
HAL Id: hal-00597415
https://hal.science/hal-00597415v2

Submitted on 14 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Sequentializing Concurrent Programs
Ahmed Bouajjani, Michael Emmi, Gennaro Parlato

To cite this version:
Ahmed Bouajjani, Michael Emmi, Gennaro Parlato. On Sequentializing Concurrent Programs. 2011.
�hal-00597415v2�

https://hal.science/hal-00597415v2
https://hal.archives-ouvertes.fr

On Sequentializing Concurrent Programs

Ahmed Bouajjani, Michael Emmi, and Gennaro Parlato

LIAFA, Université Paris Diderot, France
{abou,mje,gennaro}@liafa.jussieu.fr

Abstract. We propose a general framework for compositional under-
approximate concurrent program analyses by reduction to sequential
program analyses—so-called sequentializations. We notice the existing
sequentializations—based on bounding the number of execution contexts,
execution rounds, or delays from a deterministic task-schedule—rely on
three key features for scalable concurrent program analyses: (i) reduction
to the sequential program model, (ii) compositional reasoning to avoid
expensive task-product constructions, and (iii) parameterized exploration
bounds. To understand how those sequentializations can be unified and
generalized, we define a general framework which preserves their key
features, and in which those sequentializations are particular instances.
We also identify a most general instance which considers more executions,
by composing the rounds of different tasks in any order, restricted only
by the unavoidable program and task-creation causality orders. In fact,
we show this general instance is fundamentally more powerful by identify-
ing an infinite family of state-reachability problems (to states g1, g2, . . .)
which can be answered precisely with a fixed exploration bound, whereas
the existing sequentializations require an increasing bound k to reach each
gk. Our framework applies to a general class of shared-memory concurrent
programs, with dynamic task-creation and arbitrary preemption.

1 Introduction

Concurrent program analysis is difficult due to the high computational complexity
that arises when considering every intricate task interleaving. To avoid such
high computational complexity, bounded (underapproximating) exploration is
emerging as a general technique. In general, one characterizes a subset of the
concurrent program semantics by a bounding parameter k. As k is increased we
explore more behaviors, at the expense of more computational resources; in the
limit we explore every behavior. A bounded exploration technique is effective
when useful information (e.g., the presence of bugs) is obtained by spending a
relatively small amount of computational resources (i.e., using low values of k).

By characterizing a subset of the concurrent program semantics by a bounding
parameter (e.g., bounded context-switch [21]), it is often possible to reduce
concurrent program exploration to sequential program exploration [22, 19, 14, 16,
7, 13]—essentially by constructing an equivalent program without concurrency
primitives (e.g., task creation, preemption). Such sequentializations are desirable,
both practically and theoretically, for several reasons. First, they reduce the

exploration problem of any concurrent program to the well-understood model
of sequential programs, and are not limited by finite-data programs, per se.
Here several practical verification algorithms exist by way of finite-data software
model checking [23, 4, 3, 15]), (infinite-state) fixed point computations [5, 24,
11], and (e.g., SMT-based) bounded software verification algorithms [6, 17].
Second, they compute the behavior of each concurrent task compositionally—
i.e., without considering the local-state valuations of other tasks. Third, they
enable incremental analysis, trading-off computing resources for the amount of
explored behaviors, by varying a bounding parameter k ∈ N. (The parameter k
determines the (asymptotic) budget of the sequential program exploration. In
practice, the reductions add O(k) variables to the resulting sequential program,
resulting in an increasingly-expensive (in k) sequential program exploration.)
Indeed these sequentialization-based analyses have been applied to discover (in
some cases previously-unknown) bugs in device drivers [19, 14, 16, 18, 7].

Our principal aim in this work is to develop a theory of parameterized,
compositional, concurrent-to-sequential program analysis reductions. Specifically,
we make the following contributions:

– To identify the fundamental mechanisms enabling compositional sequential-
izations, thus formulating a framework in which to define them (Section 3).

– To formulate a most general sequentialization in our framework which ex-
presses as many concurrent behaviors as possible (Section 4), while maintain-
ing compositionality, and without extending the class of programs in which
tasks are originally written—e.g., by adding unbounded counters.

– To classify the existing sequentializations in our framework, and compare
them w.r.t. the behaviors explored for their bounding parameters (Section 5).

Besides enlightening the mechanisms which enable sequential reduction, we
believe our gained insight can guide further advances, for instance by considering
other restrictions to our framework with efficient encodings.

Using the three features discussed above ((i) reduction to sequential programs,
(ii) compositionality, and (iii) parameterization), the existing sequentializations
work by characterizing each concurrent task by an interface of k global-state val-
uation pairs (where k is the bounding parameter). These k global-state valuation
pairs represent a computation of a task which is interrupted k − 1 times—the
valuations give the initial and final global-states per execution “round.” Each
task’s interface is then computed—in isolation from other tasks—by beginning
each round from the guessed global-state valuation, performing a sequence of
sequential program steps, then eventually moving to the next round, by updating
the current global-state to the next-guessed valuation. Contiguous interfaces
(i.e., where the final global-state valuations of one matches the initial valuations
of the other) are then glued together to form larger computations. Intuitively,
this interface composition builds executions according to a round-robin schedule
of k rounds; a complete execution is formed when each ith final global-state of
the last task’s interface matches the (i + 1)st initial global-state of the first’s.
When there are a fixed number of statically-created tasks, interfaces are simply
composed in task-identifier order. In the more general case, with dynamically

2

created tasks, interfaces are composed in a depth-first preorder over the ordered
task-creation tree. (Note by viewing the task-identifier order as the task-creation
order, the dynamic case subsumes the static.)

Thus, besides features/constraints (i), (ii), and (iii)—which we feel are de-
sirable, and important to maintain for efficiency and scalability of the resulting
program analyses—the existing sequentializations are constrained by: (iv) round-
robin executions (in depth-first order on the ordered task-creation tree). Though
other schedules can be simulated by increasing the (round) bounding parameter
k when the number of tasks is bounded, for a fixed value of k, only k-round
round-robin schedules are explored.

The most general instance of the framework we propose in Section 4 subsumes
and extends the existing round-robin based (i.e., context- and delay-bounded)
sequentializations. As in these previous approaches, we restrict ourselves to
explorations that are (i) sequential, (ii) compositional, and (iii) parameterized,
in order to compute task interfaces over k global-state valuation pairs. However,
for the same analysis budget1 (i.e., the bounding parameter k), the general
instance expresses many more concurrent behaviors, essentially by relaxing the
round-robin execution order, and decoupling each task from any global notion
of “rounds.” We consider that each task’s interface is constructed by composing
the rounds of tasks it has created in any order that respects program order,
and task-creation causality order—i.e., a task is not allowed to execute before a
subsequent preemption of the task that created it. Thus the simulated concurrent
execution need not follow a round-robin schedule, despite the prescribed task
traversal order; the possible inter-task interleavings are restricted only by the
constraint that at most k sub-task round summaries can be kept at any moment—
indeed this constraint is necessary to encode the resulting sequentialization with
a bounded number of additional (finite-domain) program variables.

In fact, the most general instance of our framework is fundamentally more
expressive than the existing sequentializations, since there are infinite sequences
of states (e.g., g1, g2, . . .) which can be reached with a fixed exploration bound,
whereas the existing sequentializations require an increasing bound k to reach each
gk. This gain in expressiveness may or may not be accompanied by an analysis
overhead. For enumerative program analysis techniques (e.g., model checking,
systematic testing), one may argue that considering more interleavings will have a
negative impact on scalability. This argument is not so clear, however, for symbolic
techniques (e.g., SMT-based verification, infinite-state fixed-point computations),
which may be able to reduce reasoning over very many interleavings to very
few, in practice [19]. Although many device driver bugs have been discovered
within few interleavings [20], reducing the number of interleavings could indeed
cause missed bugs in other settings. Furthermore, our hope is that enlightening
the mechanisms behind sequentialization will lead to the discovery of other
succinctly-encodable instances of compositional sequentialization.

1 See Section 4 for complexity considerations.

3

P ::= var g:T H∗

H ::= proc p (var l:T) s
s ::= s; s | x := e | skip | assume e
| if e then s else s | while e do s
| call x := p e | return e
| post p e | yield

x ::= g | l

Fig. 1. The grammar of asynchronous programs. Each program P declares a single
type-T global variable g, and a sequence of procedures named p1 . . . pn ∈ Procs∗. Each
procedure p has single type-T parameter l, and a top-level statement (i.e., the procedure
body) denoted sp. This program syntax is made simple only to simplify presentation;
various extensions—e.g., to multiple global and local variables—can be encoded by
varying the type T ; see Appendix A.

2 Concurrent Programs

We consider a simple but general concurrent programming model in the style of
single-threaded event-driven programs. (The style is typically used as a lightweight
technique for adding reactivity to single-threaded applications by breaking up
long-running computations into a collection of tasks.2) In this model, control
begins with an initial task, which is essentially a sequential program that can
read from and write to global (i.e., shared) storage, and post additional tasks
(each post statement specifies a procedure name and argument) to an initially
empty task buffer of pending tasks. When control returns to the dispatcher, either
when a task yields control—in which case it is put back into the task buffer—or
completes its execution, the dispatcher picks some task from the task buffer, and
transfers control to it; when there are no pending tasks to pick, the program
terminates. This programming model is powerful enough to model concurrent
programs with arbitrary preemption and synchronization, e.g., by inserting a
yield statement before every shared variable access.

Let Procs be a set of procedure names, Vals a set of values containing true

and false, and T the sole type of values. The grammar of Fig. 1 describes our
language of asynchronous programs, where p ranges over procedure names. We
intentionally leave the syntax of expressions e unspecified, though we do insist
the set of expressions Exprs contains Vals and the (nullary) choice operator ? .
The set of program statements s is denoted Stmts. A sequential program is an
asynchronous program which contains neither post nor yield statements.

A (procedure-stack) frame 〈`, s〉 is a valuation ` ∈ Vals to the procedure-local
variable l, along with a statement s to be executed. (Here s describes the entire
body of a procedure p that remains to be executed, and is initially set to p’s
top-level statement sp.) A task w is a sequence of frames representing a procedure
stack, and the set (Vals× Stmts)∗ of tasks is denoted Tasks. An (asynchronous)

2 As our development is independent from architectural particularities, “tasks” may
correspond to threads, processes, asynchronous methods, etc.

4

Post
`′ ∈ e(g, `) w′ =

〈
`′, sp

〉
〈g, 〈`, S[post p e]〉w,m〉 →a

P

〈
g, 〈`, S[skip]〉w,m ∪ {w′}

〉 Dispatch
w ∈ m

〈g, ε,m〉 →a
P 〈g, w,m \ {w}〉

Complete

〈g, 〈`, S[return e]〉 ,m〉 →a
P 〈g, ε,m〉

Yield
w′ = 〈`, S[skip]〉w

〈g, 〈`, S[yield]〉w,m〉 →a
P

〈
g, ε,m ∪ {w′}

〉
Fig. 2. The transition relation→a

P for an asynchronous program P is given by combining
the transitions above with the sequential transition relation →s

P .

configuration c = 〈g, w,m〉 is a global-variable valuation g ∈ Vals along with a
task w ∈ Tasks, and a task buffer multiset m ∈M[Tasks].

To define the transition relation between configurations, we assume the
existence of an evaluation function J·Ke : Exprs→ ℘(Vals) for expressions without
program variables, such that J?Ke = Vals. For convenience, we define e(g, `)

def
=

Je[g/g, `/l]Ke —since g and l are the only variables, the expression e[g/g, `/l] has
no free variables. To select the next-scheduled statement in a configuration, we
define a statement context S as a term derived from the grammar S ::= � | S; s,
and write S[s] for the statement obtained by substituting a statement s for the
unique occurrence of � in S.

The transition relation→a
P of an asynchronous program P is defined in Fig. 2

as a set of operational steps on configurations. The transition relation →s
P for

the sequential program statements (see Appendix C) is standard. The Post rule
gives a newly-created task to the task buffer, while the Yield rule gives the
currently-executing task to the task buffer. The Dispatch rule chooses some task
from the buffer to execute, and the Complete rule disposes a completed task.

A configuration 〈g, 〈`, s〉 , ∅〉 is called initial, and is sequential when s does not
contain post (nor yield) statements. An (asynchronous) execution of a program
P (from c0 to cj) is a configuration sequence h = c0c1 . . . cj where

– c0 is initial, and
– ci →a

P ci+1 for 0 ≤ i < j.

We say a configuration c = 〈g, w,m〉 (alternatively, the global value g) is reachable
in P (from c0) when there exists an execution of P from c0 to c. The asynchronous
semantics of P , written {|P |}a, maps initial configurations to reachable global
values, i.e., {|P |}a(c0) = g if and only if g is reachable in P from c0. When P is a
sequential program, the sequential semantics of P , written {|P |}s, maps initial
sequential configurations to reachable global values.

3 Compositional Semantics

Here we define a compositional semantics for asynchronous programs on which to
base our reduction to sequential programs. To do so, we characterize each posted
task by an interface exposing only global-state valuations to other tasks. Each
interface summarizes not only the computation of a single task, but also the

5

computations of all descendants of tasks it has posted. In particular, an interface
is a sequence 〈g1, g′1〉 . . . 〈gk, g′k〉 of global-state valuation pairs summarizing a
computation which is interrupted k−1 times; the computation begins with global
state g1, is interrupted by an external task at global state g′1, is resumed at g2,
etc. We call the computation summarized by each pair 〈gi, g′i〉 the ith round. A
larger computation is then formed from a collection of task interfaces, by gluing
together contiguous rounds (e.g., summarized by 〈g1, g2〉 and 〈g2, g3〉), while
maintaining the order between rounds from the same interface.

We construct interfaces inside a data-structure called a summary bag. Besides
the sequence Bex of rounds which will be exported as the current task’s interface
(see Fig. 3a), the bag maintains a collection Bim of interfaces imported from
posted tasks (see Fig. 3c). At any yield-point, the current task can begin a new
round, by guessing3 the global-state valuation that will begin the next round (see
Fig. 3b), or, if the current global-state valuation matches the start of the first
unconsumed round from some imported interface (as does 〈a, b〉 in Fig. 3d), the
current task can consume that round and update the current global state; this
amounts to interleaving the round of a posted task at the current control point.

With this view of recursive interface construction—interfaces are constructed
from interfaces of sub-tasks—the reduction to sequential programs is nearly
straightforward. To compute the imported summary of a posted task, we translate
the post statement into a procedure call which returns the computed interface
for the posted task. At yield points, we will repeatedly, nondeterministically
choose to begin a new round, consume a round from an imported interface, or
step past the yield statement. For the moment the only obstacle is how to store
the unbounded summary bag; we address this issue in Section 4.

To define the compositional semantics we formalize the summary-bag op-
erations. A summary bag B = 〈Bex,Bim〉 pairs the round sequence Bex to be
exported from the current task, along with a collection Bim of round sequences
imported from sub-tasks. The empty bag B∅ = 〈ε, ∅〉 is an empty sequence paired
with an empty collection. The operations to add the current round (⊕), import a
sub-task interface (�), and consume a sub-task round () are defined as

〈Bex,Bim〉 ⊕ 〈g, g′〉
def
= 〈Bex · 〈g, g′〉 ,Bim〉 , add round

〈Bex,Bim〉 � Bex′
def
=
〈
Bex,Bim ∪ Bex′

〉
, import interface

〈Bex,Bim〉 	 〈g, g′〉
def
=
〈
Bex,Bim′

〉
consume round,

where Bim′ is obtained by removing 〈g, g′〉 from the head of a sequence in Bim,
and 〈Bex,Bim〉 	 〈g, g′〉 is undefined if 〈g, g′〉 is not at the head of Bim.

We define the compositional transition relation of asynchronous programs by
augmenting the sequential transitions →s

P with a new set of transitions for the
asynchronous control statements, over a slightly different notion of configuration.
In order to build interfaces, each configuration carries the global-state valuation
at the beginning of the current round (denoted g0 below), as well as the current

3 An enumerative analysis algorithm can handle “guessing” by attempting every reached
global valuation; a symbolic algorithm just creates a new symbol.

6

(a)

Summary export

a
c
e

b
d
f

a c e
b d f

(b)

Summary create

a
cb

c

(c)

Summary import

a
c
e

b
d
f

a c e
b d f

(d)

Summary
consume

a
b

a b

Fig. 3. The summary bag operations. Circles represent global valuations (double circles
equivalences), and are paired together in rounded rectangle round summaries. Interfaces
are drawn as stacked round summaries, and shading is used only to easily identify
summaries. (a) Export a constructed interface, (b) begin a round by finalizing the
current round 〈a, b〉, and guessing a valuation c to begin the next, (c) import sub-task
interface, (d) interleave the first unconsumed round 〈a, b〉 of a sub-task, updating the
current global state from a to b. The round-summaries Bex to be exported appear above
the dotted line, and the collection Bim of imported sub-task interfaces appears below.

valuation. A (compositional) configuration c = 〈g0, g, w,B〉 is an initial valuation
g0 ∈ Vals of the global variable g, along with a current valuation g ∈ Vals, a task
w ∈ Tasks, and a summary bag B.

Fig. 4 lists the transitions →c
P for the asynchronous control statements. The

NextRound rule begins a new round with a guessed global-state valuation, and
the SubTask rule collects the posted task’s interface. The task-summarization
relation p `′ ; Bex used in the SubTask rule holds when the task 〈`′, sp〉 can
execute to a yield, or return, point having constructed the interface Bex—i.e., when
there exists g, g0, g1 ∈ Vals, w ∈ Tasks, and Bim such that 〈g, g, 〈`′, sp〉 ,B∅〉 →c∗

P

〈g0, g1, w, 〈Bex,Bim〉〉, where w is of the form 〈`, S[yield]〉w′ or 〈`, S[return e]〉.
The Interleave rule executes a round imported from some posted task, and
finally, the Resume rule simply steps past the yield statement.

A configuration 〈g, g, 〈`, s〉 ,B∅〉 is called initial. A (compositional) execution
of a program P (from c0 to cj) is a configuration sequence h = c0c1 . . . cj where

– c0 is initial, and
– ci →c

P ci+1 for 0 ≤ i < j.

A compositional execution describes the progression of one task only; progres-
sions of sub-tasks are considered recursively as separate executions to compute

7

NextRound
B′ = B ⊕ 〈g0, g〉 g′ ∈ Vals

〈g0, g, 〈`, S[yield]〉w,B〉 →c
P

〈
g′, g′, 〈`, S[yield]〉w,B′

〉 SubTask
`′ ∈ e(g, `) p `′ ; Bex B′ = B � Bex

〈g0, g, 〈`, S[post p e]〉w,B〉 →c
P

〈
g0, g, 〈`, S[skip]〉w,B′

〉
Interleave

B′ = B 	
〈
g, g′

〉
〈g0, g, 〈`, S[yield]〉w,B〉 →c

P

〈
g0, g

′, 〈`, S[yield]〉w,B′
〉 Resume

〈g0, g, 〈`, S[yield]〉w,B〉 →c
P 〈g0, g, 〈`, S[skip]〉w,B〉

Fig. 4. The compositional transition relation →c
P for an asynchronous program P is

given by combining the transitions above with the sequential transition relation →s
P .

(a)
a

1
b

2
c

4
f

5
g

6
hed

3
A B A C B C

e
6

4
f
hg

b
5

2
c
gf

a
1

b d e
3

A

B C
a

1
b

2
c

e
4

f
5

g
6

hd
3

a
3,4,5,6

1,2
c
hd

A

An asynchronous (sub-) execution
simulated by compositional execution

(b)

a
1

b
2

c
4

f
5

g
6

hed
3

A B A C B C

e
6

4
f
hg

b
5

2
c
gf

a
1

b d e
3

A

B C
a

1
b

2
c

e
4

f
5

g
6

hd
3

a
3,4,5,6

1,2
c
hd

A

An asynchronous (sub-) execution
simulated by compositional execution

(c)

a
1

b
2

c
4

f
5

g
6

hed
3

A B A C B C

e
6

4
f
hg

b
5

2
c
gf

a
1

b d e
3

A

B C
a

1
b

2
c

e
4

f
5

g
6

hd
3

a
3,4,5,6

1,2
c
hd

A

An asynchronous (sub-) execution
simulated by compositional execution

Fig. 5. Simulating an asynchronous execution (a) as a compositional execution, where
task A posts B and C, then is interrupted by B, then is eventually re-dispatched, and
upon completion is followed directly by C, which is interrupted by B before completing.
(b) The bag used to reconstruct A’s interface, and (c) the constructed interface for A.

the task-summarization relation ;. We say a configuration c = 〈g0, g, w,B〉
(alternatively, the global value g) is reachable in P (from c0) when there exists an
execution from c0 to c, without using the NextRound rule.4 The compositional
semantics of P , written {|P |}c, maps initial configurations to reachable global
values, i.e., {|P |}c(c0) = g if and only if g is reachable in P from c0.

Although their definitions are wildly different, the compositional and asyn-
chronous semantics are equivalent. To see that every asynchronous execution h
has a corresponding compositional execution, consider, inductively, how to build
the interface summarizing the projection of h a given task’s sub-task segments.
Consider the task A of Fig. 5 which posts B and C. To simulate the asynchronous
(sub-) execution of Fig. 5a, A builds an interface with two uninterruptible rounds
(see Fig. 5c): the first sequencing segments 1 and 2, and the second sequencing
3, 4, 5, and 6. To build this interface, A must import two-round interfaces from
B and C each; note that each round of B and C may recursively contain many
interleaved segments of sub-tasks.

4 Disallowing use of the NextRound rule in the top-level execution ensures that
unchecked guessed global-state valuations are not considered reachable.

8

Theorem 1. The compositional semantics and asynchronous semantics are
identical, i.e., for all programs P we have {|P |}c = {|P |}a.5

The proof to this theorem appears in Appendix B.

4 Bounded Semantics

As earlier sequentializations have done by constraining the number of rounds [19,
14], by constraining the size of the summary bag, we can encode the bag contents
with a fixed number of additional variables in the resulting sequential program.
Since we are interested in exploring as many behaviors as possible with a limited-
size bag, an obvious point of attention is bag compression. Thus we define an
additional operation to free a space in the bag by merging two contiguous
(w.r.t. the global valuation) summaries, essentially removing the possibility for
future reordering between the selected segments. In doing so, we must maintain
causal order by ensuring the bag remains acyclic, and what was before a collection
Bim of summary sequences imported from sub-tasks now becomes a directed
acyclic graph (DAG) of summaries. To maintain program order in the presence
of merging, summaries are now consumed only from the roots of Bim.

The size |B| def
= |Bex| + |Bim| of B is the sum of the length of the sequence

Bex and the number of nodes of the DAG Bim. The bag simplification operation
〈Bex,Bim〉�

〈
Bex,Bim′

〉
obtains Bim′ from Bim by merging two nodes n and n′,

labelled, resp., by 〈g1, g2〉 and 〈g2, g3〉, such that either

(a) there is no directed path from n to n′ in Bim, or
(b) there is an edge from n to n′ in Bim

(see Fig. 6); in either case the merged node is labelled 〈g1, g3〉. Note that when
B�B′ we have |B′| = |B| − 1. Though we could simulate this merge operation in
the (unbounded) compositional semantics, by eventually consuming consecutively
n and n′ into the exported summary list, the merge operation allows to eagerly
express the interleaving—though disallows any subsequent interleaving between
n and n′. Merging summaries eagerly fixes a sequence of inter-task execution
segments, trading the freedom for external interleaving (which may have uncovered
additional, potentially buggy, behaviors) for an extra space in the bag.

We define the k-bounded compositional semantics of P, written {|P |}kc , by
restricting the compositional semantics {|P |}c to executions containing only
configurations 〈g0, g, w,B〉 such that |B| ≤ k, and adding the additional transition

Compress
B � B′

〈g0, g, w,B〉 →c
P 〈g0, g, w,B′〉

.

As we increase k, the set of k-bounded semantics grows monotonically, and in the
limit, the k-bounded semantics is the compositional semantics. For two functions
f, g : A→ ℘(B), we write f ⊆ g when for all a ∈ A, f(a) ⊆ g(a).

5 We consider initial configurations 〈g, 〈`, s〉 , ∅〉 and 〈g, g, 〈`, s〉 ,B∅〉 as equal.

9

(a) a

merge
disconnected

b

b c

(b)

merge
consecutive

a
c

c d

Fig. 6. The bag simplification operations: (a) merging two disconnected but contiguous
round summaries 〈a, b〉 and 〈b, c〉 (resulting in (b)), and (b) merging two consecutive
and contiguous summaries 〈a, c〉 and 〈c, d〉 (resulting in the small adjacent bag).

Theorem 2. The sequence of bounded compositional semantics forms a mono-
tonically increasing chain whose limit is identical to the compositional semantics,
i.e., {|P |}0c ⊆ {|P |}1c ⊆ . . . ⊆

⋃
k∈N{|P |}kc = {|P |}c.

Remark For simplicity, we present a compositional semantics in which information
(i.e., the summary bags) only flows up from each sub-task to the task that posted
it. However, an even more compact semantics—in the sense that more behaviors
are expressed with the same bag-size bound—is possible when each task not only
returns summaries, but also receives summaries as a parameter. For example, to
interleave 2k summaries of two sub-tasks, one can pass the k summaries of the
first sub-task to the second, and merge them with the second’s summaries, as
they are created, keeping only k at a time. Otherwise, one must interleave the two
tasks’ summaries outside, which means keeping 2k summaries for the enclosing
task to interleave. Since the extension is purely technical, and not so insightful,
we omit its description here. However, the results stated in the remainder of this
paper are presented in terms of the bag-size bound w.r.t. this extension.

Note on Complexity For the case where variables have finite-data domains, de-
termining whether a global valuation is reachable is NP-complete6 (in k) for
the bounded-task k-context bounded and unbounded-task k-delay bounded se-
quentializations [19, 7], and PSPACE-complete (in k) for the unbounded-task
k-context bounded sequentialization [16]. Since these cases are reducible to our
semantics (see Section 5), it follows that global-state reachability is PSPACE-hard
(in k) in the most general instance of our framework. Since the number of bag
configurations is (singly) exponential in k, membership in EXPTIME is not hard
to obtain. The practical difference between the NP/PSPACE-complete complexi-
ties of other sequentialization-based analyses is unclear; as sub-exponential time
algorithms are not known for NP problems, exponential time is spent in the

6 Here the literature has assumed a fixed number of finite-state program variables in
order to ignore the effect of complexity resulting from data. Indeed the reachability
problem is EXPTIME-complete in the number of variables, due to the logarithmic
encoding of states in the corresponding pushdown system.

10

worst case, either way. Note however, that these complexity considerations are of
limited significance, since we target an arbitrary class of sequential programs—not
only programs with finite-data.

5 Global-Round Explorations

To understand the relationship between our bounded compositional exploration
and the existing sequentializable analyses, we proceed in two steps. First we
describe a restriction of our bounded semantics in which every task agrees on a
global notion of execution “rounds,” i.e., where each task executes (at most) one
uninterrupted segment per global round. Second we show that this restriction
captures and unifies the existing sequentializable analyses based on bounded
context-switch and bounded delay.

A k global-round execution of a program P is an asynchronous execution
of P where (i) each task executes in (up to) k uninterrupted segments called
“rounds”—with the restriction that sub-tasks can only execute in, or after, the
round in which it is created—and (ii) the ith round of every task is executed before
the (i+1)st round of any task, in the depth-first order over the task-creation tree;
see Fig. 7a. Thus we can view each task as executing across a grid of k rounds,
being interrupted k − 1 times by the other tasks. With this view, each task can
be characterized by an interface consisting of 2k global state valuations: the k
global-state valuations seen by the task at the beginning of each round, and the
k global-state valuations seen at the end (as in Fig. 7a). A task’s interfaces are
computed by guessing the initial global-state valuation of each round, following
some number of sequential transitions, then nondeterministically advancing to
the next round, keeping the computed local state, but updating the global-state
to the next-guessed valuation. Given the interfaces for each task, sequentialization
of the k global-round schedules is possible, by a reduction that executes each task
once, according to the linear task-order, over a k-length vector of global-state
valuations. The k global-round semantics of P , written {|P |}kgr is the set of global
valuations reachable in a k global-round execution of P .

Though we have defined the global-round semantics w.r.t. the asynchronous
semantics, in fact we can restrict the k-bounded compositional semantics to
compute only k global-round interfaces. During construction of the jth round-
summary of the current task t, the export-list contains j−1 summaries (of rounds
1 . . . j − 1) for t and its current sub-tasks, i.e., all descendants of t’s thus-far
posted tasks. At the same time, the bag maintains a (k − j + 1)-length list of
summaries accumulating the rounds j . . . k of t’s current sub-tasks. Just before t
begins round j+ 1, the accumulated summary of round j for t’s current sub-tasks
is consumed, so that the exported summary of round j captures the effect of one
round of t, followed by one round of t’s current sub-tasks. When t posts another
task ti (in round j), the k − j + 1 summaries exported by ti—note ti and its
descendants can only execute after round j of t—are combined with the k− j + 1

11

(a)

A

E
B

C D

Bounded round (sub-) execution

(b)

A

E
B

C D

Delay-bounded (sub-) execution

Fig. 7. (a) 3 global-round exploration, and (b) 4-delay exploration, for a program in
which task A creates B and E, and task B creates C and D. Each task’s interface (drawn
with dashed-lines) summarizes 3 uninterrupted computations (drawn with squiggly
arrows) of the task and all of its sub-tasks. Bold arrows connect global-state valuations,
and dotted arrows connect local-state valuations. Note that the 3-round exploration
allows each task 2 interruptions, while the 4-delay exploration allows all tasks combined
only 4 interruptions.

accumulated summaries of t’s current sub-tasks.7 Thus when t completes round
k, each round i summarizes round i of t followed by round i of each sub-task of
t, in depth-first order, over the ordered task-creation tree of t.

Theorem 3. The k global-round semantics is subsumed by the k-bounded com-
positional semantics, i.e., for all programs P we have {|P |}kgr ({|P |}kc .

In fact, our compositional semantics captures many more behaviors than k
global-round analyses. For example, many behaviors cannot be expressed in k
(global) rounds, though can be expressed by decoupling the rounds of different
tasks. Intuitively, the additional power of our compositional semantics is in
the ability to reuse the given bounded resources locally, ensuring only that the
number of visible resources at any point is bounded. Appendix D illustrates an
example demonstrating this added analysis power.

Theorem 4. There exists a program P , k0 ∈ N, and a sequence g1, g2, . . . ∈
{|P |}k0

c of global-state valuations such that for all k ∈ N, gk /∈ {|P |}kgr.

5.1 Context-bounding

In its initial formulation, the so-called “context-bounded” (CB) analyses explored
the asynchronous executions of a program with a fixed number of statically
allocated tasks, with at most two context-switches between tasks [22]. Shortly

7 Using the extension described at the end of Section 4, this combination does not
require additional bag space.

12

thereafter, Qadeer and Rehof [21] extended CB to explore an arbitrary bound k
of context-switches.

Later, Lal and Reps [19] proposed a linear “round-robin” task-exploration
order, and instead of bounding the number of context-switches directly, bounded
the number of rounds in an explored round-robin schedule between n tasks.
(It is easy to see that every k-context bounded execution with an unrestricted
scheduler is also a k-round execution with a round-robin scheduler.) With this
scheduling restriction, it becomes possible to summarize each task i’s execution
by an interface of k global-state valuation pairs, describing a computation that
is interrupted by tasks (i+ 1), (i+ 2), . . . , n, 1, 2, . . . , (i− 1), k − 1 times. In fact,
this schedule is just a special case of the k global-round exploration, restricted
to programs with a fixed number of statically-created tasks. La Torre et al. [16]’s
subsequent extension of this k-round round-robin exploration to programs with
a parameterized amount of statically-created tasks is also a special case of k
global-round exploration, restricted to programs with an arbitrary number of
statically-created tasks.

To formalize this connection, let a static-task program be an asynchronous
program P which does not contain post statements, and an initial configuration
〈g, 〈`, s〉 , ∅〉 is (resp., parameterized) static-task initial when s is of the form

post p1 (); ...; post pn () (resp., while ? do post p ()).

A k-round (resp., parameterized) CB execution of a static-task program P is
an asynchronous execution of P from a (resp., parameterized) static-task initial
configuration c0, where the initially posted tasks are dispatched in a round robin
fashion over k rounds. The k-round (resp., parameterized) CB semantics of P ,
written {|P |}kcb (resp., {|P |}kcb∗) is defined, as before, as the set of global valuations
reachable from c0 in a k-round (resp., parameterized) CB execution of P .

Theorem 5. The k-round (parameterized) CB semantics is equal to the k global-
round semantics, i.e., for all static-task programs P we have {|P |}k

cb(∗) = {|P |}kgr.

5.2 Delay-bounding

Emmi et al. [7]’s recently introduced delay-bounded (DB) exploration8 expands
on the capabilities of Lal and Reps [19]’s k-round CB exploration with its ability
to analyze programs with dynamic task-creation (i.e., with arbitrary use of the
post statement). Like CB, the DB exploration considers round-based executions
with a linear task-exploration order, though with dynamic task-creation the order
must be defined over the task-creation tree; DB traverses the tree depth-first.

In fact, Emmi et al. [7]’s delay-bounded semantics is a variation of the k global-
round semantics which, for the same bound k, expresses many fewer asynchronous
executions. In essence, instead of allowing each task k−1 interruptions, the budget
of interruptions is bounded globally, over the entire asynchronous execution; see

8 Since we are interested here in analyses amenable to sequentialization, we consider
only the depth-first delay-bounded task-scheduler [7].

13

Fig. 7b. It follows immediately that each task executes across at most k rounds,
in the same sense as in the k global-round semantics. Since the mechanism behind
delay-bounding is not crucial to our presentation here, we refer the reader to
Emmi et al. [7]’s original work for the precise definition of k-delay executions. The
k-delay semantics of P , written {|P |}kdb is the set of global valuations reachable
in a k-delay execution of P .

Theorem 6. The k-delay semantics is subsumed by the k global-round semantics,
i.e., for all programs P we have {|P |}kdb ⊆ {|P |}kgr.

However, like the separation between k-global round semantics and k bounded
semantics, there are families of behaviors that can be expressed with a fixed
number of global rounds, though cannot be expressed with a fixed number of
delays: for instance, behaviors which requires an unbounded number of tasks be
interrupted (once) cannot be expressed with any finite number of delays.

Theorem 7. There exists a program P , k0 ∈ N, and a sequence g1, g2, . . . ∈
{|P |}k0

gr of global-state valuations such that for all k ∈ N, gk /∈ {|P |}kdb.

5.3 Context-bounding vs. Delay-bounding

It follows from Theorems 5 and 6 that context-bounding simulates delay-bounding
on static-task programs. In fact, we can also show that delay-bounding simulates
context-bounding, for programs with a fixed number of tasks, by combining
Theorem 5 with the following theorem.

Theorem 8. For a fixed number n of tasks, the k global-round semantics is
subsumed by the nk-delay semantics, i.e., for all static-task programs P with
n-tasks we have {|P |}kgr ⊆ {|P |}nkdb .

However, by Theorems 5 and 7, delay-bounding cannot simulate k-round
parameterized context-bounded executions, since no fixed number of delays can
express the unbounded number of potential context-switches.

6 Related Work

The technique of reducing a concurrent program behaviors to sequential pro-
gram behaviors has garnered much attention in recent years. Based on the
notion of context-bounding [22, 21, 20], Lal and Reps [19] showed how to en-
code the bounded-round round-robin schedules of a concurrent program with
statically-allocated tasks as a sequential program. La Torre et al. [14] gave a more
efficient encoding—in the sense that unreachable global-state valuations are never
explored—and later extended the approach to programs with an unbounded
number of statically-allocated tasks [16]. Emmi et al. [7] have recently extended
the basic insight of round-based scheduling to sequentialize programs with an
unbounded number of dynamically-created tasks. Empirical evidence suggests

14

such techniques are indeed useful for bug-finding [20, 18, 10, 16]. For a more
thorough comparison of these sequentializations, see Section 5.

Recently Kidd et al. [13] have shown how to sequentialize priority preemptive
scheduled programs, and Garg and Madhusudan [9] have proposed an overap-
proximating sequentialization, albeit by exposing task-local state to other tasks.
Both reductions assume a finite number of statically-declared tasks.

More generally, sequentialization could be seen as any linear traversal of
the task-creation tree. The sequentializations we consider here are restricted
to depth-first traversal, since they target sequential recursive programs, whose
unbounded structure is, in general, contained to the procedure stack; the stack-
based data-structure used for the depth-first traversal can be combined with the
program’s procedure stack. However, if one is willing to target other program
models, one can consider other task-tree traversals, e.g., breadth-first using queues,
or a completely non-deterministic traversal respecting the task-creation order,
keeping, for instance, a multiset of horizon tasks. Atig et al. [1, 2]’s bounded
explorations of programs with dynamic task-creation, by reduction to Petri-net
reachability, are sequentializable in this sense.

Our characterization of sequentializability could also be relaxed to allow
the exchange of local-state valuations (or alternatively, unbounded sequences
of global-state valuations) between tasks. For instance, explorations based on
bounded languages [12, 8] take this approach, essentially restricting concurrent
exploration to inter-task interactions conforming to a regular pattern; then each
task is executed in isolation by taking its product with the pattern-automaton.
We simply note that the existing sequentializations avoid the (possibly expensive)
computation of such a product.

7 Conclusion

We have proposed a framework for parameterized and compositional concur-
rent program analysis based on reduction to sequential program analysis. Our
framework applies to a general class of shared-memory concurrent programs,
with arbitrary preemption and dynamic task-creation, and strictly captures the
known (round-based) sequentializations. It is our hope that this understand-
ing will lead to further advances in sequential reductions, e.g., by enlightening
efficiently-encodable instances of the general framework.

Though we have unified the existing sequentializations while maintaining
their desirable qualities (i.e., sequential program model, compositionality, pa-
rameterization) by relaxing the global round-robin schedule, we are aware of
one remaining restriction imposed by our framework. Besides the round-robin
restriction imposed by the existing sequentializations, there is an implicit re-
striction imposed by translating task-creation directly to procedure calls: the
tasks created by a single task are visited in the order they are created. Though
further generalization is possible (e.g., by adding unbounded counters to the
target program), such reductions will likely lead to much more complex analyses.

15

Bibliography

[1] M. F. Atig, A. Bouajjani, and T. Touili. Analyzing asynchronous programs
with preemption. In FSTTCS ’08: Proc. IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science,
volume 2 of LIPIcs, pages 37–48. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2008.

[2] M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for
concurrent programs with dynamic creation of threads. In TACAS ’09: Proc.
15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 5505 of LNCS, pages 107–123. Springer,
2009.

[3] T. Ball and S. K. Rajamani. The slam project: debugging system software
via static analysis. In POPL ’02: Proc. 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 1–3. ACM,
2002.

[4] S. Chaudhuri. Subcubic algorithms for recursive state machines. In POPL
’08: Proc. 35th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 159–169. ACM, 2008.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In POPL ’77: Proc. 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pages 238–252. ACM, 1977.

[6] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language
for checking object-oriented programs. Technical Report MSR-TR-2005-70,
Microsoft Research, 2005.

[7] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded scheduling. In
POPL ’11: Proc. 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 411–422. ACM, 2011.

[8] P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproxima-
tions. In CAV ’10: Proc. 22nd International Conference on Computer Aided
Verification, volume 6174 of LNCS, pages 600–614. Springer, 2010.

[9] P. Garg and P. Madhusudan. Compositionality entails sequentializability. In
TACAS ’11: Proc. 17th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, LNCS. Springer, 2011.

[10] N. Ghafari, A. J. Hu, and Z. Rakamarić. Context-bounded translations
for concurrent software: An empirical evaluation. In SPIN ’10: Proc. 17th
International Workshop on Model Checking Software, volume 6349 of LNCS,
pages 227–244. Springer, 2010.

[11] B. Jannet and A. Miné. The Interproc analyzer. http://pop-art.

inrialpes.fr/interproc/interprocweb.cgi.

[12] V. Kahlon. Tractable dataflow analysis for concurrent programs via bounded
languages, July 2009. Patent WO/2009/094439.

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

[13] N. Kidd, S. Jagannathan, and J. Vitek. One stack to run them all: Reducing
concurrent analysis to sequential analysis under priority scheduling. In SPIN
’10: Proc. 17th International Workshop on Model Checking Software, volume
6349 of LNCS, pages 245–261. Springer, 2010.

[14] S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded
concurrent reachability to sequential reachability. In CAV ’09: Proc. 21st
International Conference on Computer Aided Verification, volume 5643 of
LNCS, pages 477–492. Springer, 2009.

[15] S. La Torre, P. Madhusudan, and G. Parlato. Analyzing recursive programs
using a fixed-point calculus. In PLDI ’09: Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 211–222. ACM,
2009.

[16] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameter-
ized concurrent programs using linear interfaces. In CAV ’10: Proc. 22nd
International Conference on Computer Aided Verification, volume 6174 of
LNCS, pages 629–644. Springer, 2010.

[17] S. K. Lahiri and S. Qadeer. Back to the future: revisiting precise program
verification using smt solvers. In POPL ’08: Proc. 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 171–
182. ACM, 2008.

[18] S. K. Lahiri, S. Qadeer, and Z. Rakamarić. Static and precise detection of
concurrency errors in systems code using SMT solvers. In CAV ’09: Proc.
21st International Conference on Computer Aided Verification, volume 5643
of LNCS, pages 509–524. Springer, 2009.

[19] A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009.

[20] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI ’07: Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
446–455. ACM, 2007.

[21] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent
software. In TACAS ’05: Proc. 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 3440 of
LNCS, pages 93–107. Springer, 2005.

[22] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In PLDI ’04:
Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 14–24. ACM, 2004.

[23] T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL ’95: Proc. 22th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 49–61.
ACM, 1995.

[24] T. W. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems
and their application to interprocedural dataflow analysis. Sci. Comput.
Program., 58(1-2):206–263, 2005.

17

A Syntactic Sugar

The following syntactic extensions are reducible to the original syntax of asyn-
chronous programs of Section 2. Here we freely assume the existence of various
type- and expression-constructors. This does not present a problem since our
program semantics does not restrict the language of types nor expressions.

Multiple types. Multiple type labels T1, . . . , Tj can be encoded by systematically

replacing each Ti with the sum-type T =
∑j

i=1 Ti. This allows local and global
variables with distinct types.

Multiple variables. Additional variables x1 : T1, . . . , xj : Tj can be encoded with a
single record-typed variable x : T , where T is the record type {{f1 : T1, . . . , fj : Tj}},
and all occurrences of xi are replaced by x.fi. When combined with the extension
allowing multiple types, this allows each procedure to declare any number and
type of local variable parameters, distinct from the number and type of global
variables.

Local variable declarations. Additional (non-parameter) local variable declarations
var l′: T to a procedure p can be encoded by adding l′ to the list of parameters,
and systematically adding an initialization expression (e.g., the choice expression
?, or false) to the corresponding position in the list of arguments at each call
site of p to ensure that l′ begins correctly (un)initialized.

Unused values. Call assignments call x := p e, where x is not subsequently
used, can be written as call _ := p e, where _:T is an additional unread local
variable, or simpler yet as call p e.

Let bindings. Let bindings of the form let x: T = e in can be encoded by
declaring x as a local variable var x: T , immediately followed by an assign-
ment x := e. This construct is used to explicate that the value of x remains
constant once initialized. The binding let x: T in is encoded by the binding
let x: T = ? in, where ? is the choice expression.

Tuples. Assignments (x1, . . . , xj) := e to a tuple of variables x1, . . . , xj are
encoded by the sequence let r : {{f1 : T1, . . . , fj : Tj}} = e in x1 := r.f1; . . . ;xj :=
r.fj, where r is a fresh variable. A tuple expression (x1, . . . , xj) occurring in
a statement s is encoded as let r : {{f1 : T1, . . . , fj : Tj}} = {{f1 = x1, . . . , fj =
xj}} in s[r/(x1, . . . , xj)], where r is a fresh variable, and s[e1/e2] replaces all
occurrences of e2 in s with e1. When a tuple-element xi on the left-hand side of
an assignment is unneeded (e.g., from the return value of a call), we may replace
the occurrence of xi with the variable—see the “unused values” desugaring.

Arrays. Finite T j-arrays with j elements of type T can be encoded as records of
type T ′ = {{f1 : T, . . . , fj : T}}, where f1, . . . , fj are fresh names. Occurrences of
terms a[i] are replaced by a.fi, and array-expressions [e1, . . . , ej] are replaced
by record-expressions {{f1 = e1, . . . , fj = ej}}.

18

B Proofs of Theorems

Theorem 1. The compositional semantics and asynchronous semantics are
identical, i.e., for all programs P we have {|P |}c = {|P |}a.

Proof (Sketch). To show {|P |}a ⊆ {|P |}c, let h be an asynchronous execution
with tasks uniquely identified by TaskIDs, and define Segsh = TaskIDs× Vals×
Vals × ℘(TaskIDs) such that 〈u, g, g′, U〉 ∈ Segsh if and only if task u has an
uninterrupted execution from g to g′ in h posting tasks U . Then define a segment
causality relation < ⊆ Segsh × Segsh as the smallest transitively-closed relation
such that for two segments s1 = 〈u1, g1, g′1, U1〉 ∈ Segsh and s2 = 〈u2, g2, g′2, U2〉 ∈
Segsh, s1 < s2 if either (a) u1 = u2 and s1 appears before s2 in h, or (b) u2 ∈ U1.

We show by induction on the sub-task relation how to construct a complete
task-segment sequence σu0 corresponding to the execution h starting from an
initial task u0. For u ∈ TaskIDs, we define hu as the sub-sequence of h containing
only configurations of u and u’s (transitive) sub-tasks. As the basis, when u0
does not post any additional tasks, then the total order on segments of task
u0 defined by hu0

is easily replicated in the compositional semantics, using the
NextRound rule into a segment sequence σu0

.

Given two words σ, τ ∈ Σ∗ of some alphabet Σ, the shuffle of σ and τ ,
denoted σ ./ τ , is the set of words σ1τ1σ2τ2 . . . ∈ Σ∗ such that σ = σ1σ2 . . . and
τ = τ1τ2 The shuffle of a sequence of words is obviously defined, given that
./ is commutative and associative.

When u0 posts tasks u1, . . . , ui, the inductive hypothesis defines for each
huj

a segment sequence σuj
. As hu0

is given by some shuffling of hu1
, . . . , hui

with the segments of task u0 (respecting the segment causality relation <),
we must construct a segment sequence σu0 given by an arbitrary shuffling of
σu1

, . . . , σui
—given by the SubTask rule—with the segments of task u0 (again,

respecting the segment causality relation <). It is not hard to verify that using
the Interleave, NextRound, and Resume rules, the compositional semantics
does indeed consider every such shuffling, sequencing each segment one at a
time into an exported total order; for each segment taken from a sub-task (given
by the SubTask rule), the compositional execution begins a new round (via
NextRound), and consumes the given segment (via Interleave); for each
segment of the current task, the compositional execution simply begins a new
round, and applies a sequence of sequential rules. The causality relation < is
never violated, since a sub-task’s segments cannot be sequenced until they are
provided by a corresponding SubTask rule, and segments of the same task are
sequenced in their causal order.

In the initial task u0, the compositional execution behaves similarly, except
does not apply the NextRound rule. Since h is a valid asynchronous execution,
the segments of σu0 are contiguous—i.e., the global valuation reached by each
segment is equal to the initial global valuation of the next. Thus the Interleave
rule can be repeatedly applied, stitching together the contiguous segments,
building a complete compositional execution from σu0

.

19

Reasoning in the other direction (i.e., {|P |}c ⊆ {|P |}a) proceeds similarly,
essentially showing that any successfully-stitched (via Interleave) segment
sequence σ without using the NewRound rule corresponds to an asynchronous
execution of the contiguous segments of σ. ut

Theorem 2. The sequence of bounded compositional semantics forms a mono-
tonically increasing chain whose limit is identical to the compositional semantics,
i.e., {|P |}0c ⊆ {|P |}1c ⊆ . . . ⊆

⋃
k∈N{|P |}kc = {|P |}c.

Proof. This is immediate, since every k-bounded compositional execution is both
a (k + 1)-bounded execution, and a compositional execution. Furthermore, every
compositional execution uses only finite-sized bags.

C The Sequential Program Statements

For a statement context S (see Section 2), we write 〈g, 〈`, S〉w,m〉 [s] to denote
the configuration 〈g, 〈`, S[s]〉w,m〉. For convenience we also define

e(〈g, 〈`, s,〉w,m〉) def
= e(g, `) expression evaluation

〈g, w,m〉 · w′ def
= 〈g, w′w,m〉 frame push/pop

〈g, w,m〉 (g← g′)
def
= 〈g′, w,m〉 global update

〈g, 〈`, s〉w,m〉 (l← `′)
def
= 〈g, 〈`′, s〉w,m〉 local update.

Fig. 8 gives the transition relation →s
P for the sequential program statements.

The choice operator ? is used in the Call and Return-Sync rules only as a
placeholder for an undetermined value. The Assume rule restricts the set of valid
executions: a step is only allowed when the predicated expression e evaluates to
true. (This statement—usually confined to intermediate languages—is crucial
in code-to-code translations in the guess-and-constrain style sequential program
reductions [19, 7].)

D Example: Beyond Global-round Analyses

Fig. 9a gives a program P in which every reachable state is reachable (with a
fixed bound) in the bounded compositional semantics (by interleaving a B task at
the yield point of each A task), though there is no bound such that global-round
semantics express every reachable state. Note that any k global-round exploration
only explores y-values less than k, since (i) every A task must be executed between
two distinct rounds to increment y, and (ii) each posted A task must begin after
the second round of the A task that posted it.

The compositional semantics explores every positive value j ∈ N of y with
bag-sizes bounded by k = 4 (see Fig. 9b): each A task exports a pair of segment
summaries—i.e., before the yield point, and after—and each B task exports a
single summary. Each parent task (i.e., the one posting) saves one summary from
the beginning of A (with y = i) to the yield point (with x = false, y = i), and

20

Skip

c[skip; s]→s
P c[s]

Assume
true ∈ e(c)

c[assume e]→s
P c[skip]

If-Then
true ∈ e(c)

c[if e then s1 else s2]→s
P c[s1]

If-Else
false ∈ e(c)

c[if e then s1 else s2]→s
P c[s2]

Loop-Do
true ∈ e(c)

c[while e do s]→s
P c[s;while e do s]

Loop-End
false ∈ e(c)

c[while e do s]→s
P c[skip]

Assign-Global
v ∈ e(c)

c[g := e]→s
P c[skip](g← v)

Assign-Local
v ∈ e(c)

c[l := e]→s
P c[skip](l← v)

Call
v ∈ e(c)

c[call x := p e]→s
P c[x := ?] · 〈v, sp〉

Return
v ∈ e(c · 〈`, S[skip]〉)

c[x := ?] · 〈`, S[return e]〉 →s
P c[x := v]

Fig. 8. The transition relation →s
P for the sequential statements of a program P .

begins a second segment from the global value x= true, y = i. In the second
segment we then take the then branch, increment y, and import bags from the
posted A and B tasks. From the incremented value of y (i + 1 in Fig. 9b) we
apply the first segment of the posted A task, followed by the only segment of
B, followed by the second A segment, ending with y = j. In this way, each A

task is interrupted by a B task, and is allowed to increment y. As the number of
recursive posts to A is never bounded, the value of y is incremented an arbitrary
number of times.

21

var x:bool, y:int

proc A()

x := false;

yield;
if x then
y := y + 1;

post A;

post B

proc B()

x := true

init: post A ();

post B ()

(a)

x = T
y = i

x = F
y = i

x = T
y = i

x = T
y = j

x = T
y = i+1

x = T
y = j

x = F
y = i+1

x = T
y = i+1

x = F
y = i

x = T
y = i

x = T
y = i

x = T
y = i+1

x = F
y = i+1

x = T
y = i+1x = T

y = i+1
x = F
y = i+1

x = T
y = i+1

x = T
y = j

Ai+1

x = F
y = i+1

x = T
y = i+1Bi+1

Ai

Ai

(b)

Fig. 9. A 4-bounded compositional exploration of a program with an unbounded number
of nested sub-tasks. We abbreviate true and false with T and F.

22

	On Sequentializing Concurrent Programs

