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D. Boucher and F. Ulmer *
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Abstract

In this work the definition of codes as modules over skew polynomial rings of
automorphism type is generalized to skew polynomial rings whose multiplication is
defined using an automorphism and an inner derivation. This produces a more gen-
eral class of codes which, in some cases, produce better distance bounds than skew
module codes constructed only with an automorphism. Extending the approach
of Gabidulin codes, we introduce new notions of evaluation of skew polynomials
with derivations and the corresponding evaluation codes. We propose several ap-
proaches to generalize Reed Solomon and BCH codes to module skew codes and for
two classes we show that the dual of such a Reed Solomon type skew code is an
evaluation skew code. We generalize a decoding algorithm due to Gabidulin for the
rank matrix and derive families of MDS and MRD codes.

Keywords: error-correcting codes, decoding, finite fields, skew polynomial rings

1 Skew module codes with derivation

Let A be a ring with an automorphism 6, then a #-derivation is a map dy : A — A such
that for all @ and b in A:

59(@ + b) = (59(a) + (59([))
So(ab) = Sp(a)b+ 0(a)sy(b).

According to [14] the most general skew polynomial rings in the variable X over ring A,
whose elements are written Y . a; X", are defined with the usual addition of polynomials
and a multiplication that follows the commuting rule Xa = 6(a)X + 6(a). We note the
resulting ring A[X;6,0] and, if A is a division ring, the ring A[X;0, 4] is a left and right
euclidean ring in which left and right ged and lem exist [14].

If A is a finite field IF,, then all f-derivations are of the form dg(a) = 5(0(a) — a) where
B € IF, and are therefore uniquely determined by § € I, (cf. [16], Corollary of Proposition
8). We denote (IF,)? the fixed field of 6 in TF,.
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In the following we will consider modules over R = F [X;0,d3] and in particular
submodules Rg/Rf C R/Rf. We have Rf C Ry if and only if ¢ is a right factor of f
and in this case Rg/Rf is a submodule of R/Rf which is cyclic and generated as a left
R-module by g + Rf. Therefore the left R-submodule Rg/Rf C R/Rf is a IF;-vector
subspace of dimension deg(f) —deg(g) of the IF,-vector space R/Rf of dimension deg( f).
In analogy to classical cyclic codes, we associate to an element Z;:Ol a; X" in the quotient
module R/Rf the ‘word‘ (ag,as,...,a,—1) € IF,".

Definition 1 Let R = F,[X;0,d5] and f € R be of degree n. A module (6, 0)-code C is
a left R-submodule Rg/Rf C R/Rf in the basis 1, X,..., X" ! where g is a right divisor
of f in R. The length of the code is n = deg(f) and its dimension is k = deg(f) —deg(g),
we say that the code C is of type [n, kl,. If the minimal distance of the code is d, then we
say that the code C is of type [n, k,d|,. We denote this code C = (g)np.5;-

The above module codes generalize the codes defined in [4] and are also considered in
[5]. As we shall see, there is a strong connection to Gabidulin codes (cf. [8]). A generator
matrix of the code is given by the coefficients of g, X -g,..., X* ! g and can be computed
using the rule Xa = 6(a)X + B(6(a) — a) for a € F,. Note that this generator matrix
depends only on the degree n of f, which justifies the notation C = (g)n,9,5,-

In this paper we will consider both the Hamming distance and the rank distance
introduced in [8] which is well adapted to our situation. Consider an IF,-vector space
V = (F,)™ over I, (like the codes we consider) and a subfield (F,)? C IF,. The rank
of v = (71,.--,Ym) € V, denoted rank(y), is the dimension of the (IF,)?-vector space
spanned by v1,...,7Ym. The relation d,qmi(7,7) = rank(y — ) defines a distance over
V = (IF,)™. If dg denotes the classical Hamming distance, then d,qni(7,7) < du(7,7)
(cf. [1]).

It is well known that there exists a change of variable which transforms a skew polyno-
mial ring A[X;0,0] over division rings A into either A[Z; 0] or A[Z; 4] (cf. [7], page 295).
If A=1T, and é3 # 0, then after the change of variable Z = X + 8 we obtain a pure
automorphism ring IF,[Z;60]. This corresponds to the bijective ring homomorphism

H:F,[X:0,05] — TF,[Z:6] (1)
Ya X' = Y e (Z2-p). (2)

The morphism H induces a map (which we also denote H) from an [n, k] module code

C = (g) over F,[X;0,05] with 3 # 0 to a [n, k] module code C = (H(g)) over F,[Z; ] via

n—1 n—1 n—1
1=0 1=0 1=0

Computing recursively the coefficients of (X + ) = Z;:o @it1+1X7 using

(X + ﬁ)iﬂ = (X +p5) Zai+1,j+1Xj = Ze(aiJrl,jJrl)(X + B)Xj

§=0 J=0



we obtain the following link between the generating matrices of the codes

Gg,n,@,ég - GH(g),n,G X An,n(ﬁ)a

where A, ,(3) is a lower unit triangular n x n matrix over (IF,)?(3) whose entries a;
(j < 1) are given by a;y1 511 = 0(as;) + B0(aij11) (1 < j < i), a1 = B0(aix) (1 < j).

The corresponding IFy-linear map between the codes (9)n6,5, and (H(g))ne does not
preserve the Hamming distance (for 3 # 0 the weight of H(X) is 2) nor the rank distance.
We shall see that the consideration of IF,[X; 0, 63] with § # 0 indeed produces new codes
which are not module codes over IF,[X;6]. From the above matrix A, , () we see that
the rank is preserved when 3 € (FF,)°.

The map H will be also useful in the context of evaluation codes introduced in the
section 3.

Proposition 1 For any o € Aut(IF,) the following map is a ring isomorphism

0o : Fg[X50,05] — IF[X;0,05)

i a; X" i ola) X"
i=0

=0

Proof: The map ¢, is an isomorphism of the corresponding additive groups, so we need
to check the multiplicative rule. We have ¢,(aX) = o(a)X = ¢,(a)ps(X). In order to
verify the reverse multiplication rule, we note that, since the group Aut(IF,) is abelian,
we always have o6 = fo:

po(X)ps(a) = Xo(a) = (0o0)(a)X +0o(B)((0c0)(a) —o(a))
= 0(0(a))X +0(6(0(a) —a)) = v,(Xa)

This shows that the following map

Po - (g)n,e,aﬁ - (900(9)))71,9760(5)

(ag,ai,...,an_1) +— (o(ag),o(ar),...,o(an_1))

has the property that for a and b in (g)nes,, ¥o(a +0) = vs(a) + oo (b) and for A € IF,
Yo(A-a) = g(N)gs(a). Since the map ¢, preserves the Hamming distance of linear codes,
it is a semilinear isometry for the Hamming distance.

This new class of codes is more general than the codes obtained using skew polynomials
of automorphism type for which § = 0. In the following tables we give the parameters
of codes which reach the best known Hamming distances over IF,4, IFg and IFy thanks to
a nonzero derivation and do not reach them with a zero derivation (tables for codes over
IF, also appear in [5]). Because of the above semilinear isometry ¢,, we only included
codes for one element of each orbit of § € I, under the action of 6.
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Table 1: ¥,

2211913 2 3 3 3
231203 2 3 3 2
302713 2 3 3 2
Table 2: Fy
(o [k[d[B=0]p=1][B=a|B=a[B=a'[B=0d’]
913 1|7 6 7 6 7 7 6
101 4|7 6 6 6 7 6 6
915 1|5 4 4 4 5 4 4
101 6 |5 4 4 4 5 4 4
27 1241 3 2 3 3 2 3 3
302713 2 3 3 2 3 3
Table 3: TFy



2 Wronskian and Vandermonde matrices

Like in the commutative case, many constructions of codes are based on the notion of the
evaluation of a polynomial. We follow the definition of an evaluation given in [11] (where
noncommutative fields of coefficients are also considered):

Definition 2 Let K be a division ring, 8 € Aut(K) and § a 0-derivation. For f =
> a; X" € K[X;0,0] and a € K the (right) remainder evaluation of f at « is denoted
f(a) and is defined as the remainder of the right division of f by X — «. We also define

0,8 :
N/’ () recursively as

NP (o) = 1
Ni(@) = 0N/ () a+5(N)*(a))

(2

Lemma 1 ([11], Proposition 2.9) Let K be a division ring, 0 € Aut(K) and 0 a 6-
derivation. For f = a; X" € K[X;0,0] and o € K we get f(a) =Y. a; N’ ().

In the following # will play the same role for the ring K[X;0] as 6 # 0 for the ring
K[X;0,6]. We therefore introduce the notation:

(0 if §=0
D—{a if 540

and associate to f = Y~ a; X" the operator L; = > a;D" in the ring K[D; o] = {>_" , a;D" |
a; € K}, where the addition is the usual addition and the multiplication is the composition
of operators.

Lemma 2 Let K be a division ring, 0 € Aut(K) and 0 a 0-derivation. The map

v: K[X;0,6] — K[D;o]
=0 =0

18 a morphism of rings.

From ( [10], Lemma 1(2) and [11] Proposition 2.9(4)) we obtain for 0 # a € K
that NY (D(a)a™!) = D'(a)a~t. Therefore, for 0 # a € K, we have f(D(a)a™!) =
ZaiNié’é (D(a)a™) = 0 if and only if Y a;D(a) = 0. This shows that f corresponds to
a generalized Ricatti equation of Ly.

Definition 3 Consider f =Y a; X' € K[X;0,6] and y € K, the operator evaluation
of fatye K is L¢(y). If Li(y) =0, then y is a solution of Ls(Y) = 0.

For a field extension K C F together with an extension of § and 6 to K we can
consider the operator evaluation of f € K[X;60,6] at y € F. We will be interested in the
case IF,[X;0,05]. For an extension IF, C IF,s we extend an automorphism a +— a™ of IF,
to the corresponding automorphism a — a™ of IF s, extending d3 accordingly.
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Definition 4 (/11], page 321) Let K be a division ring, 8 € Aut(K) and § a §-derivation.
Let A={a,...,a,} € K™. The (0,6)-Vandermonde matriz of A is defined by

1 1 1
0,6 0,6 0,6
V,f’5(A) _ Ny .(041) Nl .(042) N1 .(Oén>
N22(an) Ni2y(az) oo Np2y(am)

A closely related matrix is the following generalization of the Wronskian matrix

Y1 Y2 s Yn+1
D(y1) D(y2) -+ D(yn)
er{é(yl’ cee 7yn) = :
D" Hy) D" Hya) -+ D Hyn)

We now summarize some results, most of them from [11], which allow to control the
rank of the (6, §)-Vandermonde matrix.

Definition 5 ([11]) For a field K and a skew polynomial ring K[X;6,0] the (0,9)—
conjugacy class of an element a € K is the set of all its conjugates a® := &;)a—l— &CC) where
c is taken over all K — {0}.

Note 1 For a finite field F, = F,n with p prime, 0(a) = @ and r = ged(m, N) the

formula is a¢ := @(a +08)—pB. If a = —0 the (0,0)— conjugacy class of a is reduced
1

to {a} and if a # —[, it has as many elements as the set {&CC),C € IF;} namely, Z;IZ—:l

elements. So we get p" conjugacy classes : the conjugacy class of —f which is a single
class and p" — 1 classes with ’;1:__11 elements for each class. In particular, if 6 is the

Frobenius automorphism (m =r = 1), then there are p conjugacy classes.

Note 2 As pointed out in [11], the (8,0)— conjugacy class of 0 is the set of elements of
K that are logarithmic derivatives of elements of K. If 6 = 0, then a € IF, belongs to the
conjugacy class of 1 if and only if Ja € ¥, such that o = @. Ifq=2" and 0 : a > a?,
then @ = a, showing that there are exactly two conjugacy classes: the class of 1 which
is Fon \ {0} and the class of 0 which is {0}.

Definition 6 ([11], page 3.1}) Let K be a division ring with an automorphism 6, a -
derivation § and a € K. Then C%°(a) = {c € K* | a° = a} U{0}.

From [11], Lemma 3.2 we get that C%?(a) is a division subring of K. If K is a
commutative field we recover classical notions:

1. If § = 0, then C%%(1) = {c € K | 0(c) = ¢} is the fixed field K? of K under 6.

2. If § # 0, then C%%(0) = {c € K | §(c) = 0} is the subfield of constants kerg () of K
for 4.



Theorem 1 ([11], Theorem 4.5 page 323 and [11], page 321)) Let K be a division ring
with an automorphism, 6, 6 a 0-derivation and a € K. Then, for any {y1,...,yn} C K*,
we have rank(V, (a¥", ... a¥")) = dimeos (o) (Y1, - - -, yn). Let A= A;U---UA, be the par-
tition of A C K into (0, 6)-conjugacy classes. Then rank(V*°(A)) = >"7_, rank(V?°(4,)).

Corollary 1 Let K be a field and f =Y, a; X" € K[X;0,0] nonzero of degree n. Then

1. If § = 0, the solution space of L¢(Y) = 0 is a vector space of dimension at most n
over the fized field K of K under 6.

2. If 6 # 0, the solution space of L¢(Y) = 0 is a vector space of dimension at most n
over the subfield of constants kerg (§) of K for 4.

Proof:  We already noted that the solution space is a vectorspace over K% resp.
kerg (8). Suppose that L;(Y) = (3°7,aD") (Y) = 0 has n + 1 solutions yi, ..., Ynt1,
then (ag, ..., a,) is a nonzero vector in the kernel of Wr,, 1 (y1,. .., Ynt1)-

1. If § =0, then ( (4.12) page 325 of [11] ) the following matrix is of determinant 0

L 0 ... 0
1
o . - : 05
Wil copm) |0 = VR 1,
0 ... 0 -1
Yn+1
From the above theorem we get that vy, ..., yn41 are linearly dependent over K°.

2. If 6 # 0, then ((4.8) page 325 of [11] ) the following matrix is of determinant 0

L 9 ... 0
1
0.5 0o . T 0.5 .
Wrn+1(y17'-'uyn+1)‘ . . . 0 :Vn+1(0y1,...,0y +1)
0O --- 0 1
Yn+1

From the above theorem we get that 4, ..., y,41 are linearly dependent over ker (9).
|
The operator L(Y) whose solution space is spanned by y1,¥s, ..., ¥y, can be obtained
by expanding | er[il(yh ..y Yn, Y) | along the last column. In a similar way, in order

to construct the polynomial f € K[X;60,6] of minimal degree such that f(ay) = ... =
f(an) = 0 we simply consider lelm;<;<, (X — ;) € K[X;60,0]. It corresponds to the
minimal polynomial defined in Theorem 8 of [10] or page 326 of [11].

Theorem 2 ([10], [11]) Let K be a division ring with an automorphism, a € K and 6,
d a O-derivation. Let A = {aq,...,a,} € K". Let g4 = lelmi<;<,,(X — o) € K[X;0, 4],
then deg(g4) = rank (V2°(A)) .



Suppose that ¢ = ¢f, and consider 6 € Aut(IF,) given by a — a®. The fixed field (IF,)?
of 0 is IF,. We associate to Ly(Y) = > 1 ja;D" the commutative affine linearized poly-
nomial £(Z) € F,[Z] by expressing the action of the automorphism 6 and the derivation

55 = B0 — id):
1. If § = 0, then L4(Y) = > ;a;0" (cf. Section 5 of [12] or ”p-polynomials“ in [15])

UZ) = a, ZD" + .+ a1 Z% + ag Z €T, [Z).

2. If 6 # 0 then £;(Y) =>1" ya;i(B(0—id))" = > li(ao,. .., an,3)0" where the co-

efficients ¢;(ay, . . . , an, ) can be explicitly computed and in particular ¢y(ay, . . . , an, §) =

S (1) Ba;. Therefore £(Z) = S0 li(ao, - . ., an, B)Z@)" € F,[Z].

Definition 7 The multiplicity of a solution, a, of L;(Y') is the order of a, as a root of
the associated linearized polynomial ((Z).

The proof of [[6] Theorem 1] generalizes to

Theorem 3 Consider [ = > a; X" € Fy[X;0,05] and the corresponding Ls. There
exists a finite field extension ¥, /I, which contains all the roots of {1, (Y) = 0 and the
(F,)?-subspace of F,s spanned by those roots is

1. If 6 = 0: of dimension n — min{i | a; # 0}. If ag # O then the smallest such field
IF s is a difference splitting field (or Picard-Vessiot field) of L(Y') = 0.

2. If 6 #£ 0: n—min{i | ;(ag, ..., an, 8) #0}. If 0 ((=1)'F'a; # 0 then the smallest
such field IF s is a d-differential splitting field (or Picard-Vessiot field) of L(Y) = 0.

If s is a Picard-Vessiot field, then the elements of Aut(IF,/IF,) commute with
and 0y and therefore in both cases send a solution into a solution. In this case we call
Aut(F,: /IF,) the Galois group of L(Y) =>"" ,a;D".

For IF,[X;0,05] and " ,(—1)"a; # 0 the solutions of the operator satisfy a polyno-
mial over IF, and therefore all belong to a finite field extension of IF,. The solution space
is a vector space over the fixed field (IF,)? of IF, which, in this case, contains the subfield
of constants ker(ds) since d3 = B(6 — id). If we denote IF,- the field obtained by adjoin-
ing the solutions of L;(y) = 0, then Aut(F/IF,) is the Galois group that transforms a
solution of the operator into a solution (cf. [6], Theorem 1).

3 Skew evaluation codes

In this section we extend the notion of evaluation code introduced by E. Gabidulin in [8].
We will consider both the Hamming metric and the rank metric.



3.1 Definitions
Definition 8 Let n € N* and k € {1...,n}.

o Let a = (ay,...,ay) € (F)" with rank(V,%(ay,...,a,)) > k. The remainder
evaluation skew code of length n, dimension k and support o is defined as

Crlag,...,an) ={(f(an),..., flaw)) | f € F [X;0,6],deg(f) < k—1}

o Lety = (Y1,...,Yn) € (Fy)" with rank(Wr’(y1,...,yn)) > k The operator eval-
uation skew code of length n, dimension k and support y is defined as

Cre(yr, - yn) ={(Ls(y1), - Ly(yn)) | [ € Fg[X;0,0], deg(f) <k —1}

We now verify that the dimension of the codes defined above are k:

The generator matrix of Cgx(ay, ..., ay) is
e e e
oo — Ny%(ar)  Ny%(ag) oo Ny%(am)
R : : . :
Ngfl(al) lei(()@) e lefl(an)
It coincides exactly with the rectangular Vandermonde matrix V,z’f(al, co ) ([11]
whose rank is min(k, r) where r is the rank of V%°(ay, ..., ay,). Herer > k so rank(G(]’{.é) =
k and Cg(ay, ..., ay) is of dimension k.
The generator matrix of Cg (Y1, ..., Yn) is
Y1 Y2 T Yn
s | P D) Dl
£ = : : . :
DYy) D" Mya) - DMy
It coincides with the rectangular Wronskian matrix WrZ:i(yl, ..., Yn) whose rank is
min(k,r) where r is the dimension of the (IF,)? space generated by yi,...,y,. Herer >k

so rank(G%°) = k and the code Ci.£(y1,. .. ,yn) is of dimension k.

Note 3 For 0 = 0 the operator evaluation ﬁfc(yl) coincides with the evaluation of the
linearized polynomial. The corresponding operator evaluation codes are due to Gabidulin

(cf- [8])



3.2 Classification

Comparison of remainder evaluation skew codes with 6 =0 and § # 0 : The
image of the relation f = ¢-(X —a)+ f(a) in IF,[X; 6, §] under the morphism (1) becomes

H(f) = H(g)-(Z—-F—-a)+ fla)

in IF,[Z; 0], showing that
fla) =H(f)(a+05) (3)

Lemma 3 rank(V?°(ay, ..., a,)) = rank(VO(ay + 3, ..., + 3)).

Proof: We first consider the case where all «; are in the (6, §)-conjugacy class of a € I,

o If @ # —3, we have rank(V%(ay,...,a,)) = dimge, 5(a)(y1,...,yn) where y; is

defined by a; = o¥%. Furthermore o; + 3 = (y Yi) o + yl +p3 = (a + 0), s

a; + B = (a+ B)¥ is f-conjugated to o+ 3 , and we get

rank(V (a/l + ﬁ? ceey Oy ﬁ)) = dimce(a+ﬁ)(y1, s 7yn)

Lastly C%%(a) = (F,)? = C’(a + 3) so rank(V,?(ay,...,a,)) = rank(V!(aq +
B,...,an+p)).

e [fa=—p,thena; =... =a, =—0 and
rank(V%(ay, ..., o)) = rank(V9(=3,..., =) = 1.
Since rank(V?(ay + 3, ..., a, + ) = rank(V,2(0,...,0)) = 1, we obtain the result.

If the «; are not in the same (6, §)-conjugacy class, then {a,...,a,} can be partitioned
in distinct conjugacy classes {aq,...,a,} = A3 U--- U A,.. According to theorem 1,
rank (V% (aq, ..., q0)) = >0, rank(V“(A ) Con81der1ng B, ={a+p,a € A;}, we have
rank(V%9(A;)) = rank(V?(B;)) and rank(V,!(a; + 8, ...,an + 3)) = >i_, rank(V9(B;)),
and the result follows. O

The above result shows that the map H is a linear isometry between the remain-
der evaluation skew codes of support (ay,...,a,), length n and dimension k (i.e with
rank(V?(ay,. .., a,)) = k) over IF,[X;0,6] and remainder evaluation skew code of sup-
port (o + f3, ..., a, + 3), length n and dimension k (i.e rank(V/ (a1 +8, ..., an+0)) = k)
over IF,[Z; 0]. Since H is constant on IF, the two codes are just two different constructions
of the same codes. It is therefore sufficient to consider right remainder evaluation codes
in IF,[X;6] (i.e. = 0).

Comparison of remainder evaluation skew codes and operator evaluation skew
codes with § = 0 : If § = 0 and if rank(Wi’(y1,...,yn)) = n, the operator evalua-
tion code of support (v, ...,y,) and dimension k over IF;[X; 6] is the Gabidulin code of
dimension k of support 1, ..., Yn-
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Let f € F,[X;0,0] and 0 # y; € F,. Considering o; = D;i/i) we have f(a;) = #
Therefore (cf. [11] (4.12) page 325 ):

yi 0 - 0
(Er). - Lro) = (o) flea) | § 7
T

This shows that operator evaluation codes whose support does not contain zero (which
would correspond to a coordinate which is always zero) are always monomially equivalent
to a remainder evaluation skew code. Note that the converse of the above does not hold
since y; may belong to a field extension of the field IF, containing the o, i.e. a; may not
be in the conjugacy class of 1.

Comparison of operator evaluation skew codes with 6 = 0 and with § # 0 :

Lemma 4 If § # 0, rank(Wi?(yy, ..., yn)) =n and Ju € F,, @ = 3, then an operator
evaluation code over F,[X;0,6] is a Gabidulin code.

Proof: Suppose that § # 0. For o; = %,We have a; + 0 = ﬁ%. Using (3), we obtain

i 0 - 0
(E5()reees £50) = (D) 4 B (RO 400 | 0
0 0 n

If JuelF,, @ = (3, then a quick computation gives

(Ef(y1>7 s 7£f<yn)) =uX (LH(f)(uyl)v <o 7£H(f)(uyn))

Furthermore rank(Wr%(yy, ... y,)) = rank(Wrl(uyi,...,uy,)) so we get two dif-
ferent constructions of the same operator evaluation code, up to the scalar multiplication
by an element of IF,. In particular the two codes have the same rank distance. According
to [1] the Gabidulin codes of dimension k relatively to (wyi,...,uy,) and (yi,...,y,) are
equal if u € IF. 0O

3.3 MDS and MDR evaluation codes

We now give conditions for an evaluation code to be MDS (Maximum Distance Separable,
for the Hamming metric) or MRD (Maximum Rank Distance, for the rank metric).

Proposition 2 Letn € N, y;, o, e Fy,i=1,...,n.

1. Ifrank(V?°(ay, ..., a,)) = n, then the remainder evaluation skew code of length n,
dimension k and support (aq, ..., o) is MDS.

11



2. If y1, ..., yn are linearly independent over (IF,)?, then the operator evaluation skew
code of length n, dimension k and of support (yi,...,yn) is MRD.

Proof:

1. If a nonzero code word is of weight < n — k 4 1, then at least k£ coordinates, say
the first £ ones must vanish. This means that there exits a nonzero f € I,[X; 6, ]
of degree < k such that f(a;) = 0 for ¢ € {1,...,k}. The polynomial f is right
divisible by X — «; and therefore f is a right multiple of lelm(X — aq, ..., X — ay).
Since rank(V%(ay, ..., a,)) = n implies that rank(V%(aq, ..., ;) = k, we get
from Theorem 2 that the degree of f is k. By assumption the degree of f is less
than k, showing that a nonzero word of weight < n —k+ 1 cannot exist. This shows
that the minimal distance of the code is > n — k 4+ 1 and we conclude using the
“singleton bound”.

2. The dual of a MRD code is MRD (cf. [8]), so let us consider the code with the
test matrix G%(S and let us prove that it is MRD by showing that it has no code
word of rank < k + 1 over (IF,)?. If ¢ is a code word of rank r < k + 1, then
there exists © = (z1,...,,) of rank r and a matrix M of size r x n, rank r with
coefficients in (IF,)? such that ¢ = M. Then G%° ¢ = G%° M7 27 = 0 with
G% = WrZ”i(yl,...,yn). As r < k, we get Will(yy,...,y,) MT 27 = 0. Let
(21,...2.) such that (y1,...,y,) MT = (21,...2), then as D is linear over (IF,)? we
get Wl (yy, .. y,) MT = er"s(zl, ..., 2) and er"g(zl, ..., 2z) 2T = 0. Further-

r,n

more zy, ...,z are linearly independent over (IF,)? because yi,...,y, are linearly
independent over (IF,)? and M has rank r so det(Wr??(zy, ..., 2,)) # 0, contradic-
tion.

O

Note 4 If y1, ...,y are linearly independent over (IF,)? and if § = 0, then the operator
evaluation skew code of support (yi,...,yn) is a MRD Gabidulin evaluation code ([8]).
The condition y,...,yn € F, linearly independent over (F,)° implies that n < [F, :
(F,)%. If ¢ = p" with p prime number and if 0 is the Frobenius automorphism, then
n < N. The condition rank(V®(ay, ..., ap)) = n for ay,...,a, € F, is less restrictive
on the size of n. Let us consider ¢ = p~. Then there are p conjugacy classes : the
conjugacy class of —f and p — 1 conjugacy classes each of size p;\l:l. The rank of the

1
Vandermonde matriz of elements lying in the same conjugacy class # {—B} cannot be

higher than [F, : (F,)?] = N. So if rank(V.?(y,...,a,)) =n thenn < (p — 1)N + 1.

Example 1 Let F = Fy = F3(a) where a® +2a* +a*> +2a+2=0,n =13, k = 3,
B=1€F, 0u)=1ud Let a=(2a,a*a3a* a® a’a’, a® a’ a'® a'* a®) € F13. We
have rank(Vis(a)) = 13, so the remainder evaluation skew code of length 13, dimension
k < 13 and support a is a MDS code over IFss. Notice that 13 is the maximal length of a
remainder evaluation MDS code over IFss whereas 6 is the maximal length for an operator
evaluation code over IFss.
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4 Imposing a distance on skew module codes

In the following we consider the module (6, d)-code (¢g)ns given in definition 1. We fix
A € {0,...,n} and our aim is to construct g € IF,[X; 0, ¢] such that the minimal distance
of the code is > A. We will consider either the Hamming distance or the rank distance.
Since the condition involves a; belonging to an algebraic closure IF,, of IF, in the following

we always extend any morphism a +— a™ to the morphism a — a™ of the field extension
]Fq<ai) C ]Fq.

Hamming condition 1 : 6 =0 and 3b € N and o € F,, such that for a; = 'L (1 <
i <A —1) we have g(a;) =0 (1 <i <A —1) and rank(V4(N{(a),...,N?_(a)) =n.

Hamming condition 2 : Let b € IN such that b = 0 if § # 0. There exists a € T,
such that for a; = Nﬁﬁ)fl(a) (i =1,...,n) we have g(a;) = 0 (1 < i < A —1),
rank(V29(an, ..., an)) = n and N _ (N7 (a)) = NJP (NS _(a)i=1,...,A—1,j =
0,...,mn—1.

Rank condition 1 : There exists a y, € F, such that for yiy1 = D(y;) = Di(y1),i =
1,...,n—1 we have L4(y;) =0,i=1,...,A—1 and det(Wr22(yy, ... y,)) # 0.

Theorem 4 1. If g € F,[X;0,0] satisfies the Hamming conditions 1 or 2, then the
Hamming distance of the module skew code (g)n g5 is > A.

2. If g € F,[X;0,0] satisfies the rank condition 1 then rank distance of the module
skew code (g)np5 is > A.

Proof:

1. We need to prove that the code has no nonzero word of Hamming weight r < A.
Such a word would be of the form ¢ = ¢; X% 4 ¢, X2 + --- + ¢, X", where i; are r
distinct elements of {0,...,n—1} and ¢; # 0. As a code word c¢ is a right multiple of
g and is therefore right divisible by (X —«;), we get clel’é(ozi)+- - -—i—cerr’&(&i) = 0.
Therefore ¢ is a nonzero element in the kernel of

N{;’Z(@l) N@ZA’;(OM) N%Z(Oél)
H, = Ny .(0‘2) NiAyf.g(Oé2) N, .(042) | ()
0.6 ' 0.6 0.6
Nil () - Nz‘A,z(ar) N;; (o)

In order to show that the minimum Hamming distance of the code is > A, we need
to insure that H, is invertible when Hamming condition 1 or Hamming condition
2 is satisfied.

13



Hamming condition 1 Here § = 0, so N (o) = (N (« )) (N-e(oz))b we obtain

(3

1 1 1 Nf (@) 0 0
Nf(a) N (a) N (a) 0
H, = . X
. : : . : 0
NJ(@)A72 NO(@)A2 e (V) 0 0 Ny

b
So det(H,) = det(VitO(B)) (H;;l Ng(a)) where B C {N%(a),...,N?_(a)}. As
rank(V4O(Nf(a),...,N?_(a))) = n, we get rank(V4%(B)) = r so det(H,) # 0
and ¢ = 0.

Hamming condition 2 Let us assume that b = 0. Keeping the notation (4), we
deduce from the relations

Nﬁ(N“( )) = N“(N“( Nyi=1,...,A—=1,j=0,....,n—1

i+b
that 0.6/ 110, 0,6/ 770, 0,6 /770,
NPINES (@) NN (@) e NN @)
H— NP (NG (@) NYPO(NG (@) - Ny (a)
Nf(sl(NM( ) Nfél(N“( ) oo NPY(NDO(a))
So H, = Vf"s(ahﬂ, ooy 41). As {41,441} is a subset of {aq, ..., a,} and

rank(V%(ay, ... )) = n, we get det(H,) # 0 and ¢ = 0.
If b # 0 and 5 0 hen according to the proof of Proposition 2.9 (2) of [11],

NZ3 (a) = N%(a) (N (a)) so

Ny (NP2 (@))8"(No (N (@) -+ Ny (N7 (@))8"(Ng (N} ()

Ny (N{(a >>9b<Nfﬂ<N“< D) - N5’5<N£’5<a>>ekaff1<N£’5<a>>>

= det(HT) = Nbe’& (Nz%(s(a) U Ngé(a)) eb (det (‘/;"970(04i1+17 s 7air+1))) 7é 0
and ¢ = 0.
. We follow ideas of [8] to prove that the code has no nonzero word of rank r < A.
Consider a codeword ¢ € (g)n04 of rank r < A — 1 over (IF,)?. Let z = (zy,...,2,)

of rank r over (IF,)? and M a r x n matrix with coefficients in (IF,)? of rank r such
that ¢ = M. As ¢ € (g)n g4, there exists a m € I [X;0,0] with degree < k such
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that ¢(X) = m(X)g(X). According to Lemma 2, we have L.(y;) = L,,(L,(y;)) = 0.
So H, ¢ =0 where

yi D(yr) --- D"j(yl)
o = y? D(y2) -+ D (92)
yr D(yr) -+ D" '(y)

The vector 2 is a nonzero element in the kernel of H, M7T and we want to prove
that H,. M7 is invertible.

As DI7Y(y;) = D' (y;), we get :

Y1 Yo Yn
H, = D(:yl) D(ya) -+ Dlyn)
DY y) D Hye) -+ D yn)

Let us define (zy,. .., z,) such that (yi, vy, -+ ,yn) MT = (21,...,2,). As D is linear
over (IF,)? we have :

2 % . Z
par| PE) DE) e DG
Dr—i(zl) DT‘—l(Zz) . DT—l(ZT)
As dimg yo (y1,- - Yn) = n and rank(M) = 7, z1,..., 2, are linearly independent

over (IF,)? so the determinant of the previous matrix is not zero, which contradicts
rank(z) = r.

O

Note that the rank condition 1 with 6 = 0 leads to Gabidulin codes. We are now going
to refine the conditions given in the previous section to get MDS or MRD codes :

Theorem 5 o If g€ IF,[X;0,0] satisfies the Hamming condition 1 or 2 with o € F,
and g =lelm(X — oy, i =1,...,n — k), then the code (g)nps is MDS.

o [fgeF,[X;0,0] satisfies the MRD condition 1 with y, € IF, and
Ly(y) = erl’fkﬂ(yl, ey Yn—ksY), then the code (g)ngs is MRD.

Proof: According to the hypothesis, deg(g) = n — k, the code has a word of Hamming
weight < n—Fk+1. So both the Hamming distance and the rank distance are < n—k—+1.
The remainder part of the proof follows directly from the theorem 4 with A =n—k+1.

Under certain conditions we get that the dual of (¢),s is an evaluation skew code :
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Proposition 3 1. If (ai,...,,) € F, and g € F,[X;0,0] satisfy the “Hamming
condition 2”7 for deg(g) =n —k (i.e. g =1lcdm(X —ay,1 € {1,...,n—k)), then the
dual of module skew code (§)nps is the remainder evaluation skew code of length n,
dimension n — k and support (aq, ..., qp).

2. If (y1,---,yn) € F, and g € F,[X;0,6] satisfy the “rank condition1” for deg(g) =
n—k (ie. L,Y) = WiPy1,...,unxY) |), then the dual of module skew code

(9)n,0.5 is the operator evaluation skew code of length n, dimension n—k and support

(Y155 Yn)-
Proof:
1. The test matrix of the code is defined as
No(an) o NpZy(an)  Np2i(an)
Ho No(az) - NpZy(an)  Np2i(as)
No (k) -+ NpZolomx) No2i(am s)

As NPO(ND?(a)) = NPO(NP (@) (i€ {L,...,n—k}, j € {0,...,n — 1}) we get

Moy oy o
N O B O B
szk_l(al) Ngfk_l(an,l) Ngfk_1(an)

which is the generator matrix of the MDS remainder evaluation skew code of length
n, dimension n — k and support (o, ..., ay)

2. Let ¢ € (IF,)" be a code word. We have L.(y;) =0fori=1,...,A—1So H "' =0

where
Y1 D(y) - D" Yu) Y1 Y2 e Yn
g_| w D) o D7) | | P) D) o D)
Ynk DWn-t) - D" (Yns) D" F(y) D" F(ya) - D" F(yn)
This is the generator matrix of the operator evaluation skew code of support (y1, ..., yn),

length n and dimension n — k.

O

Example 2 FEzample over F3s = F3(a). Let « = a, b = 0 and f = 0. The Hamming
condition 2 is satisfied for n = 12 (Note that n = 12 > N = 6). The set {N;(«a),i €
{0,...,n—1}} can be partitioned as {a®>"", a,a'®, a'?', a3 a®®} U {a'® 1, a", a2, a3}
such that the Vandermonde determinants of the two sets are not zero. For A < 12 we
have that g = lelm(X — Ny(a),i = 1,...,A — 1) € F36[X;0] is of degree A — 1 and
generates a [n,n — A+ 1, A] skew code over FFge:
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o for A =4, we get g = X+ 2X? + a'?z + a™® which generates [4,1,4], [5,2,4],
6,3,4], [7,4,4], [8,5,4], ..., [12,9,4] skew codes over Fss.

o for A=8, then g = X7+ a*™ X6+ a%0X° + a8 X* + a2 X3 + " X2 + a2 + o™
generates [8,1,8], [9,2,8], [10,3,8], [11,4,8] and [12,5,8] skew codes over Fss.

5 Construction of BCH skew codes with prescribed
distance over a given field I,

Most conditions to impose a distance in the previous sections deal with elements «; or
y; in a field extension of IF,. The goal of this section is to study how to start with such
elements o; in a field extension of I, in order to obtain a code over IF,. We start from
a in a field extension of IF, and construct g € IF,[X;0, 6] of smallest degree such that
g(a) = 0. Repeating the procedure allows to construct codes for the Hamming conditions
1 and 2. For the rank condition 1 we start start from y # 0 in a field extension of IF, and
construct g € IF,[X;6,d] such that £,(y) = 0, but this is equivalent to construct g such
that g(D(y)/y) = 0 and therefore reduces to the previous problem.

Definition 9 Let o € F,s. The nonzero unitary polynomial f of minimal degree in
IF,[X :0,0] such that X — « divides f on the right is called the left skew (6,6)-minimal

polynomial of « over I, and we will denote it ming s ,(c).
Proposition 4 Let o« € Fys. Then
ming 5 ,(a) = lelm{X — o(a),o € Aut(F,./F,)},
where the computation of the lclm is performed in Iy« [X; 0, ] and 6 denotes the extension
of 8 € Aut(IF,) to Aut(IFy).

Proof: Form [14] we know that the lclm lclm {X — o(a),0 € Aut(F: /IF,)} exists and
is unique. From Proposition 1, any 7 € Aut(IF . /IF,) fixes § € F, and therefore gives an
automorphism

or 1 Fy[X;0,0] — TFu[X;6,0]

n n

Z a; X" Z 7(a;) X"

=0 =0

Therefore ¢, (lcdm{X — o(a),o € Aut(F,/IF,)}) is right divisible by all X — (70)(a),
where 0 € Aut(IFF s /IF,). Since left multiplication (i.e. translation) by 7 in Aut(IF,/IF,)
will permute the elements of Aut(IF,:/IF,), we obtain that the polynomial

or(ldm{X —o(a),0 € Aut(F /IF,)})

is right divisible by all X — o(«a) for 0 € Aut(IF,:/IF,) comparing degrees, we see that
V1 e Aut(Fy /IF,)

or(ldm{X —o(a),0 € Aut(F,/F,)}) = ldm{X — o(a),0 € Aut(F,/IF,)}.
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This shows that the coeflicients of lclm {X — o(«), 0 € Aut(FF,/IF,)} are fixed by any
7 € Aut(F: /IF,) and therefore belong to I, the fixed field of Aut(IF,:/IF,).
In order to show that lclm {X — o(a),0 € Aut(Fy:/IF,)} is the left skew (6,0) minimal
polynomial of a over I, we note that if f € IF,[X;6,4] is right divisible by X — «a in
IF,:[X;0,6], then f = ¢- (X —«) and using again the above automorphism ¢, we get that
f=vs(q) - (X —0o(a)). This shows that f must be right divisible by all X — o(«) for all
o € Aut(IF,: /IF,), and therefore right divisible by lclm {X — o(a),0 € Aut(F/IF,)}. o

We note that if [F,(«) : ] = ¢, then 6‘(c) = 1 showing that X — « and therefore
ming s,() is a right divisor of X* — 1. Also the polynomial mings,() is not always
irreducible over IF,[X; #]. It may be explained by the following fact : if mings,(a) = f- g,
then either g(a) = 0 or « is conjugated to a root of f (cf. [11] Theorem 2.7). So the
polynomial g may not vanish at a. This is illustrated in the following example.

Example 3 Let F = Fys = F3(a) and Fy2: = F3(b) where b = a®*. The polynomial
f=X34+2X24+22+b" is the minimal skew polynomial of a over Fs2. It is not irreducible
over Faz as f = (X +b)(X —b)(X —V°) is a factorization of f in F32[X;0]. Furthermore
f(b%) = 0 but the minimal polynomial of b° is X — b which divides f on the right. We
also have f(a**') = 0 and the minimal polynomial of a®*' over Fs2 is X%+ a'®2X +a®1® =
X2+ 0?X + b which also divides f on the right : (X +b)(X? + 02X + 1) = f.

With the above, we can realize Hamming condition 1, 2 and rank condition 2 for a
polynomial g € IF,[X;6,0] of degree < r and imposed distance A in the following way:

1. Select v in F,» where r <| (IF,)? |" and construct the a; needed for the condition.
Denote IFg the field generated by adjoining the o; to IF, and denote o the generator
of Aut(Fg/IF,).

2. Compute the orbit S of {c;} under . If | S |< n, then compute the skew polynomial
g = lelm,eg(X — ) = ledm(ming s (a;),i = 1,...,A — 1) and proceed. Otherwise
start over with a new a.

3. If the o verify the corresponding rank condition(s), then a new code (g)g s has been
found.

For the rank condition 1 we need to construct the operator £L(Y') € IF,[D; o] of smallest
order such that a given set yy,...,y; belongs to the solution space of £L(Y) = 0. This
can also be done either by constructing the corresponding operator directly, or using the

above by constructing
. D D(ya—
g = ming s ( () e (ya 1))
1 Yj

and considering £,(Y").
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6 Decoding

6.1 Decoding remainder evaluation codes

For the rank distance, a Welch-Berlekamp like algorithm is presented in [13] to decode
operator evaluation codes for § = 0 . We now design a Welch-Berlekamp like algorithm
to decode right remainder evaluation codes with the Hamming metric

Proposition 5 Letn € N*, ke N*, k <n and o; € Fy, i € 1,...,n such that
rank(V(ay, ..., ) = n.
Consider the right remainder evaluation code

Cilar,...,an) ={(f(an),..., flaw))/f € F[X;0,0],deg(f) <k —1}

If for c € Ci(en, ..., o) and v € (IF,)™ the weight of v —c is <t = (n—k—1)/2, then
for Qo, Q1 € F,[X;6,0] such that

o deg(Qo) < k+t anddeg(@Qy) <t
o Vi€ {1, c. ,n},QO(ai) + Ql(()é;)i)’l}i =0 Zfl)z 7& 0, Qg(ai) =0 ZfUZ =0

we can recover ¢ as (f(aq), ..., f(ay)), where f is the quotient in the left division of Qq

by —Qq in F,[X;0,4].

Proof: Let ¢ be a code word and v € (IF,)" such that w(v —¢) <t =(n—k—1)/2.
Since the minimum distance of the code is n — k + 1, ¢ is the unique code word such that
w(v —c) <t Let feF,[X;0,0] with deg(f) < k — 1 such that ¢ = (f(o1),..., f(an)).
Let R defined by R = Q¢+ Q1 - f where deg(Qo) < k+1t, deg(Q1) < t and the coefficients
of Qq, Q1 satisfy the linear system given by

Vi € {1, R ,n}, Qo(ai) + Ql(afi)vi = 0 ify 7é 0
Qo(Oéi) =0 lf’Ul =0

Our goal is to prove that R = 0, which then allows to compute f as the quotient in
the left division of Qo by —Q; in IF;[X; 6, 6] and to reconstruct c.
Let us evaluate R at a;. According to Product Theorem 2.7 of [11], we have,

Vi € {1, e ,Tl}, R(Oél) = Qo(ai) + Q1<Oé§:i)Ci if C; # 0
As w(v — ¢) < t, there are at least n — t positions ¢ (without lost of generality, say
1,2,...,n —t) such that v; = ¢;, so
Vi € {1, oo, — t}, R(Ozz) = QQ(O.@;) + Ql(afi)vi if V; 7é 0
= QO(ai) if v; =0
So according to the hypothesis on @y and @1, we get R(c;) =0foralli € {1,... , n—t}
which implies that R is right divisible by lelm(X — ay,i = 1,..,n —t). If R # 0, then, as
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rank(V?’ (o, ..., cn_y)) = n—t, the polynomial R is of degree at least n —t = (n+k)/2.

Since by construction R is of degree at most k 4+t = (n + k)/2, we must have R =0.

This leads to the following decoding algorithm for a MDS remainder evaluation skew
code of length n, dimension k and support (ay, . . ., a,,) satisfying rank(V9%(ay, . .., a,,)) =

n:

Input : v € (IF,)" such that v = ¢+ e with w(e) <t = (n —k —1)/2 and ¢ a code word

Output: ¢
1. Construct the system (5) with n + 1 unknowns and n equations given by

it o #0350 g Niw) + 35y Giversvn Ni(0(vi)/vi (i + 8) — B) v = 0
and compute a solution qo, . .. g, of (5)
2. Compute the quotient f in the left division of Qo(X) by —Q1(X) in F,[X; 0, ],
where Qo(X) := Zf:é Qij and Q1 (X) = Zj’:o Qj+1+k+th
3. Return ¢ = (f(a), ..., f(an))

Example 4 Consider F3s = F3(a) where a® +2a* +a®> +2a+ 2 = 0.

e Consider the ring in F3s[X; 0] (6 =0) and a = (a,a? a3, a*, a’,a”). Sincerank(V (a)) =
6, the skew remainder evaluation code of support « is an MDS [6,3,4] code over F3e.
For f = X?+ X + a € F36[X; 0] we consider the received word

v=(flov),..., f(oz5),a341) _ (ag,a357,a257,a727,a347a341).

Since f(ag) # a*'! this received word contains one error which we now correct by

recovering f :

1. the matriz of the system (S) is the 6 x 7 matriz

1 a CL4 CL13 CL40 a9 CL28
1 a2 CLS a26 CLSO a357 a345
1 Cl3 a12 (1,39 a120 a257 a46
1 CZ4 a16 &52 alGO a727 a
1 CL5 a20 a65 a200 a34 CL107
1 (17 CL28 a91 CL280 a341 (1302

2. its kernel is generated by (1,a%™, a3 a8, 0, a®%3, %),

3. We obtain Qp = a'®* X3 + a®2X?2 +a’°X + 1 and Q1 = a®8X + >%
4. The left quotient of Qo by —Qy in Fa6[X;0] is f = X?>+ X +a
10414 %),

o Consider the ring Fss[X;0,6,] and o = (2,a,a? a3, a*,a®,a% a",a®,a®,a', a
Since rank(V (a)) = 13, the skew remainder evaluation code of support o is an MDS
(13,6, 8] code over Fss. For f = X°+aX?+ X +a € F36[X;0,0,] we consider the
recewved word v = (f(ay),. .., f(ai),a™, a*® a'®) given by

v = (a221’ a4647 6L180, a416’ 0,720, (1261, a400, aQOl’ a218’ CL708, CL487, a183).



Since f(aj) # v; for 11 < j <13, such a received word contains three errors which
we now correct by recovering f :

1. the matriz of the system (S) is a 13 x 14 matriz

2. its kernel is generated by

(1’ CL335, a707, a157 112 198 632 587’ a490’ O, 1’ CL268, G223

126
 a ,  a @ )

,a

3. this yields the polynomials Qo = a** X84+ a*®" X" 4 a532 X6 4 !B X5 a2 X4 4
a7 X3 + X2 1+ 03y 4 1 and Q; = a0 X3 + a2 X2 + a2z 4 1

4. The left quotient of Qg by —Q1 in F3s[X;0,01] is f = X° +aX?’+ X +a

6.2 Decoding module codes
6.2.1 Hamming condition 1

Recall that under this conditiond = 0. A decoding algorithm for this condition based on
Euclid’s algorithm can be found in [2] and [6], we present here a slightly different method.
For the presentation we will assume that b = 0 and A = 2¢ + 1.

Consider g € IF,[X;0] and « € ¥, such that for a; = a'**~! (1 <i < A — 1) we have
g(a) =0 (1 <i <A —1) and rank(V % (N(a),..., N | (a)) = n.

Let ¢ be a code word in (g)np and e = Y77 ;X% € T [X;0] with ¢; # 0, r < ¢t
and 0 < iy < iy < --- < i, <n—1an error of Hamming weight t. For a received word
v = ¢+ e we obtain at a; = N;,(«) the syndrome

Si=e(a'™h) = Z e; Ni (') = Z ej Nij(a)' ™ = Zej aj
j=1 j=1 J=1

We consider a commutative error localizator polynomial with unknown coefficients :

h:(Z—al)---(z—ar):Z’“+Zr:hjzj—1 € IF,[Z]

j=1

From h(a;) = 0,(Z - h)(a;) =0,...,(Z" ' - h) () =0, for i € {1,...,r} we obtain:
af + 3 hjal ™! =0
att Y kel =0

2r—1 T AJFr=2
Q; +Zj:1 hja; =0

Multiplying the first equation by e; for i € {1,...7} we get e; af + Z§=1 hje; ot =0.
If we sum on 7 we obtain S, + Z;Zl h;S; = 0. Repeating the same trick for the 2r — 1
other equations we get

S,«_g.l + Zg‘:l hij - 0 h1

Spyo+ > hiS; =0 h

) i 214 S , corresponding to S _2 =b (5)
Sor + Zgzl hiSryj—1 = 0 he.
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where

Sy Sy oo e S, —Sri1
Sy Sy e e Syt ‘

S = and b=
Sr SQT _827"

A quick computation gives S = VDVT, where D is a diagonal matrix with ejo; ... e q,
on its diagonal and V = V4%(qy, ..., a,) whose rank is r according to the definition of
the code above. The matrix S is invertible and we can compute the coefficients of h as
solution of the linear system above and then find the positions of the errors thanks to the
zeroes of h. Here is the corresponding algorithm :

Input : v = ¢+ e with w(e) = r <t and ¢ word of a code satisfying Hamming Condition 1

Output : ¢

1. Compute S; for i = 1,...,2t and the matrix S above for r = .

2. While det(S) = 0 do r := r — 1; compute S; end while

3. Compute the solution (hq, ..., h,) of the linear system given by (5)

4. Find 4y, ..., i, such that h(N; (a)) = 0 where h = Z" + 37| h,Z"' € IFy[Z]

ot

Compute ey, ..., e, given by the r equations S; = Z €; ozj-_l where a; = Nij(oz)
j=1

6. Return c=v — " erij

7=1

6.2.2 Rank condition 1

We follow Gabidulin’s decoding algorithm ([9]) for IF,[X; 6] which we extend to module
codes (9)nps over F,[X;0,5]. Suppose that for g € F,[X;0] there exists y = y; € T,
such that for y;11 = D(y;) = D'(y),i =1,...,n — 1 we have L,(y;) =0,i=1,...,A—1
and det(Wrl° (yy, ..., yn)) # 0.

Let ¢ be a code word and e = (eg, ..., e,-1) € (F,)" withrankr <t = (A—1)/2. If the
received word is v = ¢ 4 e and we want to recover ¢ from v. Let us define the syndrome
S; = L,(y;). By construction, we have S; = L.(y;) + Le(y;) = Le(y;),7 = 1,...,2t
Consider z € (F,)" with rank(z) = r and M € M(( 2)?,m,n) of rank r such that
e = xM. Our aim is to construct a polynomial of degree r whose space of solutions
enables to recover x and then M. For j € {1,...,2t} we obtain

ieﬂy DI Z <ZI1MZH—1> DD (y))

=0 =0

r n—1 r n—1 r
=@} MDD () = oD 3 MianD'(y) | =Y D™ ()
=1 =0 =1 =0 =1
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where the zy,...,z, are defined by the relation M(yy,...,y,)" = (21,...,2,)T. Since

Y1, .., Yn are linearly independent over (IF,)? and M is a rank r matrix over (IF,)?, we
also have that zq,..., 2. are linearly independent over (IFq)e. Once we computed the z;,
T

we can recover z; from the the linear system S; = Z o, DI (z).
I=1
To find the z; we are going to construct the polynomial h = Y7 k' € F,[X;6,0]
with h, = 1 such that the space of solutions of L, is generated by zi,...,2.. The
coefficients of this polynomial will satisfy a linear system depending on the S;. We first
derive one equation of this linear system and will explain later how to find the remaining
r — 1 equations. For [ € {1,...,r} we have

r+1

Ln(z) = Z h; DI (z) =0 (6)

Multiplying each equation by z;, we get Z;g hi1x D7 z) =0 (€ {1,...,r}). Sum-
ming these equations over [ = 1,...,r, we get a linear relation between h; given by
it hyS; = 0.

In order to get the » — 1 other linear relations between the coefficients of h we follow

the same idea as in [9] : applying 67! to (6) for i = 2,...,r we have
r+1
0 (Ln(z)) = Z@i_l(hj_l)m_l (Dj_l(zl)) =0,l=1,...,r (7)
j=1

If 3 = 0 (the case considered in [9]), then D = 6 and 6"~' (DI71(z)) = 0772(z) .
Multiplying each equation of (7) by x; and summing all the equations over [ € {1,... 7}

one gets the r — 1 other linear equations in hg, ..., h,_1,h, = 1:
r+1
> 07 (hj1)Sij1 =0
j=1

If B # 0, the idea is to express 0~! (D?71(z))) as a sum of D™(z,) whose coefficients
depend only on ( using the following lemma:

Lemma 5 Consider i € N* and v € F,. Then 0" '(u) can be written as 6"'(u) =
> ey @ik(B)D 1 (u) where the coefficients a; ;(8) are defined by :

o f3#0:a11(8) =1,a1;(8) =0 (j >2) and air1,;4:1(3) = 50(ai;(8))+0(aij1(5)).
o if 3=0:0a;;(0) =1 and a;;(0) =0 fori#j.

Proof: For § # 0, we proceed by induction on i. We have 6°(u) = u = a;,D°(u). Con-
sider i > 1such that 0"~ (u) = >, _, a;x(8)D**(u). Then 0'(u) = >, _, 0(a;x(3))0(D* ' (u)).
As 0 =1/55 + id, we get
0'(u) = Yy 0(air(8))(1/BD(u) + D (u))
= 30 (1/80(aik1(8)) + 0(aii(5)DF (u))
As air15-1(8) = 1/60(a;k—1(B)) + 0(a;x(5)), we get the result. 0O

The lemma below describes how to construct the polynomial 4 in the case where 3 € IF,.
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Lemma 6 Consider h = X" + Z;fl hi X" € F,[X;0,0] such that L;,(z;) =0

=0

1. The coefficients hg, ..., h,_1 satisfy the linear system :S - (ho,hy,..., hy_1)T = b,
where

Sij=0""" (Z ai,k(ﬁ)SkJrjl) , by=—0"""" (Z ai,k(ﬁ)SkJrr)
k=1 k=1

and a; j(3) are defined by :

o f B#0: ai(B) =1, a;(8) =0 (j > 2) and ai15:1(8) = 50(ai;(B)) +
0(aij1(0))-
e if 3=0a;;(0)=1 and a;;(0) =0 for i # j.

2. The matriz S is an invertible matriz satisfying the relation :

o e a O
S = 0~ (x1) - e 07N (zy) U B T D' (2)
Ql_T<I1) e . Ql—r(xr) Zp e e Dr—1<zr>

Proof:
1. Let i € {1,...,7}. According to (7)

r+1

300 () =00 =

j=1

Applying lemma 5 to 67! (D771(2;)) we obtain

r+1 %
Zeifl(hj—l) Z a;x(B)D* (DN (z) =0,l=1,...,r
j=1 k=1
For each [ we multiply this equation by x; and sum the r equations over [, we get
r+1 %
Z 0 (hj-1) Z ik (B)Sk+j—1 =0
j=1 k=1

=y o7 (Z ai,k(ﬁ)SkJrjl) hjoy=—67"" (Z ai’k(ﬁ)sk”>
< o P
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2. Let us prove that S is invertible.

Sij = e <Zai,k(ﬁ)5k+j1)
k=1

= S0 () 67 (me“”(zl))

=1

= Y w)o (Zai,k<ﬁ>1>’“”2<z”>

= 3 g (a)g (Z a;,(8)D" (D 1(@)))

k=1

= D0 e (07D @)

T

- Z O~ () D' )

=1
T T, TR Dr—l(zl)
S O (zy) - - 0 Y(x,) y Zg e e DTz
el—r(xl) gl—r(xr) Zp e een DT_I(ZT)

so S is invertible.

We deduce from this the following algorithm :

Input : v = ¢+ e with rank(e) = r < ¢ and ¢ word of a code satisfying rank condition 1
Output : ¢

Compute S; for 1 =1, ..., 2t and the matrix S given in lemma 6, point 1 with r = ¢
While det(S) = 0 do r := r — 1; compute S; end while

Compute the solution (hy,...,h,) of the linear system given in lemma 6

Compute a basis of solutions z1, ...,z of £, over le where h = X"+ >0 h X1

i

5. Construct = (x4, ..., z,) as a solution of S; = Zxﬂ)j_l (z1),7=1,...,r
1=1

6. Construct M € M(F?, r,n) such that M(yi,...,y.)" = (21,...,2)7

7. Construct e =M and c=v —e
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