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Abstract

Simulation of granular media undergoing dynamic evolution involves nonsmooth problems
when grains are modeled as rigid bodies. With dense samples, this nonsmoothness occurs ev-
erywhere in the studied domain, and large sized systems lead to computationally intensive sim-
ulations. In this article, we combine domain decomposition approaches and nonsmooth contact
dynamics. Unlike the smooth continuum media case, a coarse space problem does not trivially
increase the convergence rate, as it is exemplified in this article, with semi-analytical examples
and real size numerical simulations. Nevertheless, the description of an underlying force network
in the samples may guide the analysis for new approximation schemes or algorithms.

Keywords: Nonsmooth contact dynamics, multicontact systems, scalability, multiscale,
asymptotic analysis
2000 MSC: 65Y05, 70E55, 76T25

Introduction

To underline the objectives of this paper it is first important to consider associated methods
at the crossroads of two fields: the NonSmooth Contact Dynamics (NSCD) and the Domain De-
composition Methods (DDM). These two approaches are combined here to the limits of their
possibilities. NSCD or Contact Dynamics in short, has been developed by J. J. Moreau and M.
Jean over the last two decades [1, 2]. It is suited for many applications but has proven to be par-
ticularly suitable when collections of rigid or deformable bodies are packed together in a dense
assembly and subject to dynamic loading deformations. Moreover, much attention has been paid
to the way the method converges and how to access the quality of a numerical simulation, which
is a difficult issue when dealing with large collections of bodies for which the number and nature
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of the solutions are far from being unique. Numerical simulations thus have to be performed
using a fully implicit resolution of the contact forces. At each step of the evolution problem,
all kinematic constraints within the packing are simultaneously taken into account along with
the equations of motion to determine all contact forces. This allows us to deal properly with
nonlocal momentum transfers involved in multiple collisions, contrary to classical molecular dy-
namics schemes that consider the system evolution as a succession of binary collisions [3]. The
computational cost may be quite high, but the gain is substantial. For instance in granular mate-
rials, commonly accepted ideas about distributions of stress or strain in continuous media are no
longer true. Chains of forces act between grains in two ways i.e. the strong force network sup-
ports shear stress while the weak force network contributes to internal pressure [4]. Simulations
of very large granular systems can range from the study of 10 m of railway ballast submitted
to cyclic dynamic loading [5], to the behavior of the Nı̂mes arena and Arles aqueduct (France)
subjected to seismic loading [6], which are examples of two challenges in computational me-
chanics. The efficiency of the Domain Decomposition methods in the context of multiprocessor
computations is well established from theoretical and practical standpoints when dealing with
a linear system derived from a discretization of a continuous problem [7, 8]. The scalability
may be proved theoretically when a coarse problem is added to the preconditioner of a conjugate
gradient algorithm applied to the interface problem [9]. Enrichment of the coarse problem turns
out to be mandatory to improve the convergence for different situations such as 3D [10], plate
bending [11] or dynamic problems [12]. In [13] a multilevel domain decomposition technique
is used as a numerical strategy to simulate the behavior of nonsmooth discrete media and to
provide the macroscopic numerical behavior of the same system. Analogously to the “corners”
or “wedges” of 3D continuous problems, the emergence of weak interfaces, i.e. characteristics
of discrete media sub-structuring, is taken into account in the coarse space. However, the study
is restricted to quasi-static simulation of a large-scale tensegrity grid. Dynamic modeling of a
granular medium is quite different as we will see later. Moreover, extension of DDM to nonlinear
problems is commonly tackled with a resolution of a series of linear problems, with each of them
being solved with a classical DD solver as a black box [14, 15] and few attempts to tackle non-
linearity and domain decomposition in a one shot algorithm [16]. Such a strategy is difficult to
efficiently extend to granular type problems. When the contact may only be accounted for at the
interface of the subdomains it is possible to extend sophisticated linear domain decomposition
solvers to these cases [17, 18, 19]. Nevertheless such a strategy is not feasible for granular type
problems. The main objective is now to investigate discrete multi-large-scale dynamic systems.
A domain decomposition strategy may provide both an efficient solver and a numerical homog-
enized model directly derived from the simulation. This continuous homogenized model could
be substituted for the discrete one in some parts of the domain as long as these parts continue
to evolve in a smooth enough way that they can be determined. This latter issue is nevertheless
beyond the scope of this paper as for the sub-structuring technique adapted to discrete systems
with permanent evolution of the connectivity of the particles, which is characteristic of granular
flows.

For general purposes, we consider a model problem involving a dynamically loaded discrete
system with nonlinear or nonsmooth interactions between their components. In line with the
NSCD approach, we opt for the velocity-impulse formulation presented in the second section to-
gether with a multidomain reformulation and generic algorithm. The multidomain reformulation
is based on a FETI-type approach where the subdomains are “glued” by Lagrange multipliers
which are inter-domain forces. This choice is in accordance with the NSCD approach where im-
pulses are privileged variables. The generic solving method consists of a two-stage Gauss-Seidel
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type algorithm. Such a strategy recovers the generic NonLinear Gauss-Seidel (NLGS) method
applied in conjunction with the NSCD formulation; for details about convergence, refer to [20].
The following developments have three main objectives. The first one consists in proposing an
improved algorithm combining the advantages of the NLGS and LATIN (for LArge Time INcre-
ment) methods [21, 22] previously compared in [23]. The improvement is motivated by features
of the interface problem derived from the FETI-type approach. The associated operator turns out
to be quasi-diagonal such that no long distance interactions are generated and no macro quantities
can be extracted from this interface problem. The second objective is therefore to enhance the
interface problem so as to accelerate the convergence and define a possibly macro-homogenized
model. Finally, the role of the rigid body motions in the convergence of the algorithm has to be
clarified. Indeed the insertion of rigid body motions in the coarse problem is essential for scal-
ability in elastostatics; this has been theoretically proved. It is thus necessary, from a numerical
standpoint, to improve the convergence in linear elastodynamics [12], as a better preconditioner.
An asymptotic analysis is dedicated to this open question for a collection of rigid bodies with
contact interactions. As it is hard to derive analytical results at the end of this analysis, some
small examples using MAPLETM software will be investigated. Using such simple examples to
investigate complex problems resembles the approach developed by J.A.C. Martins for studying,
for example, the instability of systems involving friction [24]. J.A.C. Martins studied mechanical
behavior whereas we study numerical behavior.

1. Fundamental equations and reference problem

The following terminology will be used throughout this article:

V velocity fields
R impulse fields
M inertial operator
Rd prescribed impulses fields
v kinematic material variable
r sthenic material variable
HT linear operator between V and v

Sthenics is the science of the efforts as the kinematics is the science of the motions. The common
expression is “static variables”.

A time-stepping scheme is used, where quantities at the beginning of the time slab with a
superscript (−) are known, and quantities at the end of the time slab without a superscript have
to be determined.

The dynamics of the granular medium is written as the following vector equation [2], where
the matrix M is diagonal, provided that the global coordinates of rotation vectors are expressed
in the inertia eigenbasis of each grain:

MV − R = Fd (1)

where the prescribed right hand side is Fd = Rd + MV−.
Here we focus on simple unilateral contact which is naturally expressed as a complementary

condition linking contact force to a gap. For dynamics, Moreau proved via a viability lemma [2],
that we can use a velocity-impulse complementary law. The constitutive relation is summarized
in the following formal equation:

R(v, r) = 0 (2)
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Figure 1: Geometrical partitioning of the domain

Finally, the compatibility conditions related to the connectivity of the links or contacts, read:

v = HT V and R = Hr (3)

Taking the dynamics (1) and the compatibility conditions (3) into account, the reduced dy-
namics involving material variables can be obtained:

Wr − v = −vd (4)

where W is the Delassus operator: W = HT M−1H, and vd = HT M−1Fd.
To close the problem, one adds the constitutive relation (2), and the reference problem reads:{

Wr − v = −vd

R(v, r) = 0 (5)

2. Multidomain reformulation and associated algorithm

The domain has to be split into subdomains in order to use parallelization for the solving
phase. This decomposition is performed at each time step for accounting for the migration of
grains from one subdomain to another. Such a strategy may be implemented with minimal com-
putational efforts using sophisticated routines out of the purpose of this paper. Since the nons-
moothness may occur in interactions between grains, we choose to distribute interactions among
subdomains as in [23] (we proceed by distributing the middle points between the centers of mass
of interacting grains, according to their coordinates, using an arbitrary regular underlying grid,
Figure 1). Indeed, with such a choice, the “boundary” grains are split between two subdomains.
For consistency, the masses and moments of inertia are distributed among the neighboring sub-
domains according to their number. The interface between two subdomains is defined as the set
of these grains, that joins the subdomains. The nonsmoothness is therefore localized only within
the subdomains. This modeling choice is identical to [15] and somehow the dual of that proposed
in [21], where nonlinearities (contact on crack lips) are isolated at the interfaces.

In each subdomain E, the reference problem is identical to the global one (with the subscript
E). On the global interface noted Γ an interconnecting condition (on velocities of boundary
grains) has been added to “glue” neighboring subdomains, where AEΓ is a signed boolean matrix:

nsd∑
E=1

AEΓVE = 0 (6)
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Formally the previous summation is performed on all the subdomains (number equal to nsd),
even if, for a given interface grain the only neighboring subdomains have to be considered. Then
we obtain a FETI-like formulation for the reference problem using a multiplier field FΓ and the
notations ÂT

EΓ
= HT

E M−1
E AT

EΓ
:

WErE − vE − ÂT
EΓ

FΓ = −vd
E

R(vE , rE) = 0

}
E = 1, . . . , nsd

nsd∑
E=1

AEΓVE = 0
(7)

The reduced problem on (rE ,vE ,FΓ), with the notations f̂ =
∑

E AEΓM−1
E Fd

E and X =
∑

E AEΓM−1
E AT

EΓ
,

reads:

WErE − vE − ÂT
EΓ

FΓ = −vd
E

R(vE , rE) = 0

}
E = 1, . . . , nsd

XFΓ −

nsd∑
E=1

ÂEΓrE = f̂
(8)

The associated algorithmic formulation is described in algorithm 1, where N is the number
of time steps and nGS is the prescribed number of Gauss-Seidel iterations to solve the nonsmooth
dynamics per subdomain.

Algorithm 1 (Generic version)
for i = 1, . . . ,N do

initialize unknowns at time ti: (rE , vE , FΓ)← (0, 0, 0)
when (rE ,vE ,FΓ) are known, compute (r̄E ,v̄E ,F̄Γ) as:
while ζ < ζmax (convergence criterion) do

Stage 1: Compute r̄E ,v̄E in parallel for E = 1, . . . , nsd

with nGS Gauss-Seidel iterations on:{
WE r̄E − v̄E = −vd

E + ÂT
EΓ

FΓ

R(v̄E , r̄E) = 0

Stage 2: Compute F̄Γ as: XF̄Γ = f̂ +
∑nsd

E=1 ÂEΓr̄E

end while
for E = 1, . . . , nsd do

(rE , vE , FΓ)← (r̄E , v̄E , F̄Γ)
end for

end for

The convergence of such an algorithm involving nonsmooth interaction laws between grains
is very difficult to investigate from a mathematical point of view. Even the convergence of the
Gauss-Seidel method embedded in the Stage 1 can be only proved for special cases [20]. The
following study consists in investigating first, and modestly, the convergence rate of the global
algorithm with linear interaction laws and in extracting some conclusions.
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2.1. Convergence analysis for the linear case

A linear problem is characterized by a linear interaction law: the only adaptation to the ref-
erence problem is the constitutive relation (2), which now reads: r = −kv, where k is an integral
viscosity parameter. It is convenient in the following to consider a flexibility-like parameter ε,
which is identical for all the interactions, such that:

R(v̄E , r̄E) = 0⇔ r̄E = −kE v̄E = −
1
ε

v̄E (9)

By eliminating local variables (r̄E , v̄E) in the first stage of algorithm 1, we can define a fixed
point algorithm applied to the interface multiplier FΓ. The contraction matrix then depends on
the flexibility parameter as follows:

Bε = X−1Yε (10)

where

Yε =

nsd∑
E=1

ÂEΓW−1
E,ε Â

T
EΓ and WE,ε = WE + εI (11)

A theoretical estimation of the spectral radius of this matrix is not available, but a numerical
evaluation may be performed for simple examples in order to compare the performance of this
generic algorithm with a forthcoming one. The first simple example consists of a 2D frictionless
granular problem with 4 disks and potentially 5 contacts, which are represented with solid and
dashed lines in Figure 2. (The difference between solid and dashed line is explained in a next
section for further studies.) A solution is given on the same figure for a prescribed velocity on
one of the disks. Note that some tensions are non-negative because the loss of contact is not taken
into account in this example. This system is split into two subdomains: the first one contains one
disk and two half-disks, while the second one contains one disk and the two complementary
half-disks. Two more complex examples are depicted in Figures 3 and 4. The spectral radius of
the contraction matrix is given with respect to ε in Figure 5; two special values are distinguished:
ε = 1 and the limit case ε = 0.

3. Global behavior and enriched algorithm

3.1. General case

For dense granular systems, the dynamic equations alone are not able to reproduce the col-
lective (i.e. global) behavior of the sample. Now the previous global operator X only involves
the dynamics via the inertia matrices ME ; this operator is then diagonal and therefore cannot
represent any information transfer between grains with a long-distance correlation through sub-
domains. Interactions between grains must be considered when introducing a collective behavior
at the second stage of the algorithm. We thus propose to introduce an additional search direction
in the previous algorithm 1, while not changing the reference problem, which can be interpreted
as a numerically tangent constitutive behavior between grains. Indeed such a search direction is
similar to the procedure introduced in the LATIN method [21] or in the Uzawa correction of the
Augmented Lagrangian approach. It therefore introduces an additional parameter that will have
to be discussed and chosen.
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Figure 2: A first example with 4 disks and 5 links split into two subdomains and a resulting tension network (black for
compression, grey for tension) for a given velocity of the grain on the right (doubled arrow)

Figure 3: A second example with 8 disks and 13 links split into two subdomains and a resulting tension network (black
for compression, grey for tension) for a given velocity of the grain on the right (doubled arrow)
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Figure 4: A third example with 12 disks and 21 links split into two subdomains and a resulting tension network (black
for compression, grey for tension) for a given velocity of the grains on the right (doubled arrow)
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Figure 5: Evolution of the spectral radius vs. ε for the three examples: 4 disks (dot), 8 disks (dash), 12 disks (solid)

The previous algorithm is therefore modified as follows. The first stage still consists of
finding the material quantities (v̄E , r̄E) satisfying:

WE r̄E − v̄E = ÂEΓFΓ − vd
E (12)

R(v̄E , r̄E) = 0 (13)

which is not dependent on each subdomain E = 1, . . . , nsd.
The second stage is modified. It requires to find (ṽE , r̃E) and FΓ, once (v̄E , r̄E) are known

from the previous stage, satisfying:

• the dynamic equations,

• the interface continuity constraint,

• the new search direction (r̃E − r̄E) + lE(ṽE − v̄E) = 0.

lE is an additional numerical parameter in the algorithm. As for kE it is convenient for the
forthcoming analysis to introduce a parameter that is identical for all interactions: lE = 1

η
. When

introducing the grain velocity field ṼE at this stage, the dynamics reads

MEṼE + AT
EΓFΓ = Fd

E + HE r̃E (14)

Substituting r̃E with the new search direction, using the kinematical admissibility ṽE =

HT
E ṼE , gives

Mη,EṼE = Fd
E + HE(r̄E + lE v̄E) − AT

EΓFΓ (15)

with Mη,E = ME + LE and LE = HE lE HT
E which contains informations on the interaction net-

work thanks to the connectivity matrix HE . As previously, the dynamic equations are condensed
onto the interforces, and the continuity constraints at the interfaces gives the new global behavior
with F̄Γ as unknown:

XηF̄Γ =

nsd∑
E=1

AEΓM−1
η,E[Fd

E + HE(r̄E + lE v̄E)] (16)



P. Alart, D. Iceta, D. Dureisseix / (2011) 1–18 10

with the new global interforce operator

Xη =

nsd∑
E=1

AEΓM−1
η,E AT

EΓ (17)

This constitutes the modified second stage of the algorithm.

3.2. Linear case and convergence analysis
In such a case, the first stage simplifies into: find r̄E for each subdomain independently such

that
(WE + k−1

E )r̄E = −vd
E + ÂT

EΓFΓ (18)

kE is a diagonal matrix with entries k for each interaction.
For the second stage, the right hand side also simplifies, since

r̄E + lE v̄E = (1 − lEk−1
E )r̄E (19)

As for the generic method, the local variables may be eliminated to obtain a fixed point
algorithm for which the contraction matrix is quite complicated and depends both on the physical
and numerical flexibility parameters: ε and the additional parameter η = 1

lE
, as:

Bε,η = X−1
η Yε,η (20)

where

Xη =

nsd∑
E=1

AEΓM−1
E,ηAT

EΓ (21)

Yε,η =

nsd∑
E=1

AEΓM−1
E,ηHE

(
1 −

ε

η

)
W−1

E,ε Â
T
EΓ (22)

ME,η = ME +
1
η

KE (23)

KE = HE HT
E (24)

When η = ε the matrix Yε,η is obviously zero and the spectral radius of Bε,η is also null. This
means that the algorithm converges in a single iteration because the two stages are uncoupled:
the second stage is the condensed problem on the interface of the substructured problem. This
result only underlines the consistency and the substantial enhancement of the second version of
the method for a non-zero ε parameter. The spectral radius may be evaluated in the examples for
each value of η, with ε being fixed at 1 or 0 in Figure 6. However for the asymptotic case, ε = 0,
the optimal zero value of the spectral radius does not seem to be reached, especially when the
size of the system increases from example one to the third example.

4. Asymptotic analysis

Such an analysis concerns two limit-case situations. The second one, the nonsmooth case,
is the final focus of this paper. It consists of determining the contact impulses and induced
velocities at a given instant in a dense granulate impacted by particles. We limit ourselves here
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Figure 6: Spectral radius vs. η, for ε = 1 and for ε = 0 and the three examples: 4 disks (dot), 8 disks (dash), 12 disks
(solid)

to the analysis of the frictionless contact case (this case is called nonsmooth in the following).
The first situation is not related to a physical realistic case, but is an intermediate problem viewed
as the limit case of the linear smooth problem where the flexibility parameter ε tends to zero. We
then have to determine, in this linear problem, a distribution of impulses between rigid bodies
without possible contact loss. This is similar to the determination of tensions in an hyperstatic
network of rigid bars.

4.1. Rigid limit case with the generic algorithm
When ε tends to zero, the limit contraction matrix is then equal to:

B0 = X−1Y0 where Y0 =

nsd∑
E=1

ÂEΓW−1
E ÂT

EΓ (25)

It is not surprising that the spectral radius increases when parameter ε tends to zero as shown
in Figure 5. Moreover, this matrix is not always evaluable if the Delassus operator WE is not
invertible, i.e. when the contact network is hyperstatic. This is a common situation in dense
granulates generating the non-uniqueness of the contact impulse distribution.

4.2. Rigid limit case with the enriched algorithm
If we plot the spectral radius of the contraction matrix ρ(B0,η) with respect to η, as in Figure 6,

we obtain a decreasing value of the spectral radius when η tends to zero, but a null spectral radius
does not seem to be reachable. To directly verify the consistency of the limit problem, η = 0 for
ε = 0, we have to handle an approximation of the matrix M−1

E,η when η tends to zero,

M−1
E,η =

(
ME +

1
η

KE

)−1

≈ M∞E + ηK+
E (26)
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where the null space of M∞E contains the range of KE (or equivalently of HE , i.e. M∞E HE = 0)
and K+

E is the Moore-Penrose pseudo-inverse of KE modulo the mass matrix ME . At this point,
we can rewrite the second stage of the enriched algorithm when η tends to zero, and for any local
constitutive law (even for nonlinear or nonsmooth laws):

X∞F̄Γ =

nsd∑
E=1

AEΓ[M∞E Fd
E + K+

E HE v̄E] with X∞ =

nsd∑
E=1

AEΓM∞E AT
EΓ (27)

The linear rigid limit case is characterized by a kinematic material variable field v̄E (relative
velocities between grains for granular systems) equal to zero, so that both stages in the algorithm
are decoupled, and the convergence requires a single iteration, as in the linear smooth case. It
is, however, interesting to note that the mapping M∞E is non zero only on the null space of KE ,
that means on the rigid body motions of subdomain E. The elimination of such a subspace is
the key ingredient of the Domain Decomposition preconditioners in elastostatics and even in
elastodynamics of continuum media.

4.3. Nonsmooth case with the generic algorithm

A first attempt to analyze convergence for a nonsmooth case involves considering a com-
plementarity condition between rE and vE (characteristic of frictionless unilateral between-grain
contact in granulates). Such a condition may be interpreted as a piecewise linear relationship.
The global convergence is difficult to analyze [25, 20] but we may study the local convergence
as performed, for instance, by [26]. We then suppose that the solution is characterized by a rigid
limit case given by a compatibility operator GE that differs from the initial HE . This compati-
bility operator GE corresponds to the only active contacts which cannot be determined a priori
in a general case; this stage requires a specific algorithm as the NonLinear Gauss-Seidel method
for instance. However, for the simple examples studied here it is possible to postulate the active
contacts by considering the only compressive links (black lines on the resulting tension networks
of the Figures 2, 3 and 4) obtained with the linear modeling. The generic algorithm then behaves,
near the solution, like a new algorithm where the Stage 1 uses the “local” compatibility condi-
tion given by GE while the Stage 2 uses the “global” compatibility condition given by HE . More
precisely, we consider the following relation:

RE = HErE = GE r̄E (28)

then, rE = CE r̄E and HECE = GE .
The first stage of the generic algorithm 1 is modified as follows: GE replaces HE in WE , ÂEΓ

and f̂Γ to define W̄E , ĀEΓ and f̄Γ (ĀT
EΓ

= GT
E M−1

E AT
EΓ

, W̄E = GT
E M−1

E GE , recall in this case v̄E is
equal to zero)

Stage 1: W̄E r̄E = −v̄d
E + ĀT

EΓF̄Γ (29)

The second stage is only slightly modified: r̄E is replaced by CE r̄E :

Stage 2: XF̄Γ = f̂ +

nsd∑
E=1

ÂEΓCE r̄E = f̂ +

nsd∑
E=1

ĀEΓr̄E (30)

The limit contraction matrix corresponds to the one associated with the limit rigid linear
case, while using GE instead of HE . For the three examples, the spectral radius is represented in
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Figure 7 with a horizontal line:

B̄ = X−1Ȳ where Ȳ =

nsd∑
E=1

ĀEΓW̄−1
E ĀT

EΓ (31)

4.4. Nonsmooth case with the enriched algorithm
The expression of the new search direction has to be rewritten for local analysis of the con-

vergence of the enriched algorithm because ṽE and r̃E are defined with HE whereas v̄E and r̄E are
defined with GE :

(r̃E − r̄E) +
1
η

(ṽE − v̄E) = 0 =⇒ (r̃E −CE r̄E) +
1
η

(ṽE − HT
E V̄E) = 0 (32)

Consequently, only the second stage of the algorithm is modified as follows:

Stage 2: XηF̄Γ =

nsd∑
E=1

AEΓM−1
E,η

[
Fd

E + HECE r̄E +
1
η

KEV̄E

]
(33)

The contraction matrix depends on the numerical flexibility parameter η:

B̄η = X−1
η Ȳη (34)

where

Ȳη =

nsd∑
E=1

AEΓM−1
E,ηHEZE,ηAT

EΓ (35)

ZE,η = CEW̄−1
E GT

E M−1
E +

1
η

(
HT

E M−1
E GEW̄−1

E GE M−1
E − HT

E M−1
E

)
(36)

Such an operator is quite difficult to analyze from a theoretical standpoint. Nevertheless, it can
be tested on the examples, by determining the spectral radius with respect to parameter η.

We note in Figure 7 that the spectral radius may be smaller than that of the generic algorithm,
get closer to this value when η increases, but get larger than 1 when η tends to zero. However,
greater the number of disks, the more the optimal range of η is close to zero and reduced. Such
behavior seems to exclude the use of the asymptotic version (η = 0) to solve nonsmooth dynamic
systems as granular ones. However, such a theoretical asymptotic analysis exemplifies the con-
sistency of the previous approach and opens numerical perspectives. Indeed, when η tends to
zero, the contraction matrix takes the following form:

B̄∞ = X∞Ȳ∞ where Ȳ∞ =

nsd∑
E=1

AEΓK+
E HEZ∞E AT

EΓ (37)

The Z∞E operator vanishes when GE = HE according to the result of Section 4.2:

Z∞E = HT
E M−1

E GE︸       ︷︷       ︸
W̄E if GE=HE

W̄−1
E GE M−1

E − HT
E M−1

E = 0 if GE = HE (38)

The two stages are decoupled: the second one computes the interface multipliers FΓ and the
first one determines the internal material variables vE and rE . This result may be extended to a
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Figure 7: Spectral radius with respect to η for the three examples: 4 disks (dot), 8 disks (dash), 12 disks (solid)

more general situation where the rank of HE is less than that of GE . If we refer to a granular
type problem, this case means that the a priori potential contacts considered at the global stage
are less numerous than the active ones. In this case, the two stages are still decoupled but the
solution does not satisfy all the equations because the second global stage does not take all active
links (contacts) represented by the GE mapping into account. The numerical strategy presented
in the conclusion is based on this feature.

5. Numerical granular tests

The previous algorithms have been implemented in the development platform LMGC90 1.
The first example concerns a large-scale two dimensional shear test with disks as grains and
frictional contact as interaction model. The friction coefficient is µ = 0.3, and 100 000 grains
have been packed under gravity to get the sample of Figure 8. The right and left boundaries have
a prescribed rotating motion. The box is split vertically into two subdomains.

The generic algorithm 1 is used and two convergence indicators are computed to control the
iterations. Indeed, no reference error is available due to the non-uniqueness of the solution. The
volume relative error indicator is computed on each interaction, and summed up over the whole
domain, without reference to any substructuring. It is defined at iteration i as:

ζi =

√
(ri − ri−1)T (ri − ri−1)

rT
i ri

(39)

The second error indicator is defined only on the interfaces, and measures the stationarity of the

1http://www.lmgc.univ-montp2.fr/LMGC90/
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interforces:

Zi =

√
(FΓ,i − FΓ,i−1)T (FΓ,i − FΓ,i−1)

FT
Γ,iFΓ,i

(40)

Their evolutions along iterations are depicted on Figure 9. A large number of iterations is
required for underlining the different behavior of the two indicators since the difference appears
essentially after 1000 iterations. However, such a large number may be also useful for simulating
precisely enough unstable behaviors of granular structures involving for instance shear bands.

Figure 8: Two dimensional shear test on 100 000 disks with friction

These evolutions are quite similar, and the second indicator is selected in the following, since
it is less costly.

In a second step, the generic and enriched versions of the proposed algorithm are tested on
a smaller shear example with a free top side split into two subdomains. The initial and final
configurations of this test are drawn in Figure 10. The full process is simulated with 250 time
steps.

For each version, two numbers of Gauss-Seidel iterations per subdomain are tested: nGS =

1 and nGS = 100, see Figure 11. Roughly, the convergence rates are similar, with a minor
improvement for the enriched version. More precisely, for nGS = 1, the gain is more marked
during the first iterations, and vanishes asymptotically, when the majority of corrections are
local within the subdomains, and mainly concern the weak force network [4]. For nGS = 100,
less improvement is observed and the asymptotic convergence rates are identical, and obviously
better than for nGS = 1.

The scalability of the strategy is not improved by the enriched version because it is in fact
satisfied with the generic algorithm as discussed in a previous work [23]. As analyzed in this
paper, it could be attributed to the rusticity of the nonlinear solver based on a simple fixed point
technique. But the objective of the enriched version is not to recover the scalability but to have
the ability to switch if needed from a nonsmooth discrete granular microscopic model to a (pref-
erentially linear) continuous macroscopic model. The enrichment is a first step in this way.

The speed-up is not given here due to some implementation burdens: memory duplications
and non efficient memory copy operations in the current code that are large enough to get non
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Figure 9: Comparison of the interface and volume indicator on a granular case with 100 000 grains

Figure 10: Two dimensional shear test on 1 000 disks with friction

pertinent time measures. Improving implementation to allow effective CPU costs reporting is
under work.

6. Conclusions

The domain decomposition strategy proposed in this article for the numerical simulation of
nonsmooth large-scale dynamic systems is inspired by the latest developments used for regular
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Figure 11: Comparison of classical and enriched algorithms on a granular case with 1 000 grains

continuum media. The enhanced version refers to the concept of spatial multilevel precondition-
ers with a coarse problem to improve convergence. This first study, with analytical and numerical
aspects, provides mixed results. Indeed, for the concerned topic, the cost of this enhancement
is too high for the convergence gain it provides. As exemplified by “analytical” cases, and nu-
merical investigations, this result could be explained by: (i) the rigid nature of the particles in
dynamic evolution, and (ii) the nonsmooth character of the interactions.

Therefore, such an enhanced approach could not be used as it is, but may lead to a semi-
implicit solution by getting rid of iterations between the two stages. As mentioned at the end
of Section 4.4, the network underlying the mapping HE may be chosen differently for the two
stages of the algorithm. This network can be frozen during the linear Stage 2 using the previous
time step configuration. This numerical strategy is perhaps justified by a space-time multiscale
behavior of granular systems, but this remains to be investigated in future studies.
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