABLE 3
In sample performances of the different forecasts

QLIK X2
t 5min RV 15min RV 65min RV

GARCH(1,1) -7.438 -7.517 -7.592 -7.607
GARCH(1,1) Student -7.439 -7.516 -7.589 -7.604

APGARCH(1,1) -7.489 -7.528 -7.613 -7.618
Rolling Volatility -7.444 -7.473 -7.542 -7.570

Riskmetrics -7.429 -7.510 -7.583 -7.597
EGARCH(1,1) -7.487 -7.537 -7.619 -7.626

sake of completeness, we also give the QLIK criteria for forecasting the proxies
obtained by 2 out of sample procedures, the Riskmetrics one and the rolling
volatility one.

To sum up, we list the parametric forms of the volatilities in the different
models that are investigated here:

• GARCH(1, 1): σ2
t = ω + αX2

t−1 + βσ2
t−1,

• APGARCH(1, 1): σδ
t = ω + α(|Xt−1| − γXt−1)

δ + βσδ
t−1,

• Rolling Volatility (60days): the moving average 1/60 ∑60
i=1 X2

t−i,
• Riskmetrics (Exponentially weighted moving average model)

σ2
t = λσ2

t−1 + (1− λ)X2
t−1 where λ = .94,

• EGARCH(1, 1): log σ2
t = α + β log σ2

t−1 + (γXt−1 + δ|Xt−1|)/σt.

Denoting (r1,m,t, . . . , rm,m,t) the m intra day returns, we define the daily RV with
m-frequency as

RV(m)
t =

i=m

∑
i=1

r2
i,m,t.

Finally, the QLIK criteria of the forecasting of the proxies RV by σ̂2 is

QLIK(σ̂2) =
n

∑
t=1

log(σ̂2
t ) +

RVt

σ̂2
t

.

We report the in sample performances in Table 3, the out of sample ones in
Table 4. The best forecast for each proxy is bolded. The performance of the
EGARCH(1,1) is close to the best one in each case.

Applying our approach in the EGARCH(1,1) model, we find the estimations
α̂n = −0.312, β̂n = 0.976, γ̂n = −0.122 and δ̂n = 0.122 in the in sample proce-
dure, α̂n′ = −0.324, β̂n′ = 0.974, γ̂n = −0.123 and δ̂n = 0.123. These values are
at the frontier of the linear constraint δ ≥ |γ| and satisfy the Lyapunov condi-
tion and the condition of existence of V. The EGARCH(1,1) model degenerates
to the following model:

log σ2
t = α + β log σ2

t−1 + ηX−t−1/σt. (12)
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TABLE 4
Out of sample performances of the different forecasts

QLIK X2
t 5min RV 15min RV 65min RV

GARCH(1,1) -8.285 -8.153 -8.192 -8.170
GARCH(1,1) Student -8.226 -8.131 -8.153 -8.111

APGARCH(1,1) -8.226 -8.130 -8.152 -8.111
Rolling Volatility -8.195 -8.096 -8.128 -8.111

Riskmetrics -8.053 -7.978 -7.998 -7.977
EGARCH(1,1) -8.272 -8.155 -8.184 -8.135

TABLE 5
Confident intervals given by the normal approximation in the EGARCH type model

log σ2
t = α + β log σ2

t−1 + ηX−t−1/σt

In-S. Value Confident interval
α -.312 [-.450, -.175]
β .976 [.962, .989]
η .243 [.171, .315]

Out of S. value Confident interval
α -.324 [-.464, -.185]
β .974 [.961,.988]
η .246 [.172,.320]

where η = δ− γ. It is a parsimonious model with only 3 parameters and the
constraint η ≥ 0 ensures the positivity of the innovations ηX−t−1/σt of the AR(1)
model. As our estimations are not on the frontier η = 0, the asymptotic nor-
mality holds. Plugging our estimations in the explicit formula of the asymp-
totic variance given in Appendix 4 provides the 95% confident intervals for
(α, γ, η) that are reported in Table 5. Remark that the behavior of the model
log σ2

t = α + β log σ2
t−1 + ηX−t−1/σt differs completely wether the observations

are positive or negative. It is in accordance with the plot in Figure 3: isolated
extremes have negative values. It explains why the non symmetric AGARCH
and EGARCH models have better in sample performance, see Table 3. For the
out of sample performance, the EGARCH and the GARCH models have the
best forecasting performances, see Table 4.

We draw the 15 min realized volatilities and the in sample forecasts for
540 ≤ t ≤ 890 in Figure 4 (we only consider the last observations where the
recurrent formula given by Riskmetrics should be the best) and the out of sam-
ple forecasts for 881 ≤ t ≤ 890 in Figure 5. Graphically, the forecasts of the
EGARCH model are satisfactory because it follows the global fluctuations of
the realized volatilities. It is very close to the forecasts of the APGARCH model:
their fluctuations are similar and their values are close (the EGARCH forecasts
are slightly smaller). But as the APGARCH model relies on 5 unknown coeffi-
cients, we prefer to work with the more parsimonious EGARCH model (that
degenerates to a form with only 3 unknown parameters).
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FIG 4.
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Appendix 1: Proofs of Section 1

Proof. (Proposition 1) First remark that log(1+ y+ z) ≤ log(1+ y)+ log(1+ z)
for any y, z ≥ 0 and that E[log(1+Λ(Ψ0))] < ∞ and E[log(1+ d(Ψ0(x), x))] <
∞ by assumption. Second, we remark that Λ( f ◦ g) ≤ Λ( f )Λ(g) for any Lips-
chitz functions f and g entails that

log(1 + d(x, Ψ0 ◦ · · · ◦Ψ−m(x))) ≤ log(1 + d(x, Ψ0 ◦ · · · ◦Ψ1−m(x)))
+ log(1 + Λ(Ψ0 ◦ · · · ◦Ψ1−m)d(Ψ−m(x), x)). (13)

Third, we assert that the ergodic theorem in L1 leads to the existence of ρ < 1
such that

1
n

n

∑
j=1

Λ(Ψ(j−1)r ◦ · · · ◦Ψ1−jr)→ log(ρ) in L1.

Using again that Λ( f ◦ g) ≤ Λ( f )Λ(g) for any Lipschitz functions f and g we
infer limm→∞m−1 log(Λ(Ψ0 ◦ · · · ◦ Ψ−m)) ≤ log(ρ) in L1. Thus it exists a r. v.
M > 0 such that E[| log(M)|] < ∞ and m−1 log(Λ(Ψ0 ◦ · · · ◦Ψ−m))− log(ρ) ≤
log(M), i.e. Λ(Ψ0 ◦ · · · ◦Ψ−m) ≤ (Mρ)m a.s. for all m ≥ 0. Using this bound in
(13) we get, writing vm = log(1 + d(x, Ψ0 ◦ · · · ◦Ψ−m(x))):

vm ≤ vm−1 + log(1 + (Mρ)m−1d(Ψ−m(x), x)).



O. Wintenberger and S. Cai/Continuously invertible volatility models 25

As log(1 + yz) ≤ yω log(1 + z) for any 0 < y < 1, z ≥ 0 and 0 < ω < 1 we get
by a straightforward recurrence

vm ≤ v0 +
m−1

∑
j=0

ρjω log(1 + Mjd(Ψ0(x), x)).

As log(1+ yz) ≤ log(1+ y2 + z2) ≤ 2(log(1+ y) + log(1+ z)) for any y, z ≥ 0
we assert that E[log(1 + Mjd(Ψ0(x), x))] ≤ Cj for some C > 0 depending on
the (finite) logarithmic moments of M and d(Ψ0(x), x)). Finally, limm→∞ vm =
log(1+ d(Yo, x)) is dominated by an integrable r.v. and the result follows dom-
inated integration.

Proof. (Theorem 2) For any ρ > 0, let us write Λ(r)
∗ (θ, ρ) = sup{Λ(r)

φ0
(θ′), θ′ ∈

B(θ, ρ) ∩Θ}, where B(θ, ρ) stands for the closed ball centered at θ with radius
ρ. As E[supΘ log Λ(r)

φ0
(θ)] < ∞, by the dominated convergence Theorem we

obtain limρ→0 E(Λ(r)
∗ (θ, ρ)) = E(limρ→0 Λ(r)

∗ (θ, ρ)). But limρ→0 Λ(r)
∗ (θ, ρ) =

Λ(r)
φ0
(θ) by continuity of Λ(r)

φ0
(θ) , we finally obtain

lim
ρ→0

E(Λ(r)
∗ (θ, ρ)) = E(lim sup

θ′→θ

Λ(r)
φ0
(θ))) = E(Λ(r)

φ0
(θ)) < 0.

Thus, there exists an ε > 0 such that E(Λ(r)
∗ (θ, ε)) < 0.

Let us now work on C(B(θ, ε) ∩ Θ), the complete metric space of continu-
ous functions from B(θ, ε) ∩Θ to R equipped with the supremum norm d∞ =
supB(θ,ε)∩Θ d. In this setting (ĝt) satisfy a functional SRE (ĝk)k≤t = φt((ĝk)k≤t−1)

with Lipschitz constants satisfying

Λ∞(φ
(r)
t (·)) ≤ sup

s1,s2∈C(B(θ,ε)∩Θ)

d∞(φ
(r)
t (s1), φ

(r)
t (s2))

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ d(φ(r)
t (s1(θ

′), θ′), φ
(r)
t (s2(θ

′), θ′)

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ Λ(φ
(r)
t (·, θ′))d(s1(θ

′)s2(θ
′))

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ε)∩Θ)

supB(θ,ε)∩Θ Λ(φ
(r)
t (·, θ′))d∞(s1, s2)

d∞(s1, s2)

≤ sup
B(θ,ε)∩Θ

Λ(φ
(r)
t (·, θ′)) ≤ sup

B(θ,ε)∩Θ
Λ(r)

φt
(θ′) ≤ Λ(r)

∗ (θ, ε)).

As E[supB(θ,ε)∩Θ log+(d(φt(y, θ′), y))] ≤ E[supΘ log+(d(φt(y, θ), y))] is finite
we can apply Theorem 1. By recurrence φt ◦ · · · ◦ φt−m(ζ0) ∈ C(B(θ, ε) ∩Θ) is
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continuous in θ and so is gt as the convergence holds uniformly on B(θ, ε)∩Θ.
It is true for any θ ∈ Θ and the result follows.

Appendix 2: checking the assumption (MM)

Similar computations have been done in Demos and Kyriakopoulou (2009).
Remember that V = P−1QP−1 with P = E[Hs0(θ0)] and Q = E[∇s0(θ0)∇s0(θ0)

T ].
Let us first prove the three identities P = 2−1B, Q = 4−1(EZ4

0 − 1)B and thus

V = (EZ4
0 − 1)B−1 with B = E

[
∇gt(θ0)(∇gt(θ0))

T
]
. For the first identity, we

compute

P = 2−1E
[
(∇gt(θ0)(∇gt(θ0))

TZ2
0 + Hgt(θ0)(1− Z2

0)
]

= 2−1E[∇gt(θ0)(∇gt(θ0))
T ] = 2−1B.

For the second identity, we compute

Q = E

[
1
4

E
[
∇gt(θ0)(∇gt(θ0))

T(1−Z2
t )

2
]
|Ft−1

]
= 4−1E[(1−Z2

0)
2]E[∇gt(θ0)(∇gt(θ0))

T ] = 4−1(EZ4
0 − 1)B

and the third identity follows the first ones. Thus, for checking the assumption
(MM), it is enough to check that diagonal coefficients Bii are well defined when
E(Z4

0) < ∞. Let us denote Wt = γZt + δ|Zt|, Ut = (1, log σ2
t , Zt, |Zt|) and

Vt = β− 1
2 (γZt + δ |Zt|). Then (∇gt(θ0)) is the solution of the linear SRE

∇gt(θ0) = Ut−1 + Vt−1∇gt−1(θ0) =
∞

∑
l=1

(
Ut−l

l−1

∏
k=1

Vt−k

)
.

Using the convention ∏0
k=1 Vt−k = 1, we obtain the expression

∇gt(θ0) =
∞

∑
l=1

(
Ut−l

l−1

∏
k=1

Vt−k

)
.

More precisely, we have the expressions: then

B11 = E

(
∂gt(θ0)

∂θ1

)2

= E

[
∞

∑
l=1

l−1

∏
k=1

Vt−k

]2

,

B22 = E

(
∂gt(θ0)

∂θ2

)2

= E

[
∞

∑
l=1

log σ2
t−l

l−1

∏
k=1

Vt−k

]2

,

B33 = E

(
∂gt(θ0)

∂θ3

)2

= E

[
∞

∑
l=1

Zt−l

l−1

∏
k=1

Vt−k

]2

,

B44 = E

(
∂gt(θ0)

∂θi

)2

= E

[
∞

∑
l=1
|Zt−l |

l−1

∏
k=1

Vt−k

]2

.
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To prove that condition (MM) is satisfied, i.e. that ∑4
i=1 Bii < ∞, we use the

following Lemma

Lemma 1. ∑4
i=1 Bii < ∞ iff EV2

0 < 1 iff β2 − δE|Z0|+ (δ2 + γ2)/4 < 1.

Proof. That the first coefficient B11 is finite comes easily:

B11 = E(
∞

∑
l=1

l−1

∏
k=1

Vt−k)
2 = E(

∞

∑
l=1

∞

∑
l′=1

l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ )

= E(2
∞

∑
l≥1

(
l−1

∏
k=1

Vt−k)
2

∞

∑
l′>l

l
′−1

∏
k′=l

Vt−k′ + E
∞

∑
l=1

(
l−1

∏
k=1

Vt−k
2)

= 2
∞

∑
l≥1

(EV2
0 )

l−1 EV0

1−EV0
+

1
1−EV2

0

= 2
1

1−EV2
0
× EV0

1−EV0
+

1
1−EV2

0
.

For the second coefficient B22, it is more complicated. We need some prelimi-
nary work. We know that Wt = γZt + δ |Zt| = 2(β−Vt), and

log σ2
t =

α

1− β
+

∞

∑
k=1

βk−1Wt−k =
α + 2β

1− β
− 2

∞

∑
k=1

βk−1Vt−k

so, we decompose B22 into three parts,

B22 = E

[
∞

∑
l=1

log σ2
t−l

l−1

∏
k=1

Vt−k

]2

= E

[
∞

∑
l=1

(
α + 2β

1− β
− 2

∞

∑
k=1

βk−1Vt−l−k

)
l−1

∏
k′=1

Vt−k′

]2

= (
α + 2β

1− β
)2E

[
∞

∑
l=1

l−1

∏
k′=1

Vt−k′

]2

+ 4E

[
∞

∑
l=1

∞

∑
k=1

βk−1Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

−4× α + 2β

1− β
E

[
∞

∑
l=1

∞

∑
k=1

βk−1Vt−l−k

l−1

∏
k′=1

Vt−k′

]
.

That the first term of the sum is finite is already known. For the last term, it is
straightforward from E ∑∞

l=1 ∑∞
k=1 βk−1Vt−l−k ∏l−1

k′=1
Vt−k′ = (1− β)−1EV0/(1−
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EV0). For the second term of the sum, we need an expansion[
∞

∑
l=1

∞

∑
k=1

βk−1Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

= 2×
∞

∑
1≤l<l′<∞1

∞

∑
p,q=1

βp+q−2Vt−l−pVt−l′−q

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+
∞

∑
l=1

∞

∑
p,q=1

βp+q−2Vt−l−pVt−l−q

l−1

∏
p′=1

V2
t−p′

= 4× ∑
1≤l<l′<∞

∑
1≤p<q<∞

βp+q−2Vt−l−pVt−l′−q

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+2× ∑
1≤l<l′<∞

∞

∑
p=1

β2p−2Vt−l−pVt−l′−p

l−1

∏
p′=1

V2
t−p′

l
′−1

∏
q′=l

Vt−q′

+2
∞

∑
l=1

∑
1≤p<q<∞

βp+q−2Vt−l−pVt−l−q

l−1

∏
p′=1

V2
t−p′

+
∞

∑
l=1

∞

∑
p=1

β2p−2V2
t−l−p

l−1

∏
p′=1

V2
t−p′

and in expectation we obtain a bounded term if EV2
0 < 1:

E

[
∞

∑
l=1

∞

∑
k=1

βk−1Vt−l−k

l−1

∏
k′=1

Vt−k′

]2

= 4×
EV2

0
1−EV2

0

[
β

(1− β)(1− β2)

EV0

1−EV0
− 1

(1− β)(1− β2)

EV0β

1− β2EV0

]
+4× β(EV0)

3

(1− β)(1− β2)(1− β2EV0)

1
1−EV2

0

+2× 1
1− β2

EV2
0

1−EV2
0

[
EV0

1−EV0
− EV0

1− β2EV0

]
+2

1
1−EV2

0

(EV0)
3

(1− β2)(1− β2EV0)

+2
1

1−EV2
0
(EV0)

2 β

(1− β)(1− β2)
+

EV2
0

1−EV2
0

1
1− β2 .
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That B33 is finite under EV2
0 < 1 comes from

B33 = E

[
∞

∑
l=1

Zt−l

l−1

∏
k=1

Vt−k

]2

= 2E
∞

∑
l=1

∞

∑
l′>l

Zt−lZt−l′
l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ + E
∞

∑
l=1

Z2
t−l(

l−1

∏
k=1

Vt−k)
2

= EZ2
0

∞

∑
l=1

(EV2
0 )

l−1 =
EZ2

0
1−EV2

0
.

That the last coefficient is also finite comes form the computation

B44 = E

[
∞

∑
l=1
|Zt−l |

l−1

∏
k=1

Vt−k

]2

=

2E
∞

∑
l=1

∞

∑
l′>l

|Zt−l |
∣∣∣Zt−l′

∣∣∣ l−1

∏
k=1

Vt−k

l
′−1

∏
k′=1

Vt−k′ + E
∞

∑
l=1

Z2
t−l(

l−1

∏
k=1

Vt−k)
2

= 2
∞

∑
l=1

∞

∑
l′>l

E

∣∣∣Zt−l′
∣∣∣E

(
l−1

∏
k=1

V2
t−k

)
E

|Zt−l |
l
′−1

∏
k′=l

Vt−k′

+
EZ2

0
1−EV2

0

= 2
∞

∑
l=1

∞

∑
l′>l

(E |Z0|)(EV2
0 )

l−1(E |Z0|V0)EV l
′−l−1

0 +
EZ2

0
1−EV2

0

=
2E |Z0| (E |Z0|V0)

(1−EV0)(1−EV2
0 )

+
EZ2

0
1−EV2

0
.

Appendix 3: checking the assumption (LI)

Let x0 ∈ R4 be a vector such that ∇g0(θ0)
Tx0 = 0 a.s. Since (∇gt(θ0))t∈Z is

stationary, then we also have ∇g1(θ0)
Tx0 = 0 a.s. We know that ∇g1(θ0) =

U0(θ0) + V0(θ0)∇g0(θ0), then we deduce

U0(θ0)
Tx0 =


1

log σ2
0

Z0
|Z0|


T

x0 = 0 a.s.

which is impossible for x0 6= 0 if Z0 is not concentrated on two points, see
Lemma 8.2 of Straumann and Mikosch (2006) for more details.
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Appendix 4: exact computation of V

Remember that V = (EZ4
0 − 1)B−1 with B = E∇gt(θ0)(∇gt(θ0))

T . According
the notation of Appendix 2, denote Wt = γZt + δ|Zt|, Ut = (1, log σ2

t , Zt, |Zt|),
Vt = β − 1

2 (γZt + δ |Zt|) and E∇gt(θ0) = G. Remark that EWt = δE |Z0|,
EW2

t = (γ2 + δ2)EZ2
0 , EVt = β − 1

2 δE |Zt|, EVtZt = − 1
2 γEZ2

0 , EVt |Zt| =
βE |Zt|− 1

2 δEZ2
0 , EV2

t = β2− βδE |Zt|+ 1
4 (γ

2 + δ2)EZ2
0 and E log σ2

t = α+δE|Z0|
1−β .

We also have

E(log σ2
t )

2 = Var (log σ2
t ) + (E log σ2

t )
2

=
∞

∑
k=1

β2(k−1)Var (Wt−k) +
(α + δE|Z0|)2

(1− β)2

=
γ2 + δ2 − (δE|Z0|)2

1− β2 +
(α + δE|Z0|)2

(1− β)2

and EVtUt = (EV0, EV0E log σ2
0 ,− 1

2 γ, βE |Zt| − 1
2 )

T . Since E ‖∇gt(θ0)‖2
2 < ∞

from Appendix 2, taking expectation on both side of the equation

G = E∇gt(θ0) = EUt−1 + EVt−1E∇gt−1(θ0) = EUt−1 + EVt−1G

so G = EU0/(1− EV0) = (1− β + 1
2 δE|Z0|)−1(1, E log σ2

t , 0, E|Z0|)T . Using
again the SRE, we have

∇gt(θ0) (∇gt(θ0))
T = [Ut−1 + Vt−1∇gt−1(θ0)] [Ut−1 + Vt−1∇gt(θ0)]

T

= Ut−1UT
t−1 + Vt−1

[
Ut−1(∇gt−1(θ0))

T +∇gt−1(θ0)UT
t−1

]
+V2

t−1

[
∇gt−1(θ0) (∇gt−1(θ0))

T
]

so

B = EUt−1UT
t−1 + E

(
Vt−1

[
Ut−1(∇gt−1(θ0))

T +∇gt−1(θ0)UT
t−1

])
+ EV2

t−1B

and B = (1−EV2
0 )
−1(EU0UT

0 +F) where F = E
[
V0
[
U0(∇g0(θ0))

T +∇g0(θ0)UT
0
]]

.
As we have

EVtUt(∇gt(θ0))
T = E


Vt

Vt log σ2
t

VtZt
Vt |Zt|

 (∇gt(θ0))
T =


EVtGT

EVE log σ2
t (∇gt−1(θ0))

T

EVtZtGT

EVt |Zt|GT


it remains to calculate

E
[
∇gt(θ0) log σ2

t

]
= E∇gt(θ0)

(
α + 2β

1− β
− 2

∞

∑
k=1

βk−1Vt−k

)

=
α + 2β

1− β
G− 2E

∞

∑
l=1

(
Ut−l

l−1

∏
k1=1

Vt−k1

)
∞

∑
k2=1

βk2−1Vt−k2
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where

E
∞

∑
l=1

(
Ut−l

l−1

∏
k1=1

Vt−k1

)
∞

∑
k2=1

βk2−1Vt−k2

= EUt−1Vt−1 + E
∞

∑
l=2

(
Ut−l

l−1

∏
k1=1

Vt−k1

)
l−1

∑
k2=1

βk2−1Vt−k2

+E
∞

∑
l=2

(
Ut−l

l−1

∏
k1=1

Vt−k1

)
βl−1Vt−l + A

=
∞

∑
l=2

EU0(EV0)
l−2EV2

0
1− βl−1

1− β
+

∞

∑
l=1

EV0U0(EV0)
l−1βl−1 + A

=
EU0EV2

0
1− β

(
1

1−EV0
− β

1− βEV0
) +

EV0U0

1− βEV0
+ A.

Now we treat the last term. Remark that Ut and Vt−1 are independent except
for their second coordinates, then for j 6= 2:

Aj = E
∞

∑
l=1

(
Ut−l,j

l−1

∏
k1=1

Vt−k1

)
∞

∑
k2=l+1

βk2−1Vt−k2

=
∞

∑
l=1

(
EU0,j(EV0)

`−1
) ∞

∑
k2=l+1

βk2−1EV0 =
βEU0,jEV0

(1− β)(1− βEV0)
.

For j = 2, we get

A2 = E
∞

∑
l=1

(
log σ2

t−l

l−1

∏
k1=1

Vt−k1

)
∞

∑
k2=l+1

βk2−1Vt−k2

=
∞

∑
l=1

(EV0)
`−1E

(
log σ2

t−l

∞

∑
k2=l+1

βk2−1Vt−k2

)
.

Remembering that

log σ2
t =

α + 2β

1− β
− 2

∞

∑
k=1

βk−1Vt−k ⇔
∞

∑
k2=l+1

βk2−1Vt−k2 =
βl

2

(
α + 2β

1− β
− log σ2

t−l

)
we finally obtain

A2 =
β

2(1− βEV0)

(
α + 2β

1− β
E log σ2

0 −E(log σ2
0 )

2
)

.


