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2, avenue Adolphe Chauvin

95302 Cergy-Pontoise, FRANCE

sixiang.cai@u-cergy.fr

Abstract

We introduce the notion of continuously invertible volatility models
that relies on some Lyapunov condition and some regularity condition.
We show that it is almost equivalent to the ability of the volatilities
forecasting using the parametric inference approach based on the SRE
given in [16]. Under very weak assumptions, we prove the strong consis-
tency and the asymptotic normality of the parametric inference. Based
on this parametric estimation, a natural strongly consistent forecast of
the volatility is given. We apply successfully this approach to recover
known results on univariate and multivariate GARCH type models
and to the EGARCH(1,1) model. We prove the strong consistency of
the forecasting as soon as the model is invertible and the asymptotic
normality of the parametric inference as soon as the limiting variance
exists. Finally, we give some encouraging empirical results of our ap-
proach on simulations and real data.
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1 Introduction

The paper focus on the volatility forecasting in volatility models of the gen-

eral form Xt = Σ
1/2
t · Zt where the innovations Zt are normalized, centered

iid variables. It is assumed that transformations of the volatilities satisfy
some (possibly non-linear) Stochastic Recurrent Equation (SRE) of the form
(h(Σk))k≤t = ψt((h(Σk))k≤t−1, θ0). All the randomness of the process (Xt)
comes from the innovations Zt. It is assume that the expression of ψt with
respect to (Zk)k≤t−1 is known, but the parameter of interest θ0 is unknown.
In this parametric framework, including all the classical models of GARCH
and EGARCH types, forecasting the volatility completely relies on the abil-
ity of inferring θ0. The present paper give a general procedure based on
SREs and its asymptotic properties that compute an approximation θ̂n as a
measurable function of the observations (Xt)1≤t≤n.

A SRE is said to be convergent if it exists a unique stationary non antic-
ipative solution. The functional process (ψt) is generated by the filtration of
the innovations σ((Zk)k≤t−1). It is a well defined stationary ergodic process.
The convergence of a SRE such as the one associated to the ψt leads to the
existence of the stationary process (Xt). If the functions ψt are Lipschitz,
sufficient Lyapunov conditions (also necessary in the linear case) are stated
in [5] and [4]. However, the volatility process does not satisfy a unique SRE,
see Remark 2.1. Optimal stationary conditions might use another SRE
(think of the GARCH(p,q) model case). In the sequel we assume that the
optimal SRE generated by the innovations is known and convergent. Then
the process (Xt) is well defined, stationary and ergodic. Our first result in
Proposition 2.1 asserts that, as any solutions of convergent SRE, (Xt) has
also log-moments.

Assuming that the model to be continuously invertible, we study the
estimator θ̂n from the procedure based on the SRE of [16]. Using only
log-moments properties ensured by Proposition 2.1 and the locally uniform
convergence of regular functions, we prove that θ̂n is strongly consistent as
soon as the model is identifiable. We then give a natural strongly consistent
forecaster of the volatility. The estimator θ̂n is moreover asymptotically
normal as soon as the limiting variance exists. Modulo these weak and tech-
nical assumptions, we have the ”equivalences”
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Convergence of the SRE generated by ⇐⇒ stationarity, ergodicity
the innovations (Zt, Zt−1, . . .) (A) and log-moments

Convergence of the SRE generated by ⇐⇒ invertibility, forecasting
the observations (Xt, Xt−1, . . .) (B) and statistical inference

Let us detail the consequences of this tabular in the GARCH and EGARCH
type models.
The equivalence (A) has been extensively studied in GARCH type models
since the seminal papers of Nelson [12] and Bougerol and Picard [5] in the
univariate case. For multivariate GARCH models the equivalence (A) has
recently been studied by Francq and Zaköıan [8]. That the SRE generated
by the observations converges for GARCH type models is straightforward,
see [17] for discussions in the AGARCH case. Thus the equivalence (B)
directly gives asymptotic properties of the statistical inference based on the
SRE for these models. As the inference based on the SRE coincides with
the QMLE, we recover existing results in Subsection 3.5: for GARCH(p,q)
models we exactly recover the results of [9] that refine [2], for AGARCH(p,q)
and CCC-GARCH(p,q) models we refine the results of [17] and [8].
In the EGARCH type models, the SRE generated by the innovations con-
verges straightforwardly as it coincides with the one of an ARMA process.
Thus it exists a stationary ergodic solution with finite moments, see [13].
The right implication (B) proved in Section 3 is new for that type of process
as the inference based on the SRE differs from the QMLE (see Subsection
4.5 for details). It enables us to prove in Section 4 the asymptotic prop-
erties of the inference and the forecasting of the volatility for invertible
EGARCH(1,1) models. For proving the asymptotic normality, we exhibit a
necessary and sufficient condition for the existence of the asymptotic vari-
ance. Then we provide some encouraging empirical results of our approach
in Section 5 on simulations and on real data. A first step on the reverse
part of the equivalence (B) has been done recently by Sorokin [15]. He
proves that forecast of the volatility based on the SRE is inconsistent for
some non invertible models. Finally remark that statistical inference of θ0
is possible without assuming the invertibility: it has been successfully done
by Zaffaroni [19] using the approach of Whittle.
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2 Stationarity and invertibility in volatility mod-
els

2.1 The general volatility model

All along the paper (Zt) is a stationary ergodic sequence of real vectors called
the innovations. Let us denote Ft the filtration generated by (Zt, Zt−1, . . .)
and let us consider the general volatility model

Xt = Σ
1/2
t · Zt, where (h(Σk))k≤t = ψt((h(Σk))k≤t−1, θ0) (1)

with an injective function h from the space of real matrices of size k×k to an
auxiliary separable metric space F and ψt(·, θ0) is a Ft−1 adapted random
function from the space of the sequences of elements in the image of h to
itself. Let us denote ℓ the inverse of h (from the image of h to the space of
real matrices of size k × k) and call it the link function.

2.2 Convergent SRE and stationarity

A first question regarding this very general model is wether or not a sta-
tionary solution exists. As the sequences of the transformed volatilities
(h(Σk))k≤t is a solution of a fixed point problem, we recall the following re-
sult due to Bougerol [4]. Let (E, d) be a complete separable metric space. A
map f : E → E is a Lipschitz map if Λ(f) = sup(x,y)∈E2 d(f(x), f(y))/d(x, y)
is finite. For any sequence of random element in (E, d), (Xt) is said to be

exponential almost sure convergence to 0 Xt
e.a.s.−−−−→ 0 as t → ∞ if for

Xt = o(e−Ct) a.s. for some C > 0.

Theorem 2.1. Let (Ψt) be a stationary ergodic sequence of Lipschitz maps
from E to E. Suppose that E[log+(d(Ψ0(x), x))] < ∞ for some x ∈ E, that
E[log+ Λ(Ψ0)] <∞ and that for some integer r ≥ 1,

E[log Λ(Ψ
(r)
0 )] = E[log Λ(Ψ0 ◦ · · · ◦Ψ−r+1)] < 0.

Then the SRE Xt = Ψt(Xt−1) for all t ∈ Z is convergent: it admits a unique
stationary solution (Yt)t∈Z which is ergodic and for any y ∈ E

Yt = lim
m→∞

Ψt ◦ · · · ◦Ψt−m(y), t ∈ Z.

The Yt are measurable with respect to the σ(Ψt−k, k ≥ 0) and

d(Ỹt, Yt)
e.a.s.−−−−→ 0, t→ ∞

such that Ỹt = Ψt(Ỹt−1) for all t > 0.
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Remark that the sufficient Lyapunov assumptions E[log Λ(Ψ
(r)
0 )] < 0 is

necessary in the linear case, see [5]. The logarithmic moments of the solution
of a convergent SRE is proved in the following result that seems to be new:

Proposition 2.1. Under the assumptions of Theorem (2.1) the unique sta-
tionary solution also satisfies E[log+(d(Y0, x))] <∞.

Proof. First remark that log(1 + y + z) ≤ log(1 + y) + log(1 + z) for any
y, z ≥ 0 and that E[log(1+Λ(Ψ0))] <∞ and E[log(1+d(Ψ0(x), x))] <∞ by
assumption. Second, we remark that Λ(f ◦ g) ≤ Λ(f)Λ(g) for any Lipschitz
functions f and g entails that

log(1 + d(x,Ψ0 ◦ · · · ◦Ψ−m(x))) ≤ log(1 + d(x,Ψ0 ◦ · · · ◦Ψ1−m(x)))

+ log(1 + Λ(Ψ0 ◦ · · · ◦Ψ1−m)d(Ψ−m(x), x)). (2)

Third, we assert that the ergodic theorem in L
1 leads to the existence of

ρ < 1 such that

1

n

n
∑

j=1

Λ(Ψ(j−1)r ◦ · · · ◦Ψ1−jr) → log(ρ) in L
1.

Using again that Λ(f ◦g) ≤ Λ(f)Λ(g) for any Lipschitz functions f and g we
infer limm→∞m

−1 log(Λ(Ψ0◦· · ·◦Ψ−m)) ≤ log(ρ) in L
1. Thus it exists a r. v.

M > 0 such that E[| log(M)|] <∞ andm−1 log(Λ(Ψ0◦· · ·◦Ψ−m))−log(ρ) ≤
log(M), i.e. Λ(Ψ0◦· · ·◦Ψ−m) ≤ (Mρ)m a.s. for all m ≥ 0. Using this bound
in (2) we get, writing vm = log(1 + d(x,Ψ0 ◦ · · · ◦Ψ−m(x))):

vm ≤ vm−1 + log(1 + (Mρ)m−1d(Ψ−m(x), x)).

As log(1 + yz) ≤ yω log(1 + z) for any 0 < y < 1, z ≥ 0 and 0 < ω < 1 we
get by a straightforward recurrence

vm ≤ v0 +
m−1
∑

j=0

ρjω log(1 +M jd(Ψ0(x), x)).

As log(1+yz) ≤ log(1+y2+z2) ≤ 2(log(1+y)+log(1+z)) for any y, z ≥ 0 we
assert that E[log(1+M jd(Ψ0(x), x))] ≤ Cj for some C > 0 depending on the
(finite) logarithmic moments of M and d(Ψ0(x), x)). Finally, limm→∞ vm =
log(1 + d(Yo, x)) is dominated by an integrable r.v. and the result follows
dominated integration.
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In order to apply Theorem 2.1 in our case, let us denote by E the
separable metric space of the sequences of elements in the image of h.
Equipped with the metric

∑

j≥1 2
−jd(xj , yj)/(1 + d(xj , yj)), the space E

is complete. A sufficient condition for stationarity of (Xt) is that the SRE
driven by (ψt) converges in E. It simply expresses as the Lyapunov condition

E[log Λ(ψ
(r)
0 )] < 0 for some integer r ≥ 1 and some logarithmic moments.

This assumption of stationarity is sufficient but not optimal in many cases:

Remark 2.1. The state space of the SRE (1), denoted E, is in full generality
a space of sequences. However in all classical models we can find a lag p
such that (h(Σk))t−p+1≤k≤t = ψt((h(Σk))t−p≤k≤t−1, θ0). The state space E
is now the finite product of p spaces. It can be equipped by unbounded metrics

such that p−1
∑p

j=1 d(xj , yj) or
√

∑p
j=1 d

2(xj , yj). The product metric has

to be carefully chosen as it changes the value of the Lipschitz coefficients of
the φt. Yet, even if the products spaces are embedded, the smallest possible
lag p in the SRE yields the sharpest Lyapunov condition. Finally, if E has
a finite dimension and if the condition of convergence of the SRE expresses
in term of the top Lyapunov coefficient, one can choose any metric induced
by any norm, see [4] for details.

We prefer to work under the less explicit assumption

(ST) The process (Xt) satisfying (1) exists. It is a stationary, non antici-
pative and ergodic process with finite logarithmic moments.

In view of Proposition 2.1, it does not cost to ask for the solution to have
finite logarithmic moments.

2.3 The invertibility and the observably invertibility

Now that under (ST) the process (Xt) is stationary and ergodic, we inves-
tigate the question of invertibility as it is done in the literature. We want
to emphasis that invertibility is a question of convergent SRE solved by
Lyapunov condition. Following Tong [18], we say that a volatility model is
invertible if the volatility can be expressed as a function of the past observed
values:

Definition 2.1. The model is invertible if the sequence of the volatilities
(Σt) is adapted to the filtration (Gt−1) generated by (Xt−1, Xt−2, · · · ).

It is natural to assume invertibility to be able to forecast the volatil-
ity. This notion of invertibility is very weak and consists on restricting the
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underlying filtration (Ft) of the SRE to (Gt−1). Indeed, under (ST) then
Gt ⊆ Ft is well defined and writing Zt = Σ−1

t ·Xt in ψt we can rewrite the
general model as

(h(Σk))k≤t = φt((h(Σk))k≤t−1, θ0) (3)

for some ergodic and stationary sequence (φt) adapted to (Gt−1). Thus the
invertibility is implied by Theorem 2.1 if the φt are Lipschitz maps such that
for some r > 0,

E[log Λ(φ0(·, θ0)(r))] < 0. (4)

The remark 2.1 also holds for the SRE driven by (φt); the state space E of
the SRE and the product metric must be chosen carefully. The condition
(4) (with the optimal choice of the state space E and its metric) is called
the condition of invertibility.

Proposition 2.2. Under (ST) and the condition of invertibility (4), the
general model (3) is invertible.

Another notion of invertibility is the one introduced in [17]. We call
it observably invertibility. Let us assume that there exists some approxi-
mations φ̂t of φt such that φ̂t is a measurable function of the observations
(Xt−1, Xt−2, . . . , X1).

Definition 2.2. The model is observably invertible iff the solution of the
approximative SRE

(h(Σ̂k))k≤t = φ̂t((h(Σ̂k))k≤t−1, θ0) (5)

is convergent, i.e. ‖Σ̂t − Σt‖ → 0 in probability as t→ ∞.

Remark that in general the approximative SRE does not fit the condi-
tions of Theorem 2.1, in particular (φ̂t) is not necessarily stationary and er-
godic. However, the useful Property below ensures that an invertible model
is also observably invertible. It is a straightforward Corollary of Theorem
2.10 of [17] and our Proposition 2.1

Proposition 2.3. Assume that (ST) and (4) holds, that the link function ℓ

is continuous and that there exists x ∈ E such that d(φ̂t(x), φt(x))
e.a.s.−−−−→ 0

and Λ(φ̂t(·, θ0)− φt(·, θ0)) e.a.s.−−−−→ 0 as t → ∞, then the model is observably
invertible.
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Remark 2.2. Classical models satisfy an SRE for finite p lags of volatili-
ties (h(Σk))t−p+1≤k≤t = φt((h(Σk))t−p≤k≤t−1, θ0) and for some φt generated
only by a finite of past observation (Xt−1, . . . , Xt−q). In this context, the ap-

proximative SRE coincides with the initial ones, i.e. one can choose φ̂t = φt
for t > q. Conditions of Proposition 2.3 hold systematically; invertibility
and observable invertibility are equivalent, i.e. induced by the same Lya-
punov condition. As the initial values (for 0 ≤ t ≤ q) in the SRE can be
chosen arbitrarily from Theorem 2.1, with some abuse we will work in the
sequel with φ̂t = φt for t ≥ 1.

2.4 The continuous invertibility

We have seen that the existing invertibility notions can be expressed in term
of Lyapunov conditions. We introduce the notion of continuous invertibility
in term of a Lyapunov condition and some regularity on the model. Let
us consider parametric functions of the model having continuous Lipschitz
coefficients:

(CL) For any metric spaces X , Y and Z, a function f : X × Y 7→ Z
satisfies (CL) if there exists a continuous function Λf : Y 7→ R

+ such
that Λ(f(·, y)) ≤ Λf (y) for all y ∈ Y.

From Remark 2.2, let us consider the functional SRE of the form

(ĝk(θ))t−p+1≤k≤t = φt((ĝk(θ))t−p≤k≤t−1, θ), ∀θ ∈ Θ, ∀t ≥ 1, (6)

with any fixed initial value (ĝk(θ))1−p≤k≤0. The continuous invertibility
expresses as

(CI) Assume that the SRE (6) holds with continuous functions φt sat-
isfying (CL) for stationary (Λφt

) satisfying the Lyapunov condition

E[log Λ
(r)
φ0

(θ)] < 0 for all θ ∈ Θ and E[supΘ log Λ
(r)
φ0

(θ)] <∞. Moreover

there exists an y ∈ E such that E[supΘ log+(d(φ0(y, θ), y))] <∞.

The condition (CI) implies the standard invertible conditions for all θ ∈ Θ
and in particular for the unknown θ0. It also implies the local uniform
regularity of the solution gt(·) of the functional SRE (gk(·))t−p+1≤k≤t =
φt((gk(·))t−p≤k≤t−1, ·) for all t ∈ Z.

Theorem 2.2. Assume that (Σ2
t ) is a stationary and ergodic process such

that (CI) holds. Then the functions gt(·) are continuous for all θ ∈ Θ and
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all t ∈ Z. Moreover, for any θ ∈ Θ there exists an ǫ > 0 such that ĝt(θ)
satisfying (6) satisfies

lim sup
θ′∈B(θ,ǫ)∩Θ

d(ĝt(θ
′), gt(θ

′))
e.a.s.−−−−→ 0. (7)

Proof. For any ρ > 0, let us write Λ
(r)
∗ (θ, ρ) = sup{Λ(r)

φ0
(θ′), θ′ ∈ B(θ, ρ)∩Θ},

where B(θ, ρ) stands for the closed ball centered at θ with radius ρ. As

E[supΘ log Λ
(r)
φ0

(θ)] <∞, by the dominated convergence Theorem we obtain

limρ→0 E(Λ
(r)
∗ (θ, ρ)) = E(limρ→0 Λ

(r)
∗ (θ, ρ)). But limρ→0 Λ

(r)
∗ (θ, ρ) = Λ

(r)
φ0

(θ)

by continuity of Λ
(r)
φ0

(θ) , we finally obtain

lim
ρ→0

E(Λ
(r)
∗ (θ, ρ)) = E(lim sup

θ′→θ
Λ
(r)
φ0

(θ))) = E(Λ
(r)
φ0

(θ)) < 0.

Thus, there exists an ǫ > 0 such that E(Λ
(r)
∗ (θ, ǫ)) < 0.

Let us now work on C(B(θ, ǫ) ∩ Θ), the complete metric space of con-
tinuous functions from B(θ, ǫ)∩Θ to R equipped with the supremum norm
d∞ = supB(θ,ǫ)∩Θ d. In this setting (ĝt) satisfy a functional SRE (ĝk)k≤t =

φt((ĝk)k≤t−1) with Lipschitz constants satisfying

Λ∞(φ
(r)
t (·)) ≤ sup

s1,s2∈C(B(θ,ǫ)∩Θ)

d∞(φ
(r)
t (s1), φ

(r)
t (s2))

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ǫ)∩Θ)

supB(θ,ǫ)∩Θ d(φ
(r)
t (s1(θ

′), θ′), φ
(r)
t (s2(θ

′), θ′)

d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ǫ)∩Θ)

supB(θ,ǫ)∩Θ Λ(φ
(r)
t (·, θ′))d(s1(θ′)s2(θ′))
d∞(s1, s2)

≤ sup
s1,s2∈C(B(θ,ǫ)∩Θ)

supB(θ,ǫ)∩Θ Λ(φ
(r)
t (·, θ′))d∞(s1, s2)

d∞(s1, s2)

≤ sup
B(θ,ǫ)∩Θ

Λ(φ
(r)
t (·, θ′)) ≤ sup

B(θ,ǫ)∩Θ

Λ
(r)
φt

(θ′) ≤ Λ
(r)
∗ (θ, ǫ)).

As E[supB(θ,ǫ)∩Θ log+(d(φt(y, θ
′), y))] ≤ E[supΘ log+(d(φt(y, θ), y))] is finite

we can apply Theorem 2.1. By recurrence φt ◦ · · · ◦ φt−m(ζ0) ∈ C(B(θ, ǫ) ∩
Θ) is continuous in θ and so is gt as the convergence holds uniformly on
B(θ, ǫ) ∩Θ. It is true for any θ ∈ Θ and the result follows.
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3 Statistical inference under continuous invertibil-
ity

3.1 Statistical inference based on the SRE

Here we describe the approach of Straumann in [16]. Assume that (6) holds
with θ0 unknown and θ0 belonging in a known compact set Θ. Consider

θ̂n = argminθ∈ΘŜn(θ)

the M-estimator associated with the SRE criteria

nŜn(θ) =

n
∑

t=1

ŝt(θ) =

n
∑

t=1

2−1
(

XT
t ℓ(ĝt(θ))

−1Xt + log(det(ℓ(ĝt(θ)))
)

. (8)

where (ĝt) is obtained from the approximative SRE (6).

Remark 3.1. This statistical procedure does not coincides with the Quasi
Maximum Likelihood approach that is not always observable, see Subsection
4.5 for the EGARCH(1,1) example.

3.2 Strong consistency of the parametric inference

From now assume that the innovations process (Zt) is iid:

(IN) The Zt are iid variables such that E[ZT
1 Z1] = is the identity matrice.

Under (ST) and (IN), E[XT
t ·Xt | F0] = Σt in agreement with the definition

of the volatility. The following assumption implies that the volatilities are
invertible matrices:

(IV) The functions ℓ−1 and log(det(ℓ)) are Lipschitz satisfying det(ℓ(g0(θ))) ≥
C(θ) for some continuous function C : Θ 7→ (0,∞).

Remark 3.2. The SRE criteria converges to the possibly degenerate limit

S(θ) = E[s0(θ)] = 2−1
E
[

XT
0 ℓ(g0(θ))

−1X0 + log(det[ℓ(g0(θ))])
]

Remark that S(θ0) = 2−1
E[ZT

0 Z0 + log(det(Σ0))] is finite under (ST) and
(IN) because the volatilities have finite log moments as solutions of an SRE,
see Proposition 2.1. But S(θ) may be infinite for θ 6= θ0.

If the model is identifiable, the estimator θ̂n is strongly consistent:
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Theorem 3.1. Assume that (ST) and (CI) are satisfied on the compact
set Θ. If (IN) and (IV) are satisfied and the model is identifiable, i.e.
g0(θ) = h(Σ0) iff θ = θ0, then θ̂n → θ0 a.s. for any θ0 ∈ Θ.

Proof. First, remark that with no loss of generality we can always restrict
in (6) to det(ℓ(φ̂t(·, θ))) ≥ C(θ). We adapt the proof of Jeantheau [10]
keeping the same notation s∗t(θ, ρ) = inf{st(θ′), θ′ ∈ B(θ, ρ)} and ŝ∗t(θ, ρ) =
inf{ŝt(θ′), θ′ ∈ B(θ, ρ)}. Let us recall Theorem 5.1 in Jeantheau [10]. The
M-estimator associated with the loss (8) is strongly consistent under the
hypothesis H1-H6:

H1 Θ is compact.

H2 Ŝn(θ) → S(θ) a.s. under the stationary law Pθ0 .

H3 S(θ) admits a unique minimum for θ = θ0 in Θ. Moreover for any
θ1 6= θ0 we have:

lim inf
θ→θ1

S(θ) > S(θ1).

H4 ∀θ ∈ Θ and sufficiently small ρ > 0 the process (ŝ∗t(θ, ρ)))t is ergodic.

H5 ∀θ ∈ Θ, Eθ0 [s∗1(θ, ρ)] > −∞.

H5 limρ→0 Eθ0 [s∗1(θ, ρ)] = E[s∗1(θ)].

Let us check H1-H6 in our case of study. H1 is satisfied by assumption. H2
is verified in two steps. First, by the e.a.s. convergence given by Theorem
2.2, arguments of [16] and the Lipschitz properties of ℓ−1 and log(det(ℓ)) we
obtain

1

n

n
∑

t=1

sup
B(θ,ǫ)

|ŝt(θ′)− st(θ
′)| → 0 Pθ0 − a.s.

Second we use that (st) is an ergodic sequence. Using Proposition 1.1 of
[10], n−1

∑n
t=1 st(θ) converges Pθ0-a.s. to S(θ) (taking values in R∪{+∞})

as the st are bounded from below:

1

n

n
∑

t=1

|st(θ)− S(θ)| → 0 Pθ0 − a.s.

Combining this two steps leads to H2. The first part of H3 is checked
similarly than in (ii) p.2474 of [17] and with the help of the Remark 3.2.
Remark that S has a unique minimum iff E[Tr(Σ0 ·ℓ(g0(θ))−1)− log(det(Σ0 ·
ℓ(g0(θ))

−1))] has a unique minimum. As this criteria is the integrand of a

11



sum of the λi − log(λi) where the λi are positive eigenvalues, we conclude
under the identifiability condition from the property x − log(x) ≥ 1 for all
x > 0 with equality iff x = 1. The second part is checked using that

lim inf
θ→θ1

S(θ) ≥ E[lim inf
θ→θ1

s0(θ)] = E[s0(θ1)] = S(θ1)

where the first inequality was already used for proving Theorem 2.2 and the
first equality comes from the local continuity of g0 and ℓ. H4 is satisfied from
the ergodicity of (ŝt). H5 and H6 follows from Theorem 2.2 that ensures
the continuity of the function s∗1 and by the lower bounded assumption on
det(ℓ), see Proposition 1.3 of [10].

3.3 Volatility forecasting

From the inference of θ0, we deduce a natural forecast of the volatility Σ̂t =
ℓ(ĝt(θ̂t)). It is strongly consistent:

Proposition 3.1. Under the conditions of Theorem 3.1 then ‖Σ̂t−Σt‖ → 0
a.s. as t→ ∞.

Proof. It is a direct consequence of Theorems 2.2 and 3.1 that assert the
a.s. convergence of θ̂t toward θ0 and the local uniform convergence of ĝt
toward gt. Remark that for t sufficiently large such that θ̂t ∈ B(θ, ǫ), a
ball where the uniform Lyapunov condition E[log Λ∞(φt(·))] < 0 is satisfied.
Thus ĝt(θ̂t) − gt(θt) → 0 a.s. and by continuity of ℓ and gt and from the
identification Σt = ℓ(gt(θ0)) the result follows if gt(θ̂t) converges to gt(θ0).
For proving it, we use

d(gt(θ̂t), gt(θ0)) ≤ Λ∞(φt(·))d(gt−1(θ̂t), gt−1(θ0)) + wt(θ̂t)

where wt(θ̂t) = d(φt(gt−1(θ0), θ̂t), φt(gt−1(θ0), θ0)). The RHS term satisfies
an SRE of linear stationary maps satisfying the Lyapunov condition. We
apply Theorem 2.1 as for any θ̂t, by assumption E log+(w0(θ̂t)) is uniformly
bounded by E[supΘ log+(2d(φt(y, θ), y))] <∞. We get

d(gt(θ̂t), gt(θ0)) ≤
∞
∑

i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t).

Conditioning on (θ̂t), the upper bound is a stationary normally convergent

12



series of functions and

P

(

∞
∑

i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t) → 0
)

= E

[

P

(

∞
∑

i=0

Λ∞(φt(·)) · · ·Λ∞(φt−i+1(·))wt−i(θ̂t) → 0 | (θ̂t)
)]

= E

[

P

(

∞
∑

i=0

Λ∞(φ0(·)) · · ·Λ∞(φ−i+1(·))w−i(θ̂t) → 0 | (θ̂t)
)]

= E[1] = 1,

the last inequalities following from the continuity of normally convergent
series of functions, θ̂t → θ0 and wi(θ̂t) → wi(θ0) = 0 for all i a.s. as
t→ ∞.

3.4 Asymptotic normality of the parametric inference

Classical computations show easily that if the M-estmator θ̂n is asymptoti-
cally normal then the asymptotic variance is given by the expression

V = P−1QP−1

with P = E[Hs0(θ0)] and Q = E[∇s0(θ0)∇s0(θ0)T ]. Let V = B(θ0, ǫ) ⊂ Θ

with θ0 ∈
◦
Θ with ǫ > 0 chosen in accordance with Theorem 2.2, i.e. such

that E[log(supV Λφ0
)] < 0.

(AV) Assume that E(‖Z0Z
T
0 ‖2) <∞ and that the functions ℓ and φt are 2-

times continuously differentiable on the compact set Θ that coincides
with the closure of its interior.

The next assumption is used to ensure that g0 is 2-times differentiable.

(DL) The partial derivatives Φt = Dx(φt), = Dθ(φt), = D2
x2(φ0), D

2
θ,x(φ0)

or D2
θ2(φ0) satisfy (CL) for stationary (ΛΦt

) with E[supV log(ΛΦ0
)] <

∞.

The following moments assumptions ensure the existence of Q and P:

(MM) Assume that E[‖∇s0(θ0)‖2] <∞ and E[‖Hs0(θ0)‖] <∞.

These moments assumptions holds only for θ = θ0; they are simpler to verify
than for θ 6= θ0 due to the specific form of the SRE criteria derivatives, see
Remark 3.2 and computations in [1]. The next assumption is classical and
ensures to the existence of P−1:

13



(LI) The components of the vector ∇g0(θ0) are linearly independent.

Finally, the last assumption is specific to the SRE approach. It ensures that
∇ŝt(θ) is a good approximation of ∇st(θ) uniformly on V:

(LM) Assume that y → ∇ℓ−1(y) and y → ∇ log(det(ℓ(y))) are Lipschitz
functions.

Theorem 3.2. Under the assumptions of Theorem 3.1, (AV), (DL), (MM),
(LI) and (LM) then the asymptotic variance is well defined V is well defined
and the statistical inference is asymptotically normal, i.e.

√
n(θ̂n − θ̂0) →

N (0,V) in distribution for any θ0 ∈
◦
Θ with V that is invertible.

Proof. First, remark that from (DL) and Proposition 2.1 applied to supV g0(θ)
then E[supV log+(‖Φ0(θ)‖)] <∞ for Φ0(θ) = Dθ(φ0)(g0(θ), θ) orD

2
x2(φ0)(g0(θ), θ)

or D2
θ,x(φ0)(g0(θ), θ) or D

2
θ2(φ0)(g0(θ), θ). Using the existence of these loga-

rithmic moments and the relation E[log(supV Λφ0
)] < 0, we apply recursively

the Theorem 2.1 land prove the existence of continuous first and second
derivatives of (gt(θ)) on V as solutions of functional SRE. The asymptotic
normality follows from a Taylor development on the first partial derivatives
of Sn (see Section 5 of [1] for more details):

∇iSn(θ̂n)−∇iSn(θ0) = HSn(θ̃n,i)(θ̂n − θ0)

Then the asymptotic normality follows from the sufficient conditions:

1. n−1/2∇Sn(θ0) → N (0,Q),

2. ‖n−1
HSn(θ̃n)−P‖ converges a.s. to 0 for any sequence (θ̃n) converging

a.s. to θ0 and P is invertible,

3. n−1/2‖∇Ŝn(θ̂n)−∇Sn(θ̂n)‖ converges a.s. to 0.

Due to its specific expression and that (Zt) is a normalized difference of mar-
tingales sequence with finite moments of order 4, (∇Sn(θ0)) is a martingale,
see [1] for detailed computations. Under (MM), the CLT for differences of
martingale applied to (∇Sn(θ0)) leads to the first condition. The first part
of the second condition are derived from similar arguments than in the proof
of Proposition 3.1 and an application of the Cesaro mean theorem ensur-
ing that n−1‖HSn(θ̃n) −

∑n
t=1Hst(θ0)‖ → 0 a.s. The ergodic Theorem on

(Hst(θ0)) with (MM) leads to ‖n−1
HSn(θ̃n)−P‖ → 0 a.s. The fact that P

is invertible follows from (LI), see [1] for detailed computations. Finally the
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third condition is obtained by applying Theorem 2.10 of [17] on the SRE sat-
isfied by (∇gt) and its approximative SRE satisfied by (∇ĝt) uniformly on V.
Remark that the condition E[log(supV ‖∇g0‖)] <∞ of Theorem 2.10 of [17]
is automatically satisfied using the Proposition 2.1 on the functional SRE

of ∇gt and the local uniform norm on V. Thus supV ‖∇ĝt −∇gt‖ e.a.s.−−−−→ 0
as t→ ∞ and Lipschitz conditions on ∇ℓ−1 and ∇ log(det(ℓ)) in (LM) and
arguments similar than in [16] leads to the desired result.

3.5 A first application to GARCH type models

In the GARCH type models, the stationarity assumption (ST) is crucial,
whereas the continuous invertibility condition (CI) is automatically satisfied
due to the form of the model. Sufficient conditions for (ST) have been ex-
tensively studied in the literature and they can be necessary in linear cases.
The asymptotic properties of the QMLE (that coincides with the SRE based
inference in these cases) follow from Theorems 3.1 and 3.2. Thus, we re-
cover and slightly refine existing results in the AGARCH and CCC-GARCH
models (we refer the reader to [16] and [8] respectively for details in these
both cases).

First, let us consider the univariate AGARCH(p, q) model introduced in
[7], [20] and studied in [16]:

σ2t = α0 +

p
∑

i=1

αi(|Xt−i| − γXt−i)
2 +

q
∑

j=1

βjσ
2
t−j , t ∈ Z,

where α0 > 0, αi, βj ≥ 0 and |γ| ≤ 1 (it coincides with the GARCH(p, q)
model if γ = 0. Then we derive the strong consistency and the asymptotic
normality directly from our Theorems 3.1 and 3.2. The conditions we ob-
tained coincides with these of Theorem 5.5 and Theorem 8.1 of [17] except
that the technical (and superfluous) condition (8.1) of [17] is not needed in
our approach.

Second, let us consider the multivariate CCC-GARCH(p, q) model intro-
duced by [3], first studied in [11] and refined in [8]

Diag(Σ2
t ) = A0 +

q
∑

i=1

AiDiag(Xt−iX
T
t−1) +

p
∑

i=1

BiDiag(Σ
2
t−i)

and (Σ2
t )i,j = ρi,j

√

(Σ2
t )i,i(Σ

2
t )j,j) for all (i, j), where Diag(M) is the vector

of the diagonal elements of M . A necessary and sufficient conditions for
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(ST) is given in term of top Lyapunov condition in [8]. We recover the
strong consistency and the asymptotic normality of [8] directly from our
Theorems 3.1 and 3.2 except that we do not need the superfluous condition
∀θ ∈ Θ, |Bθ(z)| = 0 =⇒ |z| > 1 assumed in A2 of [8]. It is due to our local
uniform approach of the SRE that improves the classical uniform approach
used in [8]. The inequality (4.10) of [8] does not always holds in our context.

4 Application to the EGARCH(1, 1) model

4.1 Definition of the model

Let (Zt) be an iid sequence of random variables not concentrated on two
points such that E(Z2

0 ) = 1. The EGARCH(1, 1) model introduced by
Nelson [13] is an AR(1) model on log σ2t

Xt = σtZt with log σ2t = α0 + β0 log σ
2
t−1 +Wt−1(θ0)

where Wt(θ0) = γ0Zt + δ0 |Zt| are the innovations of this AR(1) model.
Let θ0 = (α0, β0, γ0, δ0) be the unknown parameter. Assume that θ0 ∈ Θ
where Θ is a compact subset of R×] − 1, 1[×{(δ, γ) ∈ R

2; δ ≥ |γ|} (see the
next subsection for a discussion on Θ). The restriction on the parameter
β0 (|β0| < 1) is classical (see [17]) and sufficient for (ST) and thus for the
existence of a stationary solution. Then we have a MA(∞) representation
for the logarithm of the squared volatility:

log σ2t = α0(1− β0)
−1 +

∞
∑

k=1

βk−1
0 Wt−k(θ0). (9)

The moments assumptions on Zt ensures that the process (log σ
2
t ) is ergodic,

strongly and weakly stationary. Then the volatilities process (σ2t ) is also
ergodic and strongly stationary. However, it does not necessarily have finite
variance.

Remark 4.1. The EGARCH(1, 1) model takes into account some stylized
facts such as the asymmetry in the squared volatility: if Zt > 0, then log σ2t =
α0+β0 log σ

2
t−1+(γ0+ δ0)Zt−1 and log σ2t = α0+β0 log σ

2
t−1+(γ0− δ0)Zt−1

otherwise. So conditioning on the sign of the innovation, Zt, the change of
the log-volatility log(σ2t+1/σ

2
t ) is asymmetric.
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4.2 Invertibility

The invertibility of the stationary solution of the EGARCH(1, 1) model does
not hold in general. Straumann and Mikosch gives a partial answer to this
important question in [17]: as (log σ2t ) satisfies the SRE

log σ2t = α0 + β0 log σ
2
t−1 +Wt−1(θ0) exp

(

− log σ2t−1

2

)

, for all t ∈ Z,

if the above SRE admits a unique stationary solution, then the model is
invertible. Keeping the notation of our Section 2, the function h is here the
logarithmic function and the SRE (5) holds with (φt) defined by

φt(·; θ) : s 7→ α+ βs+ (γXt−1 + δ |Xt−1|) exp(−s/2) (10)

We check that the φt are random functions generated by Gt−1. As in [17]
we restrict φt(·; θ) on the complete separable metric space [α/(1 − β),∞)
equipped with d(x, y) = |x − y|. Then for any θ0 ∈ Θ, as (ST) is satisfied,
(φt(·; θ0)) is a stationary ergodic sequence of Lipschitz maps from [α0/(1−
β0),∞) to [α0/(1− β0),∞) with the Lipschitz coefficient

Λ(φt(·, θ0)) ≤ max{|β0|, |2−1(γ0Xt−1+δ0|Xt−1|) exp(−2−1α0(1−β0))−β0|}.

Thus a sufficient condition for the invertibility condition (4) (with r = 1) is

E[log(max{|β0|, |2−1(γ0Xt−1 + δ0|Xt−1|) exp(−2−1α0/(1− β0))− β0|})] < 0.
(11)

4.3 Condition on the compact set Θ

Let us detail in the sequel the compact sets Θ such that the relation (11) is
satisfied for any θ0 ∈ Θ. From the MA(∞) representation (9) of log σ2t we
rewrite the condition (11) as

E

[

log
(

max
{

|β|,
∣

∣

∣
2−1 exp

(

2−1
∞
∑

k=0

βk(γZ−k−1 + δ |Z−k−1|)
)

× (γZ0 + δ |Z0|)− β
∣

∣

∣

})]

< 0 (12)

which does not depend on α and is easier to check. Using the Monte Carlo
algorithm, assuming the Zt to be normally distributed, we report in Figure
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Figure 1: Perspective and contour plots of the admissible region for contin-
uous invertibility.

1 the largest values of β that satisfies the condition (12) on a grid of values
of γ and δ.

Graphically, it seems that the most restrictive condition on β is when
γ = 0 when (γ, δ) is far away from (0, 0). Remark however that |β| is
never constrained to 0 as for β = γ = 0 the condition (12) becomes
E[log(δ|Z0|/2)] < E[δ|Z0|/2] that is always satisfied as log(x) ≤ x − 1 for
all x > 0. We then conjecture that the admissible set for θ is unbounded.
Finally, remark that when β = 0, the EGARCH(1, 1) model degenerates
to a sub-model Yt = exp(α + γZt−1 + δ |Zt−1|)Zt for which the admissible
parameters set is well known, see [16] for details.

4.4 Asymptotic properties of the parametric inference and
forecast

With the reasonable choice of Θ made in the last subsection, we know that
(ST) is satisfied. Moreover, (CL) is also automatically satisfied as

(Λφt
(θ)) = (max(|β|, |2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β|))

are stationary continuous functions of θ. Thus, as a corollary of Theorem
3.1 and Proposition 3.1, we get

Corollary 4.1. If Θ satisfying the condition (12) and θ0 ∈ Θ, then θ̂n → θ0
and σ̂2n − σ2n → 0 a.s. as n→ ∞ with σ̂2t = exp(ĝt(θ̂n)).
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Proof. The condition (CI) follows from E[log Λ(φt(, θ))] < 0 by assump-
tion of Θ and E[supΘ log Λ(φt(, θ))] < ∞ since E log |Xt−1| = E(log σ +
log |Zt−1|) < ∞ as log σ2t has a MA(∞) representation (9) and Z is inte-
grable. Moreover as log+(d(φ0(0, θ), 0)) = log+ |α + (γX−1 + δ|X−1|)| then
E[supΘ log+(d(φ0(y, θ), y)] <∞ for y = 0.
In the EGARCH(1, 1) model the link function is the exponential function
ℓ(x) = exp(x) and since we have log σ2t ≥ α/(1− β), 1/ℓ(x) = exp(−x) is a
Lipschitz function (log(det(ℓ)) = id is also a Lipschitz function). Moreover
the volatility process (σ2t ) is bounded from below by C(θ) = exp(α/(1−β)).
Finally, the identifiability condition g0(θ) = h(θ0) iff θ = θ0 is checked in
Section 5.1 of [17].

As a corollary of Theorem 3.2 we get the asymptotic normality of the in-
ference in the EGARCH(1, 1) model. It holds under the following necessary
and sufficient condition of the existence of the asymptotic variance V:

(MM’) The innovation satisfy E[Z4
0 ] <∞ and β2−δE|Z0|+(δ2+γ2)/4 < 1.

Corollary 4.2. Assume that Θ is well chosen as in Corollary 4.1 and that
(MM’) holds then

√
n(θ̂n− θ0) → N (0,V) in law with an invertible matrix

V explicitly given in the Appendix 3.

Proof. By definition, (φt) is 2-times continuously differentiable and sim-
ple computations give Dx(φt)(x, θ) = β − 2−1(γXt−1 + δ|Xt−1|) exp(−x/2),
Dθ(φt)(x, θ) = (1, x,Xt−1 exp(−x/2), |Xt−1| exp(−x/2))T , D2

x2(φt)(x, θ) =
4−1(γXt−1+δ|Xt−1|) exp(−x/2), D2

x,θ(φt)(x, θ) = (0, 1, 2−1Xt−1 exp(−x/2),
2−1|Xt−1| exp(−x/2))T andD2

θ2(φt)(x, θ) = 0.Moreover, as the link function
is ℓ(x) = exp(x) is also 2-times continuously differentiable the last assertion
of the condition (AV) of Theorem 3.2 holds. The fact that (MM) holds
under the conditions E[Z4

0 ] <∞ and β2−δE|Z0|+(δ2+γ2)/4 < 1 is techni-
cal and postponed to the Appendix 1. The fact that (LI) holds if Z0 is not
concentrated on two points is classical and proved in the Appendix 2 for the
sake of completeness. Assumption (DL) is satisfied from the expressions
of the derivatives (that are Lipschitz functions) and as all the logarithmic
moments are finite due to E[log(X2

t−1)] <∞. Finally (LM) is automatically
satisfied due to the specific expression of the link function.

4.5 The asymptotic variance V

Computations give V = (EZ4
0 − 1)B−1 with B = E[∇gt(θ0)(∇gt(θ0))T ].

Lemma 5.1 in Appendix 1 states that the conditions β2 − δE|Z0| + (δ2 +
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Figure 2: Perspective and contour plots of the admissible region for the
asymptotic normality.

γ2)/4 < 1 and E[Z2
0 ] = 1 are necessary and sufficient for the existence of B.

Assuming the Zt to be normally distributed, we report in Figure 2 the largest
values of β that satisfies the conditions (12) and β2−δE|Z0|+(δ2+γ2)/4 < 1
on a grid of values of γ and δ such that γ2+δ2 ≤ 4. The additional condition
does not affect much the constraint of β on this region of (γ, δ). However,
for γ2+δ2 > 4, the condition of existence of V imposes to exclude also small
values of β starting from β = 0. Then the resulting admissible region is now
bounded and seems to be convex.

The technical explicit computation of B is given in the Appendix 3.
Remark that the quasi likelihood (computable if the observations Zt were
observable) is equal to 2−1

∑n
t=1(X

2
t /ĥt(θ) + log(ĥt(θ))) where

ĥt(θ) = α+ βĥt−1(θ) + (γZt−1 + δ|Zt−1|), t > 1, and ĥ1(θ) = ζ(θ) fixed.

The likelihood 2−1
∑n

t=1(X
2
t /ht(θ)+ log(ht(θ))) coincides with SRE criteria

Sn(θ) at the point θ0 as ht(θ0) = gt(θ0) = σ2t . However, the two criteria
differ for θ 6= θ0. To see it, from the MA(∞) representation (9) we can
easily compute the partial derivative of h0 with respect to β:

∂h0
∂β

(θ) =
αβ

(1− β)2
+
∑

k≥1

kβk−1(γZ−k−1 + δ|Z−k−1|).

The value of this partial derivative is different from ∂h0/∂β(θ), even for
θ = θ0. Thus the estimator given by our SRE approach and the QMLE is
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different. Moreover, the asymptotic variances of the two estimators differ
and even for gaussian innovations (Zt) our estimator θ̂n is not asymptotically
efficient in the EGARCH(1, 1) case.

5 Numerical parametric inferences and forecast-
ing

5.1 Monte Carlo analysis of the estimation risk

Let us study by Monte Carlo algorithm on 1000 replications of the risk
for estimating a parameter θ0 ∈ Θ, see Table 1. In accordance with our

Table 1: Statistical inference and normal approximation
T= 512 1024 2048

θ θ0 mean rmse napp mean rmse napp mean rmse napp

α -0.399 -.381 .127 .059 -.393 .041 .042 -.396 .030 .030

β .9 .874 .170 .023 .897 .017 .016 .899 .012 .011

γ -.3 -.300 .057 .045 -.301 .033 .032 -.299 .023 .023

δ .5 .488 .097 .075 .492 .052 .053 .496 .038 .038

theoretical results, the mean value of the estimators θ̂n over replications are
closer the larger is the sample size (T = 512, 1024 or 2048). The columns
”rmse” give the empirical Root Mean Square Error (RMSE) computed on
the 1000 replications. The columns ”napp” give the normal approximation of
the RMSE. From the exact computation of V in Appendix 3 we compute the
value of the asymptotic variance at the point θ0 and divide the corresponding
standard deviation by

√
T . From Table 1, the normal approximation seems

to hold for T larger than 1024.

5.2 Estimation of the asymptotic covariance matrix

Assuming that E[Z4
0 ] = 3 in the EGARCH(1,1) model, we have two ways of

estimating the asymptotic covariance matrix of our estimator θ̂n. The first
one relies on the plug-in VTH(θ̂n) in the explicit formula θ → VTH(θ) given
in the Appendix 3. The second one relies on the SRE satisfied by ĝt(θ):

∇ĝt(θ) = (1, ĝt−1(θ), Xt−1 exp(−ĝt−1(θ)/2), |Xt−1| exp(−ĝt−1(θ)/2))
T

+ (β − (γXt−1 + δ|Xt−1|) exp(−ĝt−1(θ)/2)/2)∇ĝt−1(θ).
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Running the SRE over 1 ≤ t ≤ n we obtain n values ∇ĝt(θ), then we ap-
proximate B by n−1

∑n
t=1∇ĝt(θ)∇ĝt(θ)T and finally an approximation of

V = 2B−1 by inverting numerically the approximation of B.

We compare the risk of the two estimation procedure associated with
the Riemannian distance for symmetric positives definitive matrix defined
by

d(A,B) =

√

√

√

√

4
∑

k=1

log2 νk(AB−1)

where ν1(AB
−1), . . . , ν4(AB

−1) are the eigenvalues of the matrix AB−1. To
estimate the risk we sample randomly 100 parameters θ1, . . . , θ100 in a com-
pact set satisfying the conditions for the convergence of the SRE and the
existence of B. For each θk we simulate a path of n = 512, 1024 and 2048
observations and obtain the estimated values θ̂k. Then we calculate the er-
rors d(VTH(θk),V

SRE(θk)), d(V
TH(θk),V

TH(θ̂k)),d(V
TH(θk),V

SRE(θ̂k)).
We report the means of these distances in Table 2

Table 2:

n d(VTH(θk),V
SRE(θk)) d(VTH(θk),V

TH(θ̂k)) d(VTH(θk),V
SRE(θ̂k))

512 .074 .788 .924

1024 .065 .767 .780

2048 .064 .426 .457

The table show that it is very safe to use VSRE(θ̂k). This might suggests
that for general volatility models, we can safely use VSRE(θ̂k) if the explicit
formula for V is not known.

5.3 Forecasting the volatility on real data

We investigate the filtering and the forecasting problem of the daily log-
return of the Standard & Poor’s 500 data from Jan 4th, 2000 to Jul 22th,
2003 (n = 890). More precisely, we consider the process (Xt) of the log
difference of the daily close prices. The period has been chosen in order that
the stationary condition might be reasonable (it is a period of high volatil-
ity). To test the stationarity, we perform a KPSS test and an augmented
Dickey-Fuller on the logarithm of the X2

t (plotted in Figure 3) that give
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Figure 3: The daily log-return of the Standard & Poor’s 500 data from Jan
4th, 2000 to Jul 22th, 2003.
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p-values 0.098 and less than 0.01 respectively. The unit root hypothesis can
thus be reasonably rejected.

From now we assume that the general volatility model (1) is satisfied by
the real data, i.e. Xt = σtZt with a known parametric form ψt. Below we
investigate some of the more classical models: the GARCH(1,1) model,the
GARCH(1,1) model with Student innovations, the APGARCH(1,1) model
and the EGARCH(1,1) model. Let us consider the classical in sample and
out of sample procedures with two steps: for the in sample procedure, first
we estimate θ̂n on the 890 first observations and then we investigate the
performance of the natural forecast σ̂t = ℓ(ĝt(θ̂n)) of the volatility σt for
1 ≤ t ≤ 890. For the out of sample procedure, first we estimate θ̂n on the
880 first observations and then we investigate the performance of the nat-
ural forecast σ̂t = ℓ(ĝt(θ̂n)) of the volatility σt for 881 ≤ t ≤ 890 (the red
line in figure 3 splits the training and validation data sets). One difficulty
of evaluating the forecasting performance is that we could not observe the
true volatility process. However, with the 5 mins high frequency prices data
in hand, we bypass the problem: the Realized Volatility (RV) is used as
a consistent proxy of the conditional volatility. To measure the forecasting
performance we use the quasi likelihood (QLIK) criteria. As noticed by [14],
it is robust with respect to unbiased proxy. Moreover, we claim that it is
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more relevant than the Mean Square Error criteria as it does not involve
moments of order larger than one of the volatilities. For the sake of com-
pleteness, we also give the QLIK criteria for forecasting the proxies obtained
by 2 out of sample procedures, the Riskmetrics one and the rolling volatility
one.

To sum up, we list the parametric forms of the volatilities in the different
models that are investigated here:

• GARCH(1, 1): σ2t = ω + αX2
t−1 + βσ2t−1,

• APGARCH(1, 1): σδt = ω + α(|Xt−1| − γXt−1)
δ + βσδt−1,

• Rolling Volatility (60days): the moving average 1/60
∑60

i=1X
2
t−i,

• Riskmetrics (Exponentially weighted moving average model)

σ2t = λσ2t−1 + (1− λ)X2
t−1 where λ = .94,

• EGARCH(1, 1): log σ2t = α+ β log σ2t−1 + (γXt−1 + δ|Xt−1|)/σt.

Denoting (r1,m,t, . . . , rm,m,t) the m intra day returns, we define the daily RV
with m-frequency as

RV
(m)
t =

i=m
∑

i=1

r2i,m,t.

Finally, the QLIK criteria of the forecasting of the proxies RV by σ̂2 is

QLIK(σ̂2) =
n
∑

t=1

log(σ̂2t ) +
RVt
σ̂2t

.

We report the in sample performances in Table 3, the out of sample ones
in Table 4. The best forecast for each proxy is bolded. The performance of
the EGARCH(1,1) is close to the best one in each case.

Applying our approach in the EGARCH(1,1) model, we find the estima-
tions α̂n = −0.312, β̂n = 0.976, γ̂n = −0.122 and δ̂n = 0.122 in the in sample
procedure, α̂n′ = −0.324, β̂n′ = 0.974, γ̂n = −0.123 and δ̂n = 0.123. These
values are at the frontier of the linear constraint δ ≥ |γ| and satisfy the Lya-
punov condition and the condition of existence of V. The EGARCH(1,1)
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Table 3: In sample performances of the different forecasts

QLIK X2
t 5min RV 15min RV 65min RV

GARCH(1,1) -7.438 -7.517 -7.592 -7.607

GARCH(1,1) Student -7.439 -7.516 -7.589 -7.604

APGARCH(1,1) -7.489 -7.528 -7.613 -7.618

Rolling Volatility -7.267 -7.332 -7.414 -7.455

Riskmetrics -7.429 -7.510 -7.583 -7.597

EGARCH(1,1) -7.487 -7.537 -7.619 -7.626

Table 4: Out of sample performances of the different forecasts

QLIK X2
t 5min RV 15min RV 65min RV

GARCH(1,1) -8.285 -8.153 -8.192 -8.170

GARCH(1,1) Student -8.226 -8.131 -8.153 -8.111

APGARCH(1,1) -8.226 -8.130 -8.152 -8.111

Rolling Volatility -8.195 -8.096 -8.128 -8.111

Riskmetrics -8.053 -7.978 -7.998 -7.977

EGARCH(1,1) -8.272 -8.155 -8.184 -8.135

Table 5: Confident intervals given by the normal approximation in the
EGARCH type model log σ2t = α+ β log σ2t−1 + ηX−

t−1/σt

In-S. Value Confident interval

α -.312 [-.450, -.175]

β .976 [.962, .989]

η .243 [.171, .315]

Out of S. value Confident interval

α -.324 [-.464, -.185]

β .974 [.961,.988]

η .246 [.172,.320]
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Figure 4:
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model degenerates to the following model: log σ2t = α+β log σ2t−1+ηX
−
t−1/σt.

where η = δ−γ. It is a parsimonious model with only 3 parameters and the
constraint η ≥ 0 ensures the positivity of the innovations ηX−

t−1/σt of the
AR(1) model. As our estimations are not on the frontier η = 0, the asymp-
totic normality holds. Plugging our estimations in the explicit formula of
the asymptotic variance given in Appendix 3 provides the 95% confident in-
tervals for (α, γ, η) that are reported in Table 5. Remark that the behavior
of the model log σ2t = α + β log σ2t−1 + ηX−

t−1/σt differs completely wether
the observations are positive or negative. It is in accordance with the plot
in Figure 3: isolated extremes have negative values. It explains why the non
symmetric AGARCH and EGARCH models have better in sample perfor-
mance, see Table 3. For the out of sample performance, the EGARCH and
the GARCH models have the best forecasting performances, see Table 4.

We draw the 15 min realized volatilities and the in sample forecasts for
540 ≤ t ≤ 890 in Figure 4 (we only consider the last observations where the
recurrent formula given by Riskmetrics should be the best) and the out of
sample forecasts for 881 ≤ t ≤ 890 in Figure 5. Graphically, the forecasts
of the EGARCH model are satisfactory because it follows the global fluc-
tuations of the realized volatilities. It is very close to the forecasts of the
APGARCH model: their fluctuations are similar and their values are close
(the EGARCH forecasts are slightly smaller). But as the APGARCH model
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Figure 5:
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relies on 5 unknown coefficients, we prefer to work with the more parsimo-
nious EGARCH model (that degenerates to a form with only 3 unknown
parameters).
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[8] C. Francq and Zaköıan J.M. QML estimation of a class of multivari-
ate asymmetric GARCH models. forthcoming in Econometric Theory,
2011.
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Appendix 1: checking the assumption (MM)

Similar computations have been done in [6]. Remember thatV = P−1QP−1

with P = E[Hs0(θ0)] and Q = E[∇s0(θ0)∇s0(θ0)T ]. Let us first prove the
three identities P = 2−1B, Q = 4−1(EZ4

0−1)B and thus V = (EZ4
0−1)B−1

with B = E

[

∇gt(θ0)(∇gt(θ0))T
]

. For the first identity, we compute

P = 2−1
E
[

(∇gt(θ0)(∇gt(θ0))TZ2
0 +Hgt(θ0)(1− Z2

0 )
]

= 2−1
E[∇gt(θ0)(∇gt(θ0))T ] = 2−1B.

For the second identity, we compute

Q = E

[

1

4
E
[

∇gt(θ0)(∇gt(θ0))T (1− Z
2
t )

2
]

|Ft−1

]

= 4−1
E[(1− Z

2
0)

2]E[∇gt(θ0)(∇gt(θ0))T ] = 4−1(EZ4
0 − 1)B

and the third identity follows the first ones. Thus, for checking the as-
sumption (MM), it is enough to check that diagonal coefficients Bii are
well defined when E(Z4

0 ) < ∞. Let us denote Wt = γZt + δ|Zt|, Ut =
(1, log σ2t , Zt, |Zt|) and Vt = β − 1

2(γZt + δ |Zt|). Then (∇gt(θ0)) is the solu-
tion of the linear SRE

∇gt(θ0) = Ut−1 + Vt−1∇gt−1(θ0) =
∞
∑

l=1

(

Ut−l

l−1
∏

k=1

Vt−k

)

.

Using the convention
∏0

k=1 Vt−k = 1, we obtain the expression

∇gt(θ0) =
∞
∑

l=1

(

Ut−l

l−1
∏

k=1

Vt−k

)

.
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More precisely, we have the expressions: then

B11 = E

(

∂gt(θ0)

∂θ1

)2

= E

[

∞
∑

l=1

l−1
∏

k=1

Vt−k

]2

,

B22 = E

(

∂gt(θ0)

∂θ2

)2

= E

[

∞
∑

l=1

log σ2t−l

l−1
∏

k=1

Vt−k

]2

,

B33 = E

(

∂gt(θ0)

∂θ3

)2

= E

[

∞
∑

l=1

Zt−l

l−1
∏

k=1

Vt−k

]2

,

B44 = E

(

∂gt(θ0)

∂θi

)2

= E

[

∞
∑

l=1

|Zt−l|
l−1
∏

k=1

Vt−k

]2

.

To prove that condition (MM) is satisfied, i.e. that
∑4

i=1Bii <∞, we use
the following Lemma

Lemma 5.1.
∑4

i=1Bii <∞ iff EV 2
0 < 1 iff β2 − δE|Z0|+ (δ2 + γ2)/4 < 1.

Proof. That the first coefficient B11 is finite comes easily:

B11 = E(

∞
∑

l=1

l−1
∏

k=1

Vt−k)
2 = E(

∞
∑

l=1

∞
∑

l′=1

l−1
∏

k=1

Vt−k

l
′

−1
∏

k′=1

Vt−k
′ )

= E(2
∞
∑

l≥1

(
l−1
∏

k=1

Vt−k)
2

∞
∑

l′>l

l
′

−1
∏

k
′=l

Vt−k′ + E

∞
∑

l=1

(

l−1
∏

k=1

Vt−k
2)

= 2
∞
∑

l≥1

(EV 2
0 )

l−1 EV0
1− EV0

+
1

1− EV 2
0

= 2
1

1− EV 2
0

× EV0
1− EV0

+
1

1− EV 2
0

.

For the second coefficient B22, it is more complicated. We need some pre-
liminary work. We know that Wt = γZt + δ |Zt| = 2(β − Vt), and

log σ2t =
α

1− β
+

∞
∑

k=1

βk−1Wt−k =
α+ 2β

1− β
− 2

∞
∑

k=1

βk−1Vt−k
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so, we decompose B22 into three parts,

B22 = E

[

∞
∑

l=1

log σ2t−l

l−1
∏

k=1

Vt−k

]2

= E





∞
∑

l=1

(

α+ 2β

1− β
− 2

∞
∑

k=1

βk−1Vt−l−k

)

l−1
∏

k
′=1

Vt−k′





2

= (
α+ 2β

1− β
)2E





∞
∑

l=1

l−1
∏

k
′=1

Vt−k
′





2

+ 4E





∞
∑

l=1

∞
∑

k=1

βk−1Vt−l−k

l−1
∏

k′=1

Vt−k
′





2

−4× α+ 2β

1− β
E





∞
∑

l=1

∞
∑

k=1

βk−1Vt−l−k

l−1
∏

k′=1

Vt−k
′



 .

That the first term of the sum is finite is already known. For the last
term, it is straightforward from E

∑∞
l=1

∑∞
k=1 β

k−1Vt−l−k
∏l−1

k′=1
Vt−k′ = (1−

β)−1
EV0/(1− EV0). For the second term of the sum, we need an expansion





∞
∑

l=1

∞
∑

k=1

βk−1Vt−l−k

l−1
∏

k′=1

Vt−k
′





2

= 2×
∞
∑

1≤l<l′<∞1

∞
∑

p,q=1

βp+q−2Vt−l−pVt−l
′−q

l−1
∏

p′=1

V 2
t−p′

l
′

−1
∏

q
′=l

Vt−q
′

+

∞
∑

l=1

∞
∑

p,q=1

βp+q−2Vt−l−pVt−l−q

l−1
∏

p′=1

V 2
t−p

′

= 4×
∑

1≤l<l′<∞

∑

1≤p<q<∞

βp+q−2Vt−l−pVt−l′−q

l−1
∏

p′=1

V 2
t−p

′

l
′

−1
∏

q′=l

Vt−q′

+2×
∑

1≤l<l
′<∞

∞
∑

p=1

β2p−2Vt−l−pVt−l′−p

l−1
∏

p
′=1

V 2
t−p′

l
′

−1
∏

q
′=l

Vt−q′

+2
∞
∑

l=1

∑

1≤p<q<∞

βp+q−2Vt−l−pVt−l−q

l−1
∏

p′=1

V 2
t−p

′ +
∞
∑

l=1

∞
∑

p=1

β2p−2V 2
t−l−p

l−1
∏

p′=1

V 2
t−p

′

and in expectation we obtain a bounded term if EV 2
0 < 1:
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E





∞
∑

l=1

∞
∑

k=1

βk−1Vt−l−k

l−1
∏

k′=1

Vt−k
′





2

= 4× EV 2
0

1− EV 2
0

[

β

(1− β)(1− β2)

EV0
1− EV0

− 1

(1− β)(1− β2)

EV0β

1− β2EV0

]

+4× β(EV0)
3

(1− β)(1− β2)(1− β2EV0)

1

1− EV 2
0

+2× 1

1− β2
EV 2

0

1− EV 2
0

[

EV0
1− EV0

− EV0
1− β2EV0

]

+2
1

1− EV 2
0

(EV0)
3

(1− β2)(1− β2EV0)

+2
1

1− EV 2
0

(EV0)
2 β

(1− β)(1− β2)
+

EV 2
0

1− EV 2
0

1

1− β2
.

That B33 is finite under EV 2
0 < 1 comes from

B33 = E

[

∞
∑

l=1

Zt−l

l−1
∏

k=1

Vt−k

]2

= 2E
∞
∑

l=1

∞
∑

l
′>l

Zt−lZt−l′

l−1
∏

k=1

Vt−k

l
′

−1
∏

k
′=1

Vt−k′ + E

∞
∑

l=1

Z2
t−l(

l−1
∏

k=1

Vt−k)
2

= EZ2
0

∞
∑

l=1

(EV 2
0 )

l−1 =
EZ2

0

1− EV 2
0

.
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That the last coefficient is also finite comes form the computation

B44 = E

[

∞
∑

l=1

|Zt−l|
l−1
∏

k=1

Vt−k

]2

=

2E
∞
∑

l=1

∞
∑

l′>l

|Zt−l|
∣

∣Zt−l
′

∣

∣

l−1
∏

k=1

Vt−k

l
′

−1
∏

k′=1

Vt−k
′ + E

∞
∑

l=1

Z2
t−l(

l−1
∏

k=1

Vt−k)
2

= 2
∞
∑

l=1

∞
∑

l
′>l

E
∣

∣Zt−l′
∣

∣E

(

l−1
∏

k=1

V 2
t−k

)

E



|Zt−l|
l
′

−1
∏

k
′=l

Vt−k′



+
EZ2

0

1− EV 2
0

= 2
∞
∑

l=1

∞
∑

l′>l

(E |Z0|)(EV 2
0 )

l−1(E |Z0|V0)EV l
′

−l−1
0 +

EZ2
0

1− EV 2
0

=
2E |Z0| (E |Z0|V0)
(1− EV0)(1− EV 2

0 )
+

EZ2
0

1− EV 2
0

.

Appendix 2: checking the assumption (LI)

Let x0 ∈ R
4 be a vector such that ∇g0(θ0)Tx0 = 0 a.s. Since (∇gt(θ0))t∈Z is

stationary, then we also have ∇g1(θ0)Tx0 = 0 a.s. We know that ∇g1(θ0) =
U0(θ0) + V0(θ0)∇g0(θ0), then we deduce

U0(θ0)
Tx0 =









1
log σ20
Z0

|Z0|









T

x0 = 0 a.s.

which is impossible for x0 6= 0 if Z0 is not concentrated on two points, see
Lemma 8.2 of [17] for more details.

Appendix 3: exact computation of V

Remember that V = (EZ4
0 −1)B−1 with B = E∇gt(θ0)(∇gt(θ0))T . Accord-

ing the notation of Appendix 1, denoteWt = γZt+δ|Zt|, Ut = (1, log σ2t , Zt, |Zt|),
Vt = β − 1

2(γZt + δ |Zt|) and E∇gt(θ0) = G. Remark that EWt = δE |Z0|,
EW 2

t = (γ2 + δ2)EZ2
0 , EVt = β − 1

2δE |Zt|, EVtZt = −1
2γEZ

2
0 , EVt |Zt| =
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βE |Zt| − 1
2δEZ

2
0 , EV 2

t = β2 − βδE |Zt| + 1
4(γ

2 + δ2)EZ2
0 and E log σ2t =

α+δE|Z0|
1−β . We also have

E(log σ2t )
2 = Var (log σ2t ) + (E log σ2t )

2

=
∞
∑

k=1

β2(k−1)Var (Wt−k) +
(α+ δE|Z0|)2

(1− β)2

=
γ2 + δ2 − (δE|Z0|)2

1− β2
+

(α+ δE|Z0|)2
(1− β)2

and EVtUt = (EV0,EV0E log σ20,−1
2γ, βE |Zt|− 1

2)
T . Since E ‖∇gt(θ0)‖22 <∞

from Appendix 1, taking expectation on both side of the equation

G = E∇gt(θ0) = EUt−1 + EVt−1E∇gt−1(θ0) = EUt−1 + EVt−1G

so G = EU0/(1− EV0) = (1− β + 1
2δE|Z0|)−1(1,E log σ2t , 0,E|Z0|)T . Using

again the SRE, we have

∇gt(θ0) (∇gt(θ0))T = [Ut−1 + Vt−1∇gt−1(θ0)] [Ut−1 + Vt−1∇gt(θ0)]T

= Ut−1U
T
t−1 + Vt−1

[

Ut−1(∇gt−1(θ0))
T +∇gt−1(θ0)U

T
t−1

]

+V 2
t−1

[

∇gt−1(θ0) (∇gt−1(θ0))
T
]

so

B = EUt−1U
T
t−1 + E

(

Vt−1

[

Ut−1(∇gt−1(θ0))
T +∇gt−1(θ0)U

T
t−1

])

+ EV 2
t−1B

andB = (1−EV 2
0 )

−1(EU0U
T
0 +F) where F = E

[

V0
[

U0(∇g0(θ0))T +∇g0(θ0)UT
0

]]

.
As we have

EVtUt(∇gt(θ0))T = E









Vt
Vt log σ

2
t

VtZt

Vt |Zt|









(∇gt(θ0))T =









EVtG
T

EV E log σ2t (∇gt−1(θ0))
T

EVtZtG
T

EVt |Zt|GT









it remains to calculate

E
[

∇gt(θ0) log σ2t
]

= E∇gt(θ0)
(

α+ 2β

1− β
− 2

∞
∑

k=1

βk−1Vt−k

)

=
α+ 2β

1− β
G− 2E

∞
∑

l=1



Ut−l

l−1
∏

k1=1

Vt−k1





∞
∑

k2=1

βk2−1Vt−k2
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where

E

∞
∑

l=1



Ut−l

l−1
∏

k1=1

Vt−k1





∞
∑

k2=1

βk2−1Vt−k2

= EUt−1Vt−1 + E

∞
∑

l=2



Ut−l

l−1
∏

k1=1

Vt−k1





l−1
∑

k2=1

βk2−1Vt−k2

+E

∞
∑

l=2



Ut−l

l−1
∏

k1=1

Vt−k1



βl−1Vt−l +A

=
∞
∑

l=2

EU0(EV0)
l−2

EV 2
0

1− βl−1

1− β
+

∞
∑

l=1

EV0U0(EV0)
l−1βl−1 +A

=
EU0EV

2
0

1− β
(

1

1− EV0
− β

1− βEV0
) +

EV0U0

1− βEV0
+A.

Now we treat the last term. Remark that Ut and Vt−1 are independent
except for their second coordinates, then for j 6= 2:

Aj = E

∞
∑

l=1



Ut−l,j

l−1
∏

k1=1

Vt−k1





∞
∑

k2=l+1

βk2−1Vt−k2

=
∞
∑

l=1

(

EU0,j(EV0)
ℓ−1
)

∞
∑

k2=l+1

βk2−1
EV0 =

βEU0,jEV0
(1− β)(1− βEV0)

.

For j = 2, we get

A2 = E

∞
∑

l=1



log σ2t−l

l−1
∏

k1=1

Vt−k1





∞
∑

k2=l+1

βk2−1Vt−k2

=

∞
∑

l=1

(EV0)
ℓ−1

E



log σ2t−l

∞
∑

k2=l+1

βk2−1Vt−k2



 .

Remembering that

log σ2t =
α+ 2β

1− β
−2

∞
∑

k=1

βk−1Vt−k ⇔
∞
∑

k2=l+1

βk2−1Vt−k2 =
βl

2

(

α+ 2β

1− β
− log σ2t−l

)

we finally obtain

A2 =
β

2(1− βEV0)

(

α+ 2β

1− β
E log σ20 − E(log σ20)

2

)

.
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