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page web) 'EST un fait, le petit Nicolas [1] ou son cousin germain [2], n'a toujours pas réussi à se coiffer sans faire d'épi. Et vous non plus d'ailleurs. Pourquoi ? La faute à un théorème, le théorème de la sphère chevelue, déjà connu de Poincaré et de Brouwer, et dont le tout récent prix Abel 2011, John Milnor, a donné [3] une démonstration très élégante [4].

Le théorème de la sphère chevelue

Le théorème parle de champs de vecteurs sur la sphère. Un champ de vecteurs sur la sphère est la donnée, en tout point de la sphère, d'un vecteur tangent, comme les cheveux sur un crâne, ou encore le vent qui souffle à la surface de la Terre ... Le théorème est vrai pour n'importe quelle sphère dans l'espace, mais ici on va fixer le rayon égal à . A un point de cette sphère, on associe un vecteur tangent à la sphère en , comme sur la figure ci-dessous.
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On ne regarde pas n'importe quel champ de vecteurs sur la sphère mais ceux qui sont continus, c'està-dire varient de façon raisonnable. Avec cette condition, si une suite de points sur la sphère converge vers un point , alors converge aussi vers . De plus, les champs de vecteurs considérés sont différentiables [5]. L'énoncé est alors le suivant Théorème (de la sphère chevelue) : Tout champ de vecteurs différentiable sur la sphère s'annule quelque part.

Il y a donc, à la surface de la Terre toujours un endroit sans vent et il y a toujours un épi quand on se coiffe.

Première étape de la démonstration

Nous procédons par l'absurde : supposons qu'il existe un champ de vecteurs sur la sphère qui ne s'annule pas. On commence par remplacer ce champ de vecteurs par un champ de vecteurs tel que pour tout , la longueur de vaut (on l'appelle alors unitaire). En effet, il suffit de remplacer par divisé par sa longueur. Le champ de vecteurs ainsi obtenu est unitaire et garde les même propriétés que le champ de vecteurs de départ, il est continu et différentiable. Nous voilà donc ramenés au cas d'un champ de vecteurs tel que pour tout , la longueur de est égale à .

L'idée de Milnor est d'utiliser ce champ de vecteurs pour déformer la couronne sphérique (C) délimitée par les sphères de rayon et . En quelque sorte, on va déformer la couronne le long de ce champ de vecteurs.

Pour cela, on prolonge le champ de vecteurs à l'intérieur de la sphère, ce qu'on appelle la boule, privée de l'origine. Si est un point à l'intérieur de la boule unité, on trace la droite , elle coupe la sphère unité en un point . L'homothétie de centre qui envoie sur , transforme le vecteur en un vecteur , qui est tangent à la sphère de centre passant par . De cette façon, à chaque point à l'intérieur de la boule unité différent de l'origine, on a associé un vecteur tangent à la sphère. C'est la figure ci-dessous.
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On considère maintenant une déformation de la couronne sphérique (C), en rose dans la figure ci-dessous, pour petit. Si est un vecteur de longueur , définissant donc un point de la sphère, on lui associe le point Pour petit, est un point proche de . Pour , notre transformation vaut l'identité.

Un premier calcul de volume de la couronne déformée

En fait, pour petit, notre déformation possède de bonnes propriétés de régularité et elle est bijective [6], i.e. tout élément de a un unique antécédent par . Ces propriétés ne sont pas 
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Conclusion

Ce théorème permet de montrer que tout champ de vecteurs continu sur la sphère s'annule.

Ce théorème permet de montrer d'autres théorèmes importants de topologie, comme ce théorème de Brouwer Toute application continue de la boule dans elle-même possède un point fixe, c'està-dire qu'il existe un point de la sphère tel que , (autrement dit est fixé par ). L'idée est, étant donnée une telle application continue de la boule dans elle-même, de procéder par l'absurde. Si pour tout point de la boule, on exhibe alors un champ de vecteurs tangents à la sphère qui ne s'annule pas.

La recherche est encore très active en mathématiques pour comprendre pourquoi le personnage de Tintin a une houppe.

Je tiens à remercier ici M. Bernard Raymond qui nous a expliqué ce théorème de la sphère chevelue
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en maths spé au lycée Faidherbe de Lille [13]. Un très grand moment, de quoi, en tout cas, susciter des vocations.

P.S. :

L'auteur remercie M. François Raymond des informations sur son frère, citées dans cet article.

La rédaction d'Images des maths, ainsi que l'auteur, remercient pour leur relecture attentive, les relecteurs suivants : Guillaume Pontier, Emeric Bouin, Paul Laurain et Jacqueline Struffi.

Notes

[ 1] Personnage créé par René Gosciny et Jean-Jacques Sempé.

[ 2] dessiné ici par l'auteur de cet article en imitant pâlement les dessins de Jean-Jacques Sempé.

[ 3] cf, de John Milnor. Analytic proofs of the « Hairy Ball theorem » and the Brouwer fixed point theorem. The American Mathematical Monthly. 1978. 85

[ 4] Pour un panorama (en anglais) des travaux de Milnor, on pourra consulter ce compte-rendu de Timothy Gowers.

[ 5] dérivables au sens des fonctions de plusieurs variables, ce qui est un peu technique à expliquer et que nous ne ferons pas ici.

[ 6] De façon précise c'est un difféomorphisme de la couronne sphérique (C) sur son image, pour petit.

[ 7] qui est compacte.

[ 8] détaillé ici.

[ 9] qui fait intervenir le déterminant jacobien de , qui est un polynôme de degré , pour les lecteurs connaissant le calcul différentiel.

[ 10] La sphère est compacte et connexe.

[ 11] La déformation est une application ouverte.

[ 12] On peut aussi constater que les racines complexes de sont et et sont d'ordre impair égal à .

[ 13] M. Bernard Raymond, décédé en 1997, y fut professeur de 1978 à 1991. (1 + t 2 ) 3 i -i 3
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Un deuxième calcul du volume de la couronne déformée et fin de la démonstration

  

				est
	proche de l'identité pour petit. Un théorème de changement de variables pour les intégrales [8]
	permet alors de calculer le volume	de la déformation par	de couronne sphérique (C) pour
	petit. Comme la formule définissant	est un polynôme en (de degré ) le calcul [9] montre
	pour petit, le volume	de la déformation par	de la couronne sphérique
	de (C) est un polynôme en de degré	.

t très faciles à montrer et sont liées d'une part à celles de la sphère [7] et d'autre part au fait que En réalité, on peut être encore plus précis sur ce qu'est cette déformation de la couronne (C) en appliquant le théorème de Pythagore. Si est de longueur , comme est de longueur (la valeur absolue de ) et que et sont orthogonaux (voir la figure), la longueur de est Par déformation par la sphère unité est envoyée dans la sphère de rayon . Plus généralement, si est sur la sphère de rayon , est sur la sphère de . Milnor montre alors que la déformation par de la sphère de rayon est toute la sphère de rayon . Cela nécessite un argument de topologie [10] et un argument de calcul différentiel [11] pour employer des termes techniques. Autrement dit, la déformation par de (C) est la couronne sphérique délimitée par les sphères de rayon et . On calcule le volume de cette couronne sphérique en prenant la différence du volume d'une boule de rayon et du volume d'une boule de rayon . Ainsi

  qui n'est pas un polynôme en la variable , pour petit ! Supposons que tel soit le cas, alors il Mais comme il y a une infinité de petits, et que l'on compare deux polynômes, cette égalité est en fait vérifiée pour tout , de sorte que est de degré . Toujours à cause de cette relation, le terme constant de et le terme de degré de valent . Ainsi où sont des constantes à déterminer. En développant, on voit que le terme de degré de est , et que le terme de degré de est . Par identification, ces termes et doivent donc

	existe un polynôme	tel que	tel que		, pour
	petit. être nuls. Finalement, si		était un polynôme	, on aurait	.
	Or			
	[12]			
	Nous avons ainsi trouvé une contradiction et démontré le théorème.