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In this work the definition of codes as modules over skew polynomial rings of automorphism type is generalized to skew polynomial rings whose multiplication is defined using an automorphism and an inner derivation. This produces a more general class of codes which, in some cases, produce better distance bounds than skew module codes constructed only with an automorphism. Extending the approach of Gabidulin codes, we introduce new notions of evaluation of skew polynomials with derivations and the corresponding evaluation codes. We propose several approaches to generalize Reed Solomon and BCH codes to module skew codes and for two classes we show that the dual of such a Reed Solomon type skew code is an evaluation skew code. We generalize a decoding algorithm due to Gabidulin for the rank matrix and derive families of MDS and MRD codes.

Skew module codes with derivation

Let A be a ring with an automorphism θ, then a θ-derivation is a map δ θ : A → A such that for all a and b in A:

δ θ (a + b) = δ θ (a) + δ θ (b) δ θ (ab) = δ θ (a)b + θ(a)δ θ (b).
According to [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF] the most general skew polynomial rings in the variable X over ring A, whose elements are written n i=0 a i X i , are defined with the usual addition of polynomials and a multiplication that follows the commuting rule Xa = θ(a)X + δ(a). We note the resulting ring A[X; θ, δ] and, if A is a division ring, the ring A[X; θ, δ] is a left and right euclidean ring in which left and right gcd and lcm exist [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]. If A is a finite field IF q , then all θ-derivations are of the form δ β (a) = β(θ(a) -a) where β ∈ IF q and are therefore uniquely determined by β ∈ IF q (cf. [START_REF] Wexler-Kreindler | Sur une clasification des extension de Ore[END_REF], Corollary of Proposition 8). We denote (IF q ) θ the fixed field of θ in IF q .

In the following we will consider modules over R = IF q [X; θ, δ β ] and in particular submodules Rg/Rf ⊂ R/Rf . We have Rf ⊂ Rg if and only if g is a right factor of f and in this case Rg/Rf is a submodule of R/Rf which is cyclic and generated as a left R-module by g + Rf . Therefore the left R-submodule Rg/Rf ⊂ R/Rf is a IF q -vector subspace of dimension deg(f ) -deg(g) of the IF q -vector space R/Rf of dimension deg(f ). In analogy to classical cyclic codes, we associate to an element n-1 i=0 a i X i in the quotient module R/Rf the 'word' (a 0 , a 1 , . . . , a n-1 ) ∈ IF q n . Definition 1 Let R = IF q [X; θ, δ β ] and f ∈ R be of degree n. A module (θ, δ)-code C is a left R-submodule Rg/Rf ⊂ R/Rf in the basis 1, X, . . . , X n-1 where g is a right divisor of f in R. The length of the code is n = deg(f ) and its dimension is k = deg(f ) -deg(g), we say that the code C is of type [n, k] q . If the minimal distance of the code is d, then we say that the code C is of type [n, k, d] q . We denote this code C = (g) n,θ,δ β .

The above module codes generalize the codes defined in [START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF] and are also considered in [START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF]. As we shall see, there is a strong connection to Gabidulin codes (cf. [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF]). A generator matrix of the code is given by the coefficients of g, X • g, . . . , X k-1 • g and can be computed using the rule Xa = θ(a)X + β(θ(a) -a) for a ∈ IF q . Note that this generator matrix depends only on the degree n of f , which justifies the notation C = (g) n,θ,δ β .

In this paper we will consider both the Hamming distance and the rank distance introduced in [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF] which is well adapted to our situation. Consider an IF q -vector space V = (IF q ) m over IF q (like the codes we consider) and a subfield (IF q ) θ ⊂ IF q . The rank of γ = (γ 1 , . . . , γ m ) ∈ V , denoted rank(γ), is the dimension of the (IF q ) θ -vector space spanned by γ 1 , . . . , γ m . The relation d rank (γ, γ) = rank(γ -γ) defines a distance over V = (IF q ) m . If d H denotes the classical Hamming distance, then d rank (γ, γ) ≤ d H (γ, γ) (cf. [START_REF] Berger | Isometries for Rank Distance and Permutation Group of Gabidulin Codes[END_REF]).

It is well known that there exists a change of variable which transforms a skew polynomial ring A[X; θ, δ] over division rings A into either A[Z; θ] or A[Z; δ] (cf. [START_REF] Cohn | Free Rings and their relations[END_REF], page 295). If A = IF q and δ β = 0, then after the change of variable Z = X + β we obtain a pure automorphism ring IF q [Z; θ]. This corresponds to the bijective ring homomorphism

H : IF q [X; θ, δ β ] → IF q [Z; θ] (1) 
a i X i → a i (Z -β) i . (2) 
The morphism H induces a map (which we also denote H) from an [n, k] module code C = (g) over IF q [X; θ, δ β ] with β = 0 to a [n, k] module code C = (H(g)) over IF q [Z; θ] via

n-1 i=0 c i X i → n-1 i=0 c i (Z -β) i = n-1 i=0 ci Z i .
Computing recursively the coefficients of (X + β) i = i j=0 a i+1,j+1 X j using (X + β) i+1 = (X + β) i j=0 a i+1,j+1 X j = i j=0 θ(a i+1,j+1 )(X + β)X j we obtain the following link between the generating matrices of the codes G g,n,θ,δ β = G H(g),n,θ × A n,n (β),

where A n,n (β) is a lower unit triangular n × n matrix over (IF q ) θ (β) whose entries a i,j (j < i) are given by a i+1,j+1 = θ(a i,j ) + βθ(a i,j+1 ) (1 < j < i), a i+1,1 = βθ(a i,1 ) (1 < j).

The corresponding IF q -linear map between the codes (g) n,θ,δ β and (H(g)) n,θ does not preserve the Hamming distance (for β = 0 the weight of H(X) is 2) nor the rank distance. We shall see that the consideration of IF q [X; θ, δ β ] with β = 0 indeed produces new codes which are not module codes over IF q [X; θ]. From the above matrix A n,n (β) we see that the rank is preserved when β ∈ (IF q ) θ .

The map H will be also useful in the context of evaluation codes introduced in the section 3.

Proposition 1 For any σ ∈ Aut(IF q ) the following map is a ring isomorphism

ϕ σ : IF q [X; θ, δ β ] → IF q [X; θ, δ σ(β) ] n i=0 a i X i → n i=0 σ(a i )X i Proof:
The map ϕ σ is an isomorphism of the corresponding additive groups, so we need to check the multiplicative rule. We have ϕ σ (aX) = σ(a)X = ϕ σ (a)ϕ σ (X). In order to verify the reverse multiplication rule, we note that, since the group Aut(IF q ) is abelian, we always have σθ = θσ:

ϕ σ (X)ϕ σ (a) = Xσ(a) = (θ • σ)(a)X + σ(β) ((θ • σ)(a) -σ(a)) = σ(θ(a))X + σ (β(θ(a) -a)) = ϕ σ (Xa)
This shows that the following map

ϕ σ : (g) n,θ,δ β → (ϕ σ (g))) n,θ,δ σ(β)
(a 0 , a 1 , . . . , a n-1 ) → (σ(a 0 ), σ(a 1 ), . . . , σ(a n-1 ))

has the property that for a and b in (g

) n,θ,δ β , ϕ σ (a + b) = ϕ σ (a) + ϕ σ (b) and for λ ∈ IF q , ϕ σ (λ • a) = σ(λ)ϕ σ (a)
. Since the map ϕ σ preserves the Hamming distance of linear codes, it is a semilinear isometry for the Hamming distance. This new class of codes is more general than the codes obtained using skew polynomials of automorphism type for which β = 0. In the following tables we give the parameters of codes which reach the best known Hamming distances over IF 4 , IF 8 and IF 9 thanks to a nonzero derivation and do not reach them with a zero derivation (tables for codes over IF 4 also appear in [START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF]). Because of the above semilinear isometry ϕ σ , we only included codes for one element of each orbit of β ∈ IF * q under the action of θ. Like in the commutative case, many constructions of codes are based on the notion of the evaluation of a polynomial. We follow the definition of an evaluation given in [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF] (where noncommutative fields of coefficients are also considered):
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Definition 2 Let K be a division ring, θ ∈ Aut(K) and δ a θ-derivation. For f = a i X i ∈ K[X; θ, δ] and α ∈ K the (right) remainder evaluation of f at α is denoted f (α) and is defined as the remainder of the right division of f by X -α. We also define N θ,δ i (α) recursively as

N θ,δ 0 (α) = 1 N θ,δ i+1 (α) = θ(N θ,δ i (α)) α + δ(N θ,δ i (α)) Lemma 1 ([11], Proposition 2.9) Let K be a division ring, θ ∈ Aut(K) and δ a θ- derivation. For f = a i X i ∈ K[X; θ, δ] and α ∈ K we get f (α) = a i N θ,δ i (α).
In the following θ will play the same role for the ring K[X; θ] as δ = 0 for the ring K[X; θ, δ]. We therefore introduce the notation:

D = θ if δ = 0 δ if δ = 0 and associate to f = a i X i the operator L f = a i D i in the ring K[D; •] = { n i=0 a i D i | a i ∈ K}
, where the addition is the usual addition and the multiplication is the composition of operators.

Lemma 2 Let K be a division ring, θ ∈ Aut(K) and δ a θ-derivation. The map

ψ : K[X; θ, δ] → K[D; •] f = n i=0 a i X i → L f = n i=0 a i D i is a morphism of rings.
From ( [START_REF] Lam | A general theory of Vandermonde matrices[END_REF], Lemma 1(2) and [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF] Proposition 2.9(4)) we obtain for 0

= a ∈ K that N θ i (D(a)a -1 ) = D i (a)a -1 . Therefore, for 0 = a ∈ K, we have f (D(a)a -1 ) = a i N θ,δ i (D(a)a -1 ) = 0 if and only if a i D i (a) = 0. This shows that f corresponds to a generalized Ricatti equation of L f . Definition 3 Consider f = a i X i ∈ K[X; θ, δ] and y ∈ K, the operator evaluation of f at y ∈ K is L f (y). If L f (y) = 0, then y is a solution of L f (Y ) = 0.
For a field extension K ⊂ F together with an extension of θ and δ to K we can consider the operator evaluation of f ∈ K[X; θ, δ] at y ∈ F . We will be interested in the case IF q [X; θ, δ β ]. For an extension IF q ⊂ IF q s we extend an automorphism a → a m of IF q to the corresponding automorphism a → a m of IF q s , extending δ β accordingly. Definition 4 ( [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], page 321) Let K be a division ring, θ ∈ Aut(K) and δ a θ-derivation.

Let A = {α 1 , . . . , α n } ∈ K n . The (θ, δ)-Vandermonde matrix of A is defined by V θ,δ n (A) =      1 1 • • • 1 N θ,δ 1 (α 1 ) N θ,δ 1 (α 2 ) • • • N θ,δ 1 (α n ) . . . . . . • • • . . . N θ,δ n-1 (α 1 ) N θ,δ n-1 (α 2 ) • • • N θ,δ n-1 (α n )     
A closely related matrix is the following generalization of the Wronskian matrix

Wr θ,δ n (y 1 , . . . , y n ) =      y 1 y 2 • • • y n+1 D(y 1 ) D(y 2 ) • • • D(y n ) . . . D n-1 (y 1 ) D n-1 (y 2 ) • • • D n-1 (y n )      .
We now summarize some results, most of them from [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], which allow to control the rank of the (θ, δ)-Vandermonde matrix. Definition 5 ([11]) For a field K and a skew polynomial ring K[X; θ, δ] the (θ, δ)conjugacy class of an element a ∈ K is the set of all its conjugates a c := θ(c) c a + δ(c) c where c is taken over all K -{0}.

Note 1 For a finite field IF q = IF p N with p prime, θ(a) = a p m and r = gcd(m, N ) the formula is a c := θ(c) c (a + β) -β. If a = -β the (θ, δ)-conjugacy class of a is reduced to {a} and if a = -β, it has as many elements as the set { θ(c) c , c ∈ IF * q } namely, p N -1 p r -1

elements. So we get p r conjugacy classes : the conjugacy class of -β which is a single class and p r -1 classes with p N -1 p r -1 elements for each class. In particular, if θ is the Frobenius automorphism (m = r = 1), then there are p conjugacy classes.

Note 2 As pointed out in [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], the (θ, δ)-conjugacy class of 0 is the set of elements of K that are logarithmic derivatives of elements of K. If δ = 0, then α ∈ IF q belongs to the conjugacy class of 1 if and only if ∃a ∈ IF q such that α = θ(a) a . If q = 2 N and θ : a → a2 , then θ(a) a = a, showing that there are exactly two conjugacy classes: the class of 1 which is IF 2 N \ {0} and the class of 0 which is {0}. Definition 6 ([11], page 3.14) Let K be a division ring with an automorphism θ, a θderivation δ and a ∈ K.

Then C θ,δ (a) = {c ∈ K * | a c = a} ∪ {0}.
From [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], Lemma 3.2 we get that C θ,δ (a) is a division subring of K. If K is a commutative field we recover classical notions: Theorem 1 ( [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], Theorem 4.5 page 323 and [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], page 321)) Let K be a division ring with an automorphism, θ, δ a θ-derivation and a ∈ K. Then, for any {y 1 , . . . , y n } ⊂ K * , we have rank(V θ,δ n (a y 1 , . . . , a yn )) = dim C θ,δ (a) (y 1 , . . . , y n ).

Let A = A 1 ∪ • • • ∪ A r be the par- tition of A ⊂ K into (θ, δ)-conjugacy classes. Then rank(V θ,δ (A)) = r i=1 rank(V θ,δ (A i )).
Corollary 1 Let K be a field and f = n i=0 a i X i ∈ K[X; θ, δ] nonzero of degree n. Then 1. If δ = 0, the solution space of L f (Y ) = 0 is a vector space of dimension at most n over the fixed field K θ of K under θ.

2. If δ = 0, the solution space of L f (Y ) = 0 is a vector space of dimension at most n over the subfield of constants ker K (δ) of K for δ.

Proof:

We already noted that the solution space is a vectorspace over K θ , resp. ker K (δ). Suppose that L f (Y ) = ( n i=0 a i D i ) (Y ) = 0 has n + 1 solutions y 1 , . . . , y n+1 , then (a 0 , . . . , a n ) is a nonzero vector in the kernel of Wr n+1 (y 1 , . . . , y n+1 ).

1. If δ = 0, then ( (4.12) page 325 of [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF] ) the following matrix is of determinant 0

Wr θ n+1 (y 1 , . . . , y n+1 ) •       1 y 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 1 y n+1       = V θ,δ n+1 (1 y 1 , . . . , 1 y n+1 ).
From the above theorem we get that y 1 , . . . , y n+1 are linearly dependent over K θ .

2. If δ = 0, then ((4.8) page 325 of [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF] ) the following matrix is of determinant 0 Wr θ,δ n+1 (y 1 , . . . , y n+1 )

•       1 y 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 1 y n+1       = V θ,δ n+1 (0 y 1 , . . . , 0 y n+1 )
From the above theorem we get that y 1 , . . . , y n+1 are linearly dependent over ker K (δ).

The operator L(Y ) whose solution space is spanned by y 1 , y 2 , . . . , y n can be obtained by expanding | Wr θ,δ n+1 (y 1 , . . . , y n , Y ) | along the last column. In a similar way, in order to construct the polynomial f ∈ K[X; θ, δ] of minimal degree such that f (α 1 ) = . . . = f (α n ) = 0 we simply consider lclm 1≤i≤n (X -α i ) ∈ K[X; θ, δ]. It corresponds to the minimal polynomial defined in Theorem 8 of [START_REF] Lam | A general theory of Vandermonde matrices[END_REF] or page 326 of [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF].

Theorem 2 ([10], [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF]) Let K be a division ring with an automorphism, a ∈ K and θ, δ a θ-derivation.

Let A = {α 1 , . . . , α n } ∈ K n . Let g A = lclm 1≤i≤n (X -α i ) ∈ K[X; θ, δ], then deg(g A ) = rank V θ,δ n (A) .
Suppose that q = q t 0 and consider θ ∈ Aut(IF q ) given by a → a q 0 . The fixed field (IF q ) θ of θ is IF q 0 . We associate to L f (Y ) = n i=0 a i D i the commutative affine linearized polynomial ℓ(Z) ∈ IF q [Z] by expressing the action of the automorphism θ and the derivation δ β = β(θ -id): [START_REF] Lidl | Finite Fields[END_REF] or "p-polynomials" in [START_REF] Ore | On a Special Class of Polynomials Transactions of the[END_REF])

1. If δ = 0, then L f (Y ) = n i=0 a i θ i (cf. Section 5 of
ℓ(Z) = a n Z (q 0 ) n + . . . + a 1 Z q 0 + a 0 Z ∈ IF q [Z]. 2. If δ = 0 then L f (Y ) = n i=0 a i (β(θ -id)) i = n i=0 ℓ i (a 0 , . . . , a n , β)θ i
where the coefficients ℓ i (a 0 , . . . , a n , β) can be explicitly computed and in particular ℓ 0 (a 0 , . . . , a n , β)

= n i=0 (-1) i β i a i . Therefore ℓ(Z) = n i=0 ℓ i (a 0 , . . . , a n , β)Z (q 0 ) i ∈ IF q [Z].

Definition 7

The multiplicity of a solution, a, of L f (Y ) is the order of a, as a root of the associated linearized polynomial ℓ(Z).

The proof of [[6] Theorem 1] generalizes to

Theorem 3 Consider f = n i=0 a i X i ∈ IF q [X; θ, δ β ]
and the corresponding L f . There exists a finite field extension IF q s /IF q which contains all the roots of ℓ L (Y ) = 0 and the (IF q ) θ -subspace of IF q s spanned by those roots is

1. If δ = 0: of dimension n -min{i | a i = 0}. If a 0 = 0 then the smallest such field IF q s is a difference splitting field (or Picard-Vessiot field) of L(Y ) = 0. 2. If δ = 0: n -min{i | ℓ i (a 0 , . . . , a n , β) = 0}. If n i=0 (-1) i β i a i = 0 then the smallest such field IF q s is a δ-differential splitting field (or Picard-Vessiot field) of L(Y ) = 0.
If IF q s is a Picard-Vessiot field, then the elements of Aut(IF q s /IF q ) commute with θ and δ θ and therefore in both cases send a solution into a solution. In this case we call Aut(IF q s /IF q ) the Galois group of L(Y ) = n i=0 a i D i . For IF q [X; θ, δ β ] and n i=0 (-1) i β i a i = 0 the solutions of the operator satisfy a polynomial over IF q and therefore all belong to a finite field extension of IF q . The solution space is a vector space over the fixed field (IF q ) θ of IF q which, in this case, contains the subfield of constants ker(δ β ) since δ β = β(θ -id). If we denote IF q s the field obtained by adjoining the solutions of L f (y) = 0, then Aut(IF q s /IF q ) is the Galois group that transforms a solution of the operator into a solution (cf. [START_REF] Chaussade | Skew codes of prescribed distance or rank, Designs[END_REF], Theorem 1).

Skew evaluation codes

In this section we extend the notion of evaluation code introduced by E. Gabidulin in [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF]. We will consider both the Hamming metric and the rank metric.

Definitions

Definition 8 Let n ∈ IN * and k ∈ {1 . . . , n}.

• Let α = (α 1 , . . . , α n ) ∈ (IF q ) n with rank(V θ,δ n (α 1 , . . . , α n )) ≥ k.
The remainder evaluation skew code of length n, dimension k and support α is defined as

C k (α 1 , . . . , α n ) = {(f (α 1 ), . . . , f (α n )) | f ∈ IF q [X; θ, δ], deg(f ) ≤ k -1} • Let y = (y 1 , . . . , y n ) ∈ (IF q ) n with rank(Wr θ,δ n (y 1 , . . . , y n )) ≥ k
The operator evaluation skew code of length n, dimension k and support y is defined as

C k,L (y 1 , . . . , y n ) = {(L f (y 1 ), . . . , L f (y n )) | f ∈ IF q [X; θ, δ], deg(f ) ≤ k -1}
We now verify that the dimension of the codes defined above are k:

The generator matrix of C k (α 1 , . . . , α n ) is G θ,δ R =      N θ,δ 0 (α 1 ) N θ,δ 0 (α 2 ) • • • N θ,δ 0 (α n ) N θ,δ 1 (α 1 ) N θ,δ 1 (α 2 ) • • • N θ,δ 1 (α n ) . . . . . . • • • . . . N θ,δ k-1 (α 1 ) N θ,δ k-1 (α 2 ) • • • N θ,δ k-1 (α n )      It coincides exactly with the rectangular Vandermonde matrix V θ,δ k,n (α 1 , . . . , α n ) ([11]) whose rank is min(k, r) where r is the rank of V θ,δ n (α 1 , . . . , α n ). Here r ≥ k so rank(G θ,δ R ) = k and C k (α 1 , . . . , α n ) is of dimension k. The generator matrix of C k,L (y 1 , . . . , y n ) is G θ,δ L =      y 1 y 2 • • • y n D(y 1 ) D(y 2 ) • • • D(y n ) . . . . . . • • • . . . D k-1 (y 1 ) D k-1 (y 2 ) • • • D k-1 (y n )     
It coincides with the rectangular Wronskian matrix Wr θ,δ k,n (y 1 , . . . , y n ) whose rank is min(k, r) where r is the dimension of the (IF q ) θ space generated by y 1 , . . . , y n . Here

r ≥ k so rank(G θ,δ L ) = k and the code C k,L (y 1 , . . . , y n ) is of dimension k.
Note 3 For δ = 0 the operator evaluation L θ f (y 1 ) coincides with the evaluation of the linearized polynomial. The corresponding operator evaluation codes are due to Gabidulin (cf. [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF])

Classification

Comparison of remainder evaluation skew codes with δ = 0 and δ = 0 : The image of the relation f = q •(X -α)+f (α) in IF q [X; θ, δ] under the morphism (1) becomes

H(f ) = H(q) • ( Z -β -α) + f (α) in IF q [Z; θ], showing that f (α) = H(f )(α + β) (3) 
Lemma 3 rank(V θ,δ n (α 1 , . . . , α n )) = rank(V θ n (α 1 + β, . . . , α n + β)).
Proof: We first consider the case where all α i are in the (θ, δ)-conjugacy class of α ∈ IF q .

• If α = -β, we have rank(V θ,δ n (α 1 , . . . , α n )) = dim C θ,δ (α) (y 1 , . . . , y n ), where y i is defined by α i = α y i . Furthermore α i + β = θ(y i ) y i α + δ(y i ) y i + β = θ(y i ) y i (α + β), so α i + β = (α + β) y i is θ-conjugated to α + β , and we get rank(V θ n (α 1 + β, . . . , α n + β)) = dim C θ (α+β) (y 1 , . . . , y n ) Lastly C θ,δ (α) = (IF q ) θ = C θ (α + β) so rank(V θ,δ n (α 1 , . . . , α n )) = rank(V θ n (α 1 + β, . . . , α n + β)). • If α = -β, then α 1 = . . . = α n = -β and rank(V θ,δ n (α 1 , . . . , α n )) = rank(V θ,δ n (-β, . . . , -β)) = 1.
Since rank(V θ n (α 1 + β, . . . , α n + β)) = rank(V θ n (0, . . . , 0)) = 1, we obtain the result.

If the α i are not in the same (θ, δ)-conjugacy class, then {α 1 , . . . , α n } can be partitioned in distinct conjugacy classes {α 1 , . . . ,

α n } = A 1 ∪ • • • ∪ A r . According to theorem 1, rank(V θ,δ n (α 1 , . . . , α n )) = r i=1 rank(V θ,δ (A i )). Considering B i = {α+β, α ∈ A i }, we have rank(V θ,δ (A i )) = rank(V θ (B i )) and rank(V θ n (α 1 + β, . . . , α n + β)) = r i=1 rank(V θ (B i ))
, and the result follows.

The above result shows that the map H is a linear isometry between the remainder evaluation skew codes of support (α 1 , . . . , α n ), length n and dimension k (i.e with rank(V θ,δ n (α 1 , . . . , α n )) = k) over IF q [X; θ, δ] and remainder evaluation skew code of support (α 1 + β, . . . , α n + β), length n and dimension

k (i.e rank(V θ n (α 1 +β, . . . , α n +β)) = k) over IF q [Z; θ]
. Since H is constant on IF q the two codes are just two different constructions of the same codes. It is therefore sufficient to consider right remainder evaluation codes in IF q [X; θ] (i.e. δ = 0).

Comparison of remainder evaluation skew codes and operator evaluation skew codes with δ = 0 : If δ = 0 and if rank(Wr θ n (y 1 , . . . , y n )) = n, the operator evaluation code of support (y 1 , . . . , y n ) and dimension k over IF q [X; θ] is the Gabidulin code of dimension k of support y 1 , . . . , y n .

Let f ∈ IF q [X; θ, δ] and 0 = y i ∈ IF q . Considering α i = D(y i ) y i we have f (α i ) = L f (y i ) y i .
Therefore (cf. [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF] (4.12) page 325 ):

(L f (y 1 ), . . . , L f (y n )) = (f (α 1 ), . . . , f (α n ))      y 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 y n     
This shows that operator evaluation codes whose support does not contain zero (which would correspond to a coordinate which is always zero) are always monomially equivalent to a remainder evaluation skew code. Note that the converse of the above does not hold since y i may belong to a field extension of the field IF q containing the α i , i.e. α i may not be in the conjugacy class of 1.

Comparison of operator evaluation skew codes with δ = 0 and with δ = 0 : Lemma 4 If δ = 0, rank(Wr θ,δ n (y 1 , . . . , y n )) = n and ∃u ∈ IF q , θ(u) u = β, then an operator evaluation code over IF q [X; θ, δ] is a Gabidulin code.

Proof: Suppose that δ = 0. For α i = δ(y i ) y i ,we have

α i + β = β θ(y i ) y i . Using (3), we obtain (L f (y 1 ), . . . , L f (y n )) = (H(f ))(α 1 + β), . . . , (H(f ))(α n + β))      y 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 y n      If ∃u ∈ IF q , θ(u) u = β, then a quick computation gives (L f (y 1 ), . . . , L f (y n )) = u × L H(f ) (u y 1 ), . . . , L H(f ) (u y n )
Furthermore rank(W r θ,δ n (y 1 , . . . , y n )) = rank(W r θ n (u y 1 , . . . , u y n )) so we get two different constructions of the same operator evaluation code, up to the scalar multiplication by an element of IF * q . In particular the two codes have the same rank distance. According to [START_REF] Berger | Isometries for Rank Distance and Permutation Group of Gabidulin Codes[END_REF] the Gabidulin codes of dimension k relatively to (u y 1 , . . . , u y n ) and (y 1 , . . . , y n ) are equal if u ∈ IF * q .

MDS and MDR evaluation codes

We now give conditions for an evaluation code to be MDS (Maximum Distance Separable, for the Hamming metric) or MRD (Maximum Rank Distance, for the rank metric).

Proposition 2 Let n ∈ IN * , y i , α i ∈ IF q , i = 1, . . . , n.
1. If rank(V θ,δ n (α 1 , . . . , α n )) = n, then the remainder evaluation skew code of length n, dimension k and support (α 1 , . . . , α n ) is MDS.

2. If y 1 , . . . , y n are linearly independent over (IF q ) θ , then the operator evaluation skew code of length n, dimension k and of support (y 1 , . . . , y n ) is MRD.

Proof:

1. If a nonzero code word is of weight < n -k + 1, then at least k coordinates, say the first k ones must vanish. This means that there exits a nonzero f ∈ IF q [X; θ, δ] of degree < k such that f (α i ) = 0 for i ∈ {1, . . . , k}. The polynomial f is right divisible by X -α i and therefore f is a right multiple of lclm(X -α 1 , . . . , X -α k ).

Since rank(V θ,δ n (α 1 , . . . , α n )) = n implies that rank(V θ,δ k (α 1 , . . . , α k )) = k, we get from Theorem 2 that the degree of f is k. By assumption the degree of f is less than k, showing that a nonzero word of weight < n -k + 1 cannot exist. This shows that the minimal distance of the code is ≥ n -k + 1 and we conclude using the "singleton bound".

2. The dual of a MRD code is MRD (cf. [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF]), so let us consider the code with the test matrix G θ,δ L and let us prove that it is MRD by showing that it has no code word of rank < k + 1 over (IF q ) θ . If c is a code word of rank r < k + 1, then there exists x = (x 1 , . . . , x r ) of rank r and a matrix M of size r × n, rank r with coefficients in

(IF q ) θ such that c = xM . Then G θ,δ L c T = G θ,δ L M T x T = 0 with G θ,δ L = Wr θ,δ k,n (y 1 , . . . , y n ). As r ≤ k, we get Wr θ,δ r,n (y 1 , . . . , y n ) M T x T = 0. Let (z 1 , . . . z r ) such that (y 1 , . . . , y n ) M T = (z 1 , . . . z r )
, then as D is linear over (IF q ) θ we get Wr θ,δ r,n (y 1 , . . . , y n ) M T = Wr θ,δ r (z 1 , . . . , z r ) and Wr θ,δ r (z 1 , . . . , z r ) x T = 0. Furthermore z 1 , . . . , z r are linearly independent over (IF q ) θ because y 1 , . . . , y n are linearly independent over (IF q ) θ and M has rank r so det(Wr θ,δ r (z 1 , . . . , z r )) = 0, contradiction.

Note 4 If y 1 , . . . , y n are linearly independent over (IF q ) θ and if δ = 0, then the operator evaluation skew code of support (y 1 , . . . , y n ) is a MRD Gabidulin evaluation code ( [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF]). The condition y 1 , . . . , y n ∈ IF q linearly independent over (IF q ) θ implies that n ≤ [IF q : (IF q ) θ ]. If q = p N with p prime number and if θ is the Frobenius automorphism, then n ≤ N . The condition rank(V θ,δ n (α 1 , . . . , α n )) = n for α 1 , . . . , α n ∈ IF q is less restrictive on the size of n. Let us consider q = p N . Then there are p conjugacy classes : the conjugacy class of -β and p -1 conjugacy classes each of size p N -1 p-1 . The rank of the Vandermonde matrix of elements lying in the same conjugacy class = {-β} cannot be higher than

[IF q : (IF q ) θ ] = N . So if rank(V θ,δ n (α 1 , . . . , α n )) = n then n ≤ (p -1)N + 1. Example 1 Let F = IF 3 6 = IF 3 (a) where a 6 + 2 a 4 + a 2 + 2 a + 2 = 0, n = 13, k = 3, β = 1 ∈ F , θ(u) = u 3 . Let α = (2,
a, a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 14 , a 25 ) ∈ F 13 . We have rank(V 13 (α)) = 13, so the remainder evaluation skew code of length 13, dimension k < 13 and support α is a MDS code over IF 3 6 . Notice that 13 is the maximal length of a remainder evaluation MDS code over IF 3 6 whereas 6 is the maximal length for an operator evaluation code over IF 3 6 .

4 Imposing a distance on skew module codes

In the following we consider the module (θ, δ)-code (g) n,θ,δ given in definition 1. We fix ∆ ∈ {0, . . . , n} and our aim is to construct g ∈ IF q [X; θ, δ] such that the minimal distance of the code is ≥ ∆. We will consider either the Hamming distance or the rank distance. Since the condition involves α i belonging to an algebraic closure IF q of IF q , in the following we always extend any morphism a → a m to the morphism a → a m of the field extension IF q (α i ) ⊂ IF q .

Hamming condition 1 : δ = 0 and ∃b ∈ IN and α ∈ IF q such that for

α i = α i+b-1 (1 ≤ i ≤ ∆ -1) we have g(α i ) = 0 (1 ≤ i ≤ ∆ -1) and rank(V id,0 n (N θ 0 (α), . . . , N θ n-1 (α)) = n. Hamming condition 2 : Let b ∈ IN such that b = 0 if δ = 0. There exists α ∈ IF q such that for α i = N θ,δ i+b-1 (α) (i = 1, . . . , n) we have g(α i ) = 0 (1 ≤ i ≤ ∆ -1), rank(V θ,δ n (α 1 , . . . , α n )) = n and N θ,δ i+b-1 (N θ,δ j (α)) = N θ,δ j (N θ,δ i+b-1 (α)), i = 1, . . . , ∆ -1, j = 0, . . . , n -1.
Rank condition 1 : There exists a y 1 ∈ IF q such that for y i+1 = D(y i ) = D i (y 1 ), i = 1, . . . , n -1 we have L g (y i ) = 0, i = 1, . . . , ∆ -1 and det(Wr θ,δ n (y 1 , . . . , y n )) = 0.

Theorem 4 1. If g ∈ IF q [X; θ, δ] satisfies the Hamming conditions 1 or 2, then the Hamming distance of the module skew code (g) n,θ,δ is ≥ ∆.

2. If g ∈ IF q [X; θ, δ] satisfies the rank condition 1 then rank distance of the module skew code (g) n,θ,δ is ≥ ∆.

Proof:

1. We need to prove that the code has no nonzero word of Hamming weight r < ∆. Such a word would be of the form c = c

1 X i 1 + c 2 X i 2 + • • • + c r X ir
, where i j are r distinct elements of {0, . . . , n -1} and c i = 0. As a code word c is a right multiple of g and is therefore right divisible by (X -α i ), we get

c 1 N θ,δ i 1 (α i )+• • •+c r N θ,δ ir (α i ) = 0. Therefore c is a nonzero element in the kernel of H r =      N θ,δ i 1 (α 1 ) • • • N θ,δ i ∆-2 (α 1 ) N θ,δ ir (α 1 ) N θ,δ i 1 (α 2 ) • • • N θ,δ i ∆-2 (α 2 ) N θ,δ ir (α 2 ) . . . . . . . . . . . . N θ,δ i 1 (α r ) • • • N θ,δ i ∆-2 (α r ) N θ,δ ir (α r )      . (4) 
In order to show that the minimum Hamming distance of the code is ≥ ∆, we need to insure that H r is invertible when Hamming condition 1 or Hamming condition 2 is satisfied.

Hamming condition 1 Here δ = 0, so

N θ i (α j ) = N θ i (α) j-1 N θ i (α) b we obtain H r =      1 1 • • • 1 N θ i 1 (α) N θ i 2 (α) • • • N θ ir (α) . . . . . . . . . . . . N θ i 1 (α) ∆-2 N θ i 2 (α) ∆-2 • • • (N θ ir (α)) ∆-2      ×      N θ i 1 (α) b 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 N θ ir (α) b      So det(H r ) = det(V id,0 r (B)) r j=1 N θ i j (α) b
where B ⊂ {N θ 0 (α), . . . , N θ n-1 (α)}. As rank(V id,0 n (N θ 0 (α), . . . , N θ n-1 (α))) = n, we get rank(V id,0 r (B)) = r so det(H r ) = 0 and c = 0.

Hamming condition 2 Let us assume that b = 0. Keeping the notation (4), we deduce from the relations

N θ,δ i+b (N θ,δ j (α)) = N θ,δ j (N θ,δ i+b (α)), i = 1, . . . , ∆ -1, j = 0, . . . , n -1 that H r =      N θ,δ 0 (N θ,δ i 1 (α)) N θ,δ 0 (N θ,δ i 2 (α)) • • • N θ,δ 0 (N θ,δ ir (α)) N θ,δ 1 (N θ,δ i 1 (α)) N θ,δ 1 (N θ,δ i 2 (α)) • • • N θ,δ 1 (N θ,δ ir (α)) . . . . . . . . . . . . N θ,δ r-1 (N θ,δ i 1 (α)) N θ,δ r-1 (N θ,δ i 2 (α)) • • • N θ,δ r-1 (N θ,δ ir (α))     
So H r = V θ,δ r (α i 1 +1 , . . . , α ir+1 ). As {α i 1 +1 , . . . , α ir+1 } is a subset of {α 1 , . . . , α n } and rank(V θ,δ n (α 1 , . . . , α n )) = n, we get det(H r ) = 0 and c = 0. If b = 0 and δ = 0 then according to the proof of Proposition 2.9 (2) of [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], N θ,δ i+j (α) = N θ,δ j (α) θ j (N θ,δ i (α)) so

H r =      N θ,δ b (N θ,δ i 1 (α))θ b (N θ,δ 0 (N θ,δ i 1 (α))) • • • N θ,δ b (N θ,δ ir (α))θ b (N θ,δ 0 (N θ,δ ir (α))) N θ,δ b (N θ,δ i 1 (α))θ b (N θ,δ 1 (N θ,δ i 1 (α))) • • • . . . . . . . . . N θ,δ b (N θ,δ i 1 (α))θ b (N θ,δ r-1 (N θ,δ i 1 (α))) • • • N θ,δ b (N θ,δ ir (α))θ b (N θ,δ r-1 (N θ,δ ir (α)))      ⇒ det(H r ) = N θ,δ b N θ,δ i 1 (α) • • • N θ,δ ir (α) θ b det V θ,0 r (α i 1 +1 , . . . , α ir+1 ) = 0 and c = 0.
2. We follow ideas of [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF] to prove that the code has no nonzero word of rank r < ∆.

Consider a codeword c ∈ (g) n,θ,δ of rank r ≤ ∆ -1 over (IF q ) θ . Let x = (x 1 , . . . , x r ) of rank r over (IF q ) θ and M a r × n matrix with coefficients in (IF q ) θ of rank r such that c = xM . As c ∈ (g) n,θ,δ , there exists a m ∈ IF q [X; θ, δ] with degree ≤ k such that c(X) = m(X)g(X). According to Lemma 2, we have L c (y i ) = L m (L g (y i )) = 0. So H r c T = 0 where

H r =      y 1 D(y 1 ) • • • D n-1 (y 1 ) y 2 D(y 2 ) • • • D n-1 (y 2 ) . . . y r D(y r ) • • • D n-1 (y r )     
The vector x T is a nonzero element in the kernel of H r M T and we want to prove that H r M T is invertible.

As D j-1 (y i ) = D i-1 (y j ), we get :

H r =      y 1 y 2 • • • y n D(y 1 ) D(y 2 ) • • • D(y n ) . . . D r-1 (y 1 ) D r-1 (y 2 ) • • • D r-1 (y n )     
Let us define (z 1 , . . . , z r ) such that (y 1 , y 2 , • • • , y n ) M T = (z 1 , . . . , z r ). As D is linear over (IF q ) θ we have :

H r M T =      z 1 z 2 • • • z r D(z 1 ) D(z 2 ) • • • D(z r ) . . . D r-1 (z 1 ) D r-1 (z 2 ) • • • D r-1 (z r )     
As dim (I Fq) θ (y 1 , . . . , y n ) = n and rank(M ) = r, z 1 , . . . , z r are linearly independent over (IF q ) θ so the determinant of the previous matrix is not zero, which contradicts rank(x) = r.

Note that the rank condition 1 with δ = 0 leads to Gabidulin codes. We are now going to refine the conditions given in the previous section to get MDS or MRD codes : Theorem 5

• If g ∈ IF q [X; θ, δ] satisfies the Hamming condition 1 or 2 with α ∈ IF q and g = lclm(X -α i , i = 1, . . . , n -k), then the code (g) n,θ,δ is MDS.

• If g ∈ IF q [X; θ, δ] satisfies the MRD condition 1 with y 1 ∈ IF q and
L g (y) = Wr θ,δ n-k+1 (y 1 , . . . , y n-k , y), then the code (g) n,θ,δ is MRD.

Proof: According to the hypothesis, deg(g) = n -k, the code has a word of Hamming weight ≤ n -k + 1. So both the Hamming distance and the rank distance are ≤ n -k + 1.

The remainder part of the proof follows directly from the theorem 4 with ∆ = n -k + 1.

Under certain conditions we get that the dual of (g) n,θ,δ is an evaluation skew code :

Proposition 3

1. If (α 1 , . . . , α n ) ∈ IF q and g ∈ IF q [X; θ, δ] satisfy the "Hamming condition 2" for deg(g) = n -k (i.e. g = lclm(X -α i , i ∈ {1, . . . , n -k)), then the dual of module skew code (g) n,θ,δ is the remainder evaluation skew code of length n, dimension n -k and support (α 1 , . . . , α n ).

2. If (y 1 , . . . , y n ) ∈ IF q and g ∈ IF q [X; θ, δ] satisfy the "rank condition1" for deg(g) = n -k (i.e. L g (Y ) =| Wr θ,δ (y 1 , . . . , y n-k , Y ) |), then the dual of module skew code (g) n,θ,δ is the operator evaluation skew code of length n, dimension n-k and support (y 1 , . . . , y n ).

Proof:

1. The test matrix of the code is defined as

H =      N θ,δ 0 (α 1 ) • • • N θ,δ n-2 (α 1 ) N θ,δ n-1 (α 1 ) N θ,δ 0 (α 2 ) • • • N θ,δ n-2 (α 2 ) N θ,δ n-1 (α 2 ) . . . . . . . . . . . . N θ,δ 0 (α n-k ) • • • N θ,δ n-2 (α n-k ) N θ,δ n-1 (α n-k )      As N θ,δ i-1 (N θ,δ j (α)) = N θ,δ j (N θ,δ i-1 (α)) (i ∈ {1, . . . , n -k}, j ∈ {0, . . . , n -1}) we get H =      N θ,δ 0 (α 1 ) • • • N θ,δ 0 (α n-1 ) N θ,δ 0 (α n ) N θ,δ 1 (α 1 ) • • • N θ,δ 1 (α n-1 ) N θ,δ 1 (α n ) . . . . . . . . . . . . N θ,δ n-k-1 (α 1 ) • • • N θ,δ n-k-1 (α n-1 ) N θ,δ n-k-1 (α n )     
which is the generator matrix of the MDS remainder evaluation skew code of length n, dimension n -k and support (α 1 , . . . , α n )

2. Let c ∈ (IF q ) n be a code word. We have L c (y i ) = 0 for i = 1, . . . , ∆ -1 So H c T = 0 where

H =      y 1 D(y 1 ) • • • D n-1 (y 1 ) y 2 D(y 2 ) • • • D n-1 (y 2 ) . . . y n-k D(y n-k ) • • • D n-1 (y n-k )      =      y 1 y 2 • • • y n D(y 1 ) D(y 2 ) • • • D(y n ) . . . D n-k (y 1 ) D n-k (y 2 ) • • • D n-k (y n )     
This is the generator matrix of the operator evaluation skew code of support (y 1 , . . . , y n ), length n and dimension n -k. The set {N i (α), i ∈ {0, . . . , n -1}} can be partitioned as {a 377 , a, a 13 , a 121 , a 365 , a 485 } ∪ {a 404 , 1, a 4 , a 40 , 2, a 368 } such that the Vandermonde determinants of the two sets are not zero. For ∆ ≤ 12 we have that g = lclm(X -N i (α), i = 1, . . . , ∆ -1) ∈ IF 3 6 [X; θ] is of degree ∆ -1 and generates a [n, n -∆ + 1, ∆] skew code over IF 3 6 :

• for ∆ = 4, we get g = X 3 + 2X 2 + a 12 x + a 416 which generates [START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF][START_REF] Berger | Isometries for Rank Distance and Permutation Group of Gabidulin Codes[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF], [START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF][START_REF] Boucher | Skew Cyclic Codes[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF], [START_REF] Chaussade | Skew codes of prescribed distance or rank, Designs[END_REF][START_REF] Boucher | Coding with skew polynomial rings[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF], [START_REF] Cohn | Free Rings and their relations[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF], [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF][START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF], . . ., [START_REF] Lidl | Finite Fields[END_REF][START_REF] Gabidulin | A fast matrix decoding algorithm for rank-error-correcting codes[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF] skew codes over IF 3 6 .

• for ∆ = 8, then g = X 7 + a 401 X 6 + a 680 X 5 + a 18 X 4 + a 32 X 3 + a 477 X 2 + a 725 x + a 194 generates [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF][START_REF] Berger | Isometries for Rank Distance and Permutation Group of Gabidulin Codes[END_REF][START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF], [START_REF] Gabidulin | A fast matrix decoding algorithm for rank-error-correcting codes[END_REF][START_REF] Boucher | Skew Cyclic Codes[END_REF][START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF], [START_REF] Lam | A general theory of Vandermonde matrices[END_REF][START_REF] Boucher | Coding with skew polynomial rings[END_REF][START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF], [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF][START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF] and [START_REF] Lidl | Finite Fields[END_REF][START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF][START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF] skew codes over IF 3 6 .

5 Construction of BCH skew codes with prescribed distance over a given field I F q Most conditions to impose a distance in the previous sections deal with elements α i or y i in a field extension of IF q . The goal of this section is to study how to start with such elements α i in a field extension of IF q in order to obtain a code over IF q . We start from α in a field extension of IF q and construct g ∈ IF q [X; θ, δ] of smallest degree such that g(α) = 0. Repeating the procedure allows to construct codes for the Hamming conditions 1 and 2. For the rank condition 1 we start start from y = 0 in a field extension of IF q and construct g ∈ IF q [X; θ, δ] such that L g (y) = 0, but this is equivalent to construct g such that g(D(y)/y) = 0 and therefore reduces to the previous problem.

Definition 9 Let α ∈ IF q s . The nonzero unitary polynomial f of minimal degree in IF q [X : θ, δ] such that X -α divides f on the right is called the left skew (θ, δ)-minimal polynomial of α over IF q and we will denote it min θ,δ,q (α).

Proposition 4 Let α ∈ IF q s . Then min θ,δ,q (α) = lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )} ,
where the computation of the lclm is performed in IF q s [X; θ, δ] and θ denotes the extension of θ ∈ Aut(IF q ) to Aut(IF q s ).

Proof: Form [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF] we know that the lclm lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )} exists and is unique. From Proposition 1, any τ ∈ Aut(IF q s /IF q ) fixes β ∈ IF q and therefore gives an automorphism

ϕ τ : IF q s [X; θ, δ] → IF q s [X; θ, δ] n i=0 a i X i → n i=0 τ (a i )X i Therefore ϕ τ (lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )}) is right divisible by all X -(τ σ)(α),
where σ ∈ Aut(IF q s /IF q ). Since left multiplication (i.e. translation) by τ in Aut(IF q s /IF q ) will permute the elements of Aut(IF q s /IF q ), we obtain that the polynomial

ϕ τ (lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )})
is right divisible by all X -σ(α) for σ ∈ Aut(IF q s /IF q ) comparing degrees, we see that ∀τ ∈ Aut(IF

q s /IF q ) ϕ τ (lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )}) = lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )} .
This shows that the coefficients of lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )} are fixed by any τ ∈ Aut(IF q s /IF q ) and therefore belong to IF q , the fixed field of Aut(IF q s /IF q ). In order to show that lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )} is the left skew (θ, δ) minimal polynomial of α over IF q , we note that if f ∈ IF q [X; θ, δ] is right divisible by X -α in IF q s [X; θ, δ], then f = q • (X -α) and using again the above automorphism ϕ σ we get that f = ϕ σ (q) • (X -σ(α)). This shows that f must be right divisible by all X -σ(α) for all σ ∈ Aut(IF q s /IF q ), and therefore right divisible by lclm {X -σ(α), σ ∈ Aut(IF q s /IF q )}.

We note that if [IF p (α) : IF p ] = ℓ, then θ ℓ (α) = 1 showing that X -α and therefore min θ,δ,q (α) is a right divisor of X ℓ -1. Also the polynomial min θ,δ,q (α) is not always irreducible over IF q [X; θ]. It may be explained by the following fact : if min θ,δ,q (α) = f • g, then either g(α) = 0 or α is conjugated to a root of f (cf. [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF] Theorem 2.7). So the polynomial g may not vanish at α. This is illustrated in the following example.

Example 3 Let F = IF 3 6 = IF 3 (a) and IF 3 2 = IF 3 (b) where b = a 91 . The polynomial f = X 3 +2 X 2 +2 x+b 7 is the minimal skew polynomial of a over IF 3 2 . It is not irreducible over IF 3 2 as f = (X + b)(X -b)(X -b 5 ) is a factorization of f in IF 3 2 [X; θ]. Furthermore f (b 5 ) = 0 but the minimal polynomial of b 5 is X -b 5
which divides f on the right. We also have f (a 321 ) = 0 and the minimal polynomial of a 321 over IF

3 2 is X 2 + a 182 X + a 546 = X 2 + b 2 X + b 3 which also divides f on the right : (X + b)(X 2 + b 2 X + b 3 ) = f .
With the above, we can realize Hamming condition 1, 2 and rank condition 2 for a polynomial g ∈ IF q [X; θ, δ] of degree ≤ r and imposed distance ∆ in the following way:

1. Select α in IF q r where r ≤| (IF q ) θ | r and construct the α i needed for the condition.

Denote IF Q the field generated by adjoining the α i to IF q and denote σ the generator of Aut(IF Q /IF q ).

2. Compute the orbit S of {α i } under σ. If | S |≤ n, then compute the skew polynomial g = lclm γ∈S (X -γ) = lclm(min θ,δ,q (α i ), i = 1, . . . , ∆ -1) and proceed. Otherwise start over with a new α.

3.

If the α i verify the corresponding rank condition(s), then a new code (g) θ,δ has been found.

For the rank condition 1 we need to construct the operator L(Y ) ∈ IF q [D; •] of smallest order such that a given set y 1 , . . . , y j belongs to the solution space of L(Y ) = 0. This can also be done either by constructing the corresponding operator directly, or using the above by constructing g = min θ,δ,q ( D(y 1 ) y 1 , . . . , D(y ∆-1 ) y j )

and considering L g (Y ).

6 Decoding

Decoding remainder evaluation codes

For the rank distance, a Welch-Berlekamp like algorithm is presented in [START_REF] Loidreau | A Welch-Berlekamp like algorithm for decoding Gabidulin codes Lecture Notes[END_REF] to decode operator evaluation codes for δ = 0 . We now design a Welch-Berlekamp like algorithm to decode right remainder evaluation codes with the Hamming metric

Proposition 5 Let n ∈ IN * , k ∈ IN * , k < n and α i ∈ IF q , i ∈ 1, . . . , n such that rank(V θ,δ n (α 1 , . . . , α n )) = n.
Consider the right remainder evaluation code

C k (α 1 , . . . , α n ) = {(f (α 1 ), . . . , f (α n ))/f ∈ IF q [X; θ, δ], deg(f ) ≤ k -1} If for c ∈ C k (α 1 , . . . , α n ) and v ∈ (IF q ) n the weight of v -c is ≤ t = (n -k -1)/2, then for Q 0 , Q 1 ∈ IF q [X; θ, δ] such that • deg(Q 0 ) ≤ k + t and deg(Q 1 ) ≤ t • ∀i ∈ {1, . . . , n}, Q 0 (α i ) + Q 1 (α v i i )v i = 0 if v i = 0, Q 0 (α i ) = 0 if v i = 0 we can recover c as (f (α 1 ), . . . , f (α n )), where f is the quotient in the left division of Q 0 by -Q 1 in IF q [X; θ, δ].
Proof: Let c be a code word and v ∈ (IF q ) n such that w(v -c) ≤ t = (n -k -1)/2. Since the minimum distance of the code is n -k + 1, c is the unique code word such that

w(v -c) ≤ t. Let f ∈ IF q [X; θ, δ] with deg(f ) ≤ k -1 such that c = (f (α 1 ), . . . , f (α n )). Let R defined by R = Q 0 + Q 1 • f where deg(Q 0 ) ≤ k + t, deg(Q 1 )
≤ t and the coefficients of Q 0 , Q 1 satisfy the linear system given by ∀i ∈ {1, . . . , n}, Q 0

(α i ) + Q 1 (α v i i )v i = 0 if v i = 0 Q 0 (α i ) = 0 if v i = 0
Our goal is to prove that R = 0, which then allows to compute f as the quotient in the left division of Q 0 by -Q 1 in IF q [X; θ, δ] and to reconstruct c. Let us evaluate R at α i . According to Product Theorem 2.7 of [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], we have,

∀i ∈ {1, . . . , n}, R(α i ) = Q 0 (α i ) + Q 1 (α c i i )c i if c i = 0 = Q 0 (α i ) if c i = 0
As w(v -c) ≤ t, there are at least n -t positions i (without lost of generality, say 1, 2, . . . , n -t) such that

v i = c i , so ∀i ∈ {1, . . . , n -t}, R(α i ) = Q 0 (α i ) + Q 1 (α v i i )v i if v i = 0 = Q 0 (α i ) if v i = 0
So according to the hypothesis on Q 0 and Q 1 , we get R(α i ) = 0 for all i ∈ {1, . . . , n-t} which implies that R is right divisible by lclm(X -α i , i = 1, .., n -t). If R = 0, then, as rank(V θ,δ n-t (α 1 , . . . , α n-t )) = n -t, the polynomial R is of degree at least n -t = (n + k)/2. Since by construction R is of degree at most k + t = (n + k)/2, we must have R = 0. This leads to the following decoding algorithm for a MDS remainder evaluation skew code of length n, dimension k and support (α 1 , . . . , α n ) satisfying rank(V θ,δ n (α 1 , . . . , α n )) = n : Input : v ∈ (IF q ) n such that v = c + e with w(e) ≤ t = (n -k -1)/2 and c a code word Output: c 1. Construct the system (S) with n + 1 unknowns and n equations given by (S) if v i = 0 :

k+t j=0 q j N j (α i ) = 0 if v i = 0 : k+t j=0 q j N j (α i ) + t j=0 q k+t+j+1 N j (θ(v i )/v i (α i + β) -β) v i =
0 and compute a solution q 0 , . . . q n of (S) 2. Compute the quotient f in the left division of Q 0 (X) by -Q 1 (X) in IF q [X; θ, δ], where Q 0 (X) := k+t j=0 q j X j and Q 1 (X) := t j=0 q j+1+k+t X j 3. Return c = (f (α 1 ), . . . , f (α n ))

Example 4 Consider IF 3 6 = IF 3 (a) where a 6 + 2 a 4 + a 2 + 2 a + 2 = 0.

• Consider the ring in IF 3 6 [X; θ] (δ = 0) and α = (a, a 2 , a 3 , a 4 , a 5 , a 7 ). Since rank(V (α)) = 6, the skew remainder evaluation code of support α is an MDS [START_REF] Chaussade | Skew codes of prescribed distance or rank, Designs[END_REF][START_REF] Boucher | Coding with skew polynomial rings[END_REF][START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF] code over IF 3 6 . For f = X 2 + X + a ∈ IF 3 6 [X; θ] we consider the received word v = (f (α 1 ), . . . , f (α 5 ), a 341 ) = (a 9 , a 357 , a 257 , a 727 , a 34 , a 341 ).

Since f (α 6 ) = a 341 this received word contains one error which we now correct by recovering f :

1. the matrix of the system (S) is the 6 × 7 matrix

       
1 a a 4 a 13 a 40 a 9 a 28 1 a 2 a 8 a 26 a 80 a 357 a 345 1 a 3 a 12 a 39 a 120 a 257 a 46 1 a 4 a 16 a 52 a 160 a 727 a 1 a 5 a 20 a 65 a 200 a 34 a 107 1 a 7 a 28 a 91 a 280 a 341 a 302

       
2. its kernel is generated by (1, a 370 , a 328 , a 184 , 0, a 363 , a 548 ).

We obtain

Q 0 = a 184 X 3 + a 328 X 2 + a 370 X + 1 and Q 1 = a 548 X + a 363 4. The left quotient of Q 0 by -Q 1 in IF 3 6 [X; θ] is f = X 2 + X + a
• Consider the ring IF 3 6 [X; θ, δ 1 ] and α = (2, a, a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 14 , a 25 ).

Since rank(V (α)) = 13, the skew remainder evaluation code of support α is an MDS [START_REF] Loidreau | A Welch-Berlekamp like algorithm for decoding Gabidulin codes Lecture Notes[END_REF][START_REF] Chaussade | Skew codes of prescribed distance or rank, Designs[END_REF][START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF] code over IF 3 6 . For f = X 5 + aX 2 + X + a ∈ IF 3 6 [X; θ, δ 1 ] we consider the received word v = (f (α 1 ), . . . , f (α 10 ), a 708 , a 487 , a 183 ) given by v = (a 221 , a 464 , a 180 , a 416 , a 720 , a 261 , a 400 , a 201 , a 218 , a 708 , a 487 , a 183 ).

Since f (α j ) = v j for 11 ≤ j ≤ 13, such a received word contains three errors which we now correct by recovering f :

1. the matrix of the system (S) is a 13 × 14 matrix 2. its kernel is generated by

(1, a 335 , a 707 , a 157 , a 112 , a 198 , a 632 , a 587 , a 490 , 0, 1, a 268 , a 223 , a 126 )

3. this yields the polynomials Q 0 = a 490 X 8 + a 587 X 7 + a 632 X 6 + a 198 X 5 + a 112 X 4 + a 157 X 3 + a 707 X 2 + a 335 x + 1 and Q

1 = a 126 X 3 + a 223 X 2 + a 268 x + 1 4. The left quotient of Q 0 by -Q 1 in IF 3 6 [X; θ, δ 1 ] is f = X 5 + aX 2 + X + a
6.2 Decoding module codes

Hamming condition 1

Recall that under this conditionδ = 0. A decoding algorithm for this condition based on Euclid's algorithm can be found in [START_REF] Boucher | Skew Cyclic Codes[END_REF] and [START_REF] Chaussade | Skew codes of prescribed distance or rank, Designs[END_REF], we present here a slightly different method.

For the presentation we will assume that b = 0 and ∆ = 2t + 1. Consider g ∈ IF q [X; θ] and α ∈ IF q such that for

α i = α i+b-1 (1 ≤ i ≤ ∆ -1) we have g(α i ) = 0 (1 ≤ i ≤ ∆ -1) and rank(V id,0 n (N θ 0 (α), . . . , N θ n-1 (α)) = n.
Let c be a code word in (g) n,θ and e = r j=1 e j X i j ∈ IF q [X; θ] with e j = 0, r ≤ t and 0 ≤ i 1 < i 2 < • • • < i r ≤ n -1 an error of Hamming weight t. For a received word v = c + e we obtain at α j = N i j (α) the syndrome

S i = e(α i-1 ) = r j=1 e j N i j (α i-1 ) = r j=1 e j N i j (α) i-1 = r j=1 e j α i-1 j
We consider a commutative error localizator polynomial with unknown coefficients :

h = (Z -α 1 ) • • • (Z -α r ) = Z r + r j=1 h j Z j-1 ∈ IF q [Z] From h(α i ) = 0, (Z • h)(α i ) = 0, . . . , (Z r-1 • h)(α i ) = 0, for i ∈ {1, . . . , r} we obtain:          α r i + r j=1 h j α j-1 i = 0 α r+1 i + r j=1 h j α j-1 i = 0 . . . α 2r-1 i + r j=1 h j α j+r-2 i = 0 
Multiplying the first equation by e i for i ∈ {1, . . . r} we get e i α r i + r j=1 h j e i α j-1 i = 0. If we sum on i we obtain S r+1 + r j=1 h j S j = 0. Repeating the same trick for the 2r -1 other equations we get

         S r+1 + r j=1 h j S j = 0 S r+2 + r j=1 h j S j+1 = 0 . . . S 2r + r j=1 h j S r+j-1 = 0 , corresponding to S      h 1 h 2 . . . h r      = b (5) 
where

S =       S 1 S 2 • • • • • • S r S 2 S 3 • • • • • • S r+1 S r S 2r       and b =      -S r+1 . . . . . . -S 2r     
A quick computation gives S = V DV T , where D is a diagonal matrix with e 1 α 1 . . . e r α r on its diagonal and V = V id,0 n (α 1 , . . . , α r ) whose rank is r according to the definition of the code above. The matrix S is invertible and we can compute the coefficients of h as solution of the linear system above and then find the positions of the errors thanks to the zeroes of h. Here is the corresponding algorithm :

Input : v = c + e with w(e) = r ≤ t and c word of a code satisfying Hamming Condition 1 Output : c

1. Compute S i for i = 1, . . . , 2t and the matrix S above for r = t. 2. While det(S) = 0 do r := r -1; compute S; end while 3. Compute the solution (h 1 , . . . , h r ) of the linear system given by ( 5) 4. Find i 1 , . . . , i r such that h(N i j (α)) = 0 where h = Z r + r i=1 h i Z i-1 ∈ IF q [Z] 5. Compute e 1 , . . . , e r given by the r equations S i = r j=1 e j α i-1 j where α j = N i j (α) 6. Return c = v -r j=1 e j X i j

Rank condition 1

We follow Gabidulin's decoding algorithm ( [START_REF] Gabidulin | A fast matrix decoding algorithm for rank-error-correcting codes[END_REF]) for IF q [X; θ] which we extend to module codes (g) n,θ,δ over IF q [X; θ, δ]. Suppose that for g ∈ IF q [X; θ] there exists y = y 1 ∈ IF q such that for y i+1 = D(y i ) = D i (y), i = 1, . . . , n -1 we have L g (y i ) = 0, i = 1, . . . , ∆ -1 and det(Wr θ,δ n (y 1 , . . . , y n )) = 0. Let c be a code word and e = (e 0 , . . . , e n-1 ) ∈ (IF q ) n with rank r ≤ t = (∆-1)/2. If the received word is v = c + e and we want to recover c from v. Let us define the syndrome S j = L v (y j ). By construction, we have S j = L c (y j ) + L e (y j ) = L e (y j ), j = 1, . . . , 2t. Consider x ∈ (IF q ) r with rank(x) = r and M ∈ M((IF q ) θ , r, n) of rank r such that e = xM . Our aim is to construct a polynomial of degree r whose space of solutions enables to recover x and then M . For j ∈ {1, . . . , 2t} we obtain

S j = n-1 i=0 e i D i (D j-1 (y)) = n-1 i=0 r l=1 x l M l,i+1 D i (D j-1 (y)) = r l=1 x l n-1 i=0 M l,i+1 D j-1 (D i (y)) = r l=1 x l D j-1       n-1 i=0 M l,i+1 D i (y) z l       = r l=1 x l D j-1 (z l )
where the z 1 , . . . , z r are defined by the relation M (y 1 , . . . , y n ) T = (z 1 , . . . , z r ) T . Since y 1 , . . . , y n are linearly independent over (IF q ) θ and M is a rank r matrix over (IF q ) θ , we also have that z 1 , . . . , z r are linearly independent over (IF q ) θ . Once we computed the z i , we can recover x l from the the linear system S j = r l=1

x l D j-1 (z l ).

To find the z l we are going to construct the polynomial h = r i=0 h i x i ∈ IF q [X; θ, δ] with h r = 1 such that the space of solutions of L h is generated by z 1 , . . . , z r . The coefficients of this polynomial will satisfy a linear system depending on the S i . We first derive one equation of this linear system and will explain later how to find the remaining r -1 equations. For l ∈ {1, . . . , r} we have

L h (z l ) = r+1 j=1 h j-1 D j-1 (z l ) = 0 (6) 
Multiplying each equation by x l , we get r+1 j=1 h j-1 x l D j-1 (z l ) = 0 (l ∈ {1, . . . , r}). Summing these equations over l = 1, . . . , r, we get a linear relation between h l given by r+1 j=1 h j-1 S j = 0. In order to get the r -1 other linear relations between the coefficients of h we follow the same idea as in [START_REF] Gabidulin | A fast matrix decoding algorithm for rank-error-correcting codes[END_REF] : applying θ i-1 to (6) for i = 2, . . . , r we have θ i-1 (L h (z l )) = r+1 j=1 θ i-1 (h j-1 )θ i-1 D j-1 (z l ) = 0, l = 1, . . . , r

If β = 0 (the case considered in [START_REF] Gabidulin | A fast matrix decoding algorithm for rank-error-correcting codes[END_REF]), then D = θ and θ i-1 (D j-1 (z l )) = θ i+j-2 (z l ) .

Multiplying each equation of ( 7) by x l and summing all the equations over l ∈ {1, . . . , r} one gets the r -1 other linear equations in h 0 , . . . , h r-1 , h r = 1: r+1 j=1 θ i-1 (h j-1 )S i+j-1 = 0

If β = 0, the idea is to express θ i-1 (D j-1 (z l )) as a sum of D m (z l ) whose coefficients depend only on β using the following lemma:

Lemma 5 Consider i ∈ IN * and u ∈ IF q . Then θ i-1 (u) can be written as θ i-1 (u) = i k=1 a i,k (β)D k-1 (u) where the coefficients a i,j (β) are defined by :

• if β = 0: a 1,1 (β) = 1, a 1,j (β) = 0 (j ≥ 2) and a i+1,j+1 (β) = 1 β θ(a i,j (β))+θ(a i,j+1 (β)). • if β = 0: a i,i (0) = 1 and a i,j (0) = 0 for i = j.

Proof: For β = 0, we proceed by induction on i. We have θ 0 (u) = u = a 1,1 D 0 (u). Consider i ≥ 1 such that θ i-1 (u) = i k=1 a i,k (β)D k-1 (u). Then θ i (u) = i k=1 θ(a i,k (β))θ(D k-1 (u)). As θ = 1/βδ + id, we get θ i (u) = i k=1 θ(a i,k (β))(1/βD k (u) + D k-1 (u)) = i+1 k=1 (1/βθ(a i,k-1 (β)) + θ(a i,k (β)))D k-1 (u)) As a i+1,k-1 (β) = 1/βθ(a i,k-1 (β)) + θ(a i,k (β)), we get the result. The lemma below describes how to construct the polynomial h in the case where β ∈ IF q .

Lemma 6 Consider h = X r + r-1 i=0 h i X i ∈ IF q [X; θ, δ] such that L h (z i ) = 0 1. The coefficients h 0 , . . . , h r-1 satisfy the linear system :S • (h 0 , h 1 , . . . , h r-1 ) T = b, where S i,j = θ -i+1 i k=1 a i,k (β)S k+j-1 , b i = -θ -i+1 i k=1 a i,k (β)S k+r and a i,j (β) are defined by :

• if β = 0 : a 1,1 (β) = 1, a 1,j (β) = 0 (j ≥ 2) and a i+1,j+1 (β) = 1 β θ(a i,j (β)) + θ(a i,j+1 (β)).

• if β = 0 a i,i (0) = 1 and a i,j (0) = 0 for i = j.

2. The matrix S is an invertible matrix satisfying the relation :

S =     x 1 • • • • • • x r θ -1 (x 1 ) • • • • • • θ -1 (x r ) θ 1-r (x 1 ) • • • • • • θ 1-r (x r )     ×     z 1 • • • • • • D r-1 (z 1 ) z 2 • • • • • • D r-1 (z 2 ) z r • • • • • • D r-1 (z r )     Proof:
1. Let i ∈ {1, . . . , r}. According to [START_REF] Cohn | Free Rings and their relations[END_REF] r+1 j=1 θ i-1 (h j-1 )θ i-1 D j-1 (z l ) = 0, l = 1, . . . , r Applying lemma 5 to θ i-1 (D j-1 (z l )) we obtain r+1 j=1 θ i-1 (h j-1 ) i k=1 a i,k (β)D k-1 (D j-1 (z l )) = 0, l = 1, . . . , r

For each l we multiply this equation by x l and sum the r equations over l, we get 

⇒ S =     x 1 • • • • • • x r θ -1 (x 1 ) • • • • • • θ -1 (x r ) θ 1-r (x 1 ) • • • • • • θ 1-r (x r )     ×     z 1 • • • • • • D r-1 (z 1 ) z 2 • • • • • • D r-1 (z 2 ) z r • • • • • • D r-1 (z r )     so S is invertible.
We deduce from this the following algorithm :

Input : v = c + e with rank(e) = r ≤ t and c word of a code satisfying rank condition 1 Output : c 1. Compute S i for i = 1, . . . , 2t and the matrix S given in lemma 6, point 1 with r = t 2. While det(S) = 0 do r := r -1; compute S; end while 3. Compute the solution (h 1 , . . . , h r ) of the linear system given in lemma 6 4. Compute a basis of solutions z 1 , . . . , z r of L h over IF θ q where h = X r + r i=1 h i X i-1 5. Construct x = (x 1 , ..., x r ) as a solution of S j = r l=1

x l D j-1 (z l ), j = 1, . . . , r 6. Construct M ∈ M(IF θ q , r, n) such that M (y 1 , . . . , y n ) T = (z 1 , . . . , z r ) T 7. Construct e = xM and c = v -e

Acknowledgements

We thank Michael Singer for many discussions and useful suggestions.

Example 2

 2 Example over IF 3 6 = IF 3 (a). Let α = a, b = 0 and β = 0. The Hamming condition 2 is satisfied for n = 12 (Note that n = 12 > N = 6).

  k (β)S k+j-1 h j-1 = -θ -i+1 i k=1 a i,k (β)S k+r 2. Let us prove that S is invertible. S i,j = θ -i+1 i k=1 a i,k (β)S k+j-1 = i k=1 θ -i+1 (a i,k (β)) θ -i+1 r l=1 x l D k+j-2 (z l ) = r l=1 θ -i+1 (x l )θ -i+1 i k=1 a i,k (β)D k+j-2 (z l ) = r l=1 θ -i+1 (x l )θ -i+1 i k=1 a i,k (β)D k-1 (D j-1 (z l )) = r l=1 θ -i+1 (x l )θ -i+1 θ i-1 (D j-1 (z l )) = r l=1 θ -i+1 (x l )D j-1 (z l )

Table 1 :

 1 [START_REF] Boucher | Codes as modules over skew polynomial rings[END_REF] 

			3	2	2	3
		8 6	5	5	6
		12 3	2	2	3
		10 5	4	5	4
		13 6	5	5	6
	. . .	27 3 . . . . . .	2 . . .	2 . . .	3 . . .
		36 3	2	2	3
						3
	22 3	2	3	3	3
	23 3 . . . . . . . . .	2 . . .	3 . . .	3 . . .	2 . . .
	30 3	2	3	3	2

n k d β = 0 β = 1 β = a β = a

Table 2 :

 2 [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF] 

Table 3 :

 3 [START_REF] Gabidulin | A fast matrix decoding algorithm for rank-error-correcting codes[END_REF] 

	3 7	6	7	6	7	7	6
	10 4 7	6	6	6	7	6	6
	9 5 5	4	4	4	5	4	4
	10 6 5	4	4	4	5	4	4
	27 24 3 . . . . . . . . .	2 . . .	3 . . .	3 . . .	2 . . .	3 . . .	3 . . .
	30 27 3	2	3	3	2	3	3

2 Wronskian and Vandermonde matrices

If δ = 0, then C θ,δ (1) = {c ∈ K | θ(c) = c} is the fixed field K θ of K under θ.

If δ = 0, then C θ,δ (0) = {c ∈ K | δ(c) = 0} is the subfield of constants ker K (δ) of K for δ.