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Abstract—The UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) has been recently
adopted. The Clock Constraint Specification Language (CCSL)
allows the specification of causal, chronological and timed prop-
erties of MARTE models. Due to its purposely broad scope of
use, CCSL has an expressiveness that can prevent formal verifi-
cation. However, when addressing hardware electronic systems,
formal verification is an important step of the development.
The IEEE Property Specification Language (PSL) provides a
formal notation for expressing temporal logic properties that
can be automatically verified on electronic system models. In
this paper, we determine the part of MARTE/CCSL amenable
to support the classical analysis methods from the Electronic
Design Automation (EDA) community by comparing CCSL and
PSL expressiveness. We show that neither of these languages is
subsumed by the other one. We identify and restrict the CCSL
constructs that cannot be expressed in temporal logics so that
CCSL become tractable in temporal logics. Conversely, we also
identify the class of PSL formulas that can be encoded in CCSL.
We define translations between these fragments of CCSL and
PSL using automata as an intermediate representation.

Keywords-High-level design, Linear temporal logic, Lan-
guage equivalence, Automaton based approach.

I. INTRODUCTION

The UML Profile for Modeling and Analysis of Real-
Time and Embedded systems (MARTE [8]) provides a
means to specify several aspects of embedded systems,
ranging from large software systems on top of an operating
system to specific hardware designs. UML/MARTE provides
a support to capture structural and behavioral, functional and
non-functional aspects. The Clock Constraint Specification
Language (CCSL [1]), initially specified in an annex of
MARTE, offers a general set of notations to specify causal,
chronological and timed properties on these models and has
been used in various subdomains [6], [2]. CCSL is formally
defined and CCSL specifications can be executed at the
model level. CCSL is intended to be used at various mod-
eling levels following a refinement strategy. It should allow
both coarse, possibly non-deterministic, infinite, unbounded
specifications at the system level but also more precise
specifications from which code generation, schedulability
and formal analysis are possible.

In the domain of hardware electronic systems, which
is one of the subdomains targeted by MARTE, formal
verification is an important step of the development. To
allow simulation and formal verification of such systems, the

IEEE Property Specification Language (PSL [10]) provides
a formal notation for the specification of electronic system
behavior, compatible with multiple electronic system design
languages (VHDL, Verilog, SystemC, SystemVerilog).

In a Model-Driven approach where code (e.g.,SystemC
or VHDL) is generated from models (UML/MARTE), two
questions arise. Is MARTE expressive enough to capture
an abstract view of hardware systems? Is CCSL expressive
enough to express properties usually modeled in PSL? Some
efforts have been made to answer the first question [9], [12].
We are addressing here the second question and we focus on
properties expressed with CCSL on top of MARTE models.

The main contribution of this paper is the comparison
of PSL and CCSL expressiveness. The first result is that
neither of these languages subsume the other one. Conse-
quently, we identify the CCSL constructs that cannot be
expressed in temporal logics and propose restrictions to these
operators so that they become tractable in temporal logics.
Conversely, we also identify the class of PSL formulas
that can be encoded in CCSL. Using this information, we
show that translations between large fragments of CCSL and
PSL can be defined. Because direct modular translation is
more tedious, we use an automaton-based approach. Though
translation from PSL to automata is a well studied topic (see
e.g., [3]), similar transformation for CCSL specifications is
new and interesting result. This intermediate translation of
CCSL specifications to automata could be alternatively used
directly by the subdomain tools (and possibly completed by
other PSL properties if needed). However, the main purpose
of the paper is the comparison of PSL and CCSL and we
do not claim that the rigorous translation chains we define
is adequate to perform fast analyses.

The rest of this paper is organized as follows. In Sect. II
we introduce CCSL and PSL and determine which kind of
properties cannot be expressed in each language. We define
in Sect. III the class of Boolean automata which is used in
Sect. IV to define translations between fragments of CCSL
and PSL. Sect. V contains concluding remarks and future
work. Because of space limitation, some proofs and technical
details are omitted but can be found in [4].

II. DEFINITIONS OF THE LANGUAGES

We firt define the languages that we consider and give
preliminary comparisons related to their expressive power.



A. Clock Constraint Specification Language

CCSL is the companion language of the UML MARTE
profile for the design of embedded systems. It combines
constructs from the general net theory and from synchronous
languages. CCSL offers a set of causal and timed patterns
classically used in embedded systems. More formally, CCSL
is based on the notion of clocks which is a general name
to denote a totally ordered sequence of event occurrences,
called the instants of the clock. Instants do not carry values.
CCSL defines a set of clock relations:

r ::= c1 ⊂ c2 | c1 # c2 | c1 ≺ c2 | c1 4 c2

where c1, c2 represent clocks of the system. Informally,
c1 ⊂ c2 means that c1 is a subclock of c2, c1 # c2 that

the instants of the two clocks never coincide and c1 4 c2
(resp.c1 ≺ c2) that the nth occurrence of c1 precedes (resp.
strictly precedes) the nth occurrence of c2 for every n ∈ N∗
(N∗ denotes the set of strictly positive integers).

CCSL is a high-level multiclock language and the original
semantics does not require totally ordered models. However,
at lower level or for simulation purposes, one needs to
represent the execution as a totally ordered sequence. In
this context, the alternative operational semantics introduced
in [1] identifies clocks with Boolean variables evolving along
time. In the remaining, we will consider that a clock c
belongs to a set of propositions VAR and CCSL models
are finite or infinite sequences of elements in 2VAR. The set
of instants of the clock c corresponds to the set of positions
where the variable c holds.

Let σ be a CCSL model. For such a sequence, we denote
by |σ| the length of σ and assume that |σ| = ω when σ is an
infinite word. We use the notations σ(i) for the ith element
of σ and σi for the suffix of σ starting at the ith position. To
evaluate the satisfaction of precedence relations, we define
the function χσ that counts the number of times a clock c
occurs in the ith first positions of σ, i.e.

χσ(c, i) = |{j ∈ N s.t. j ≤ i and c ∈ σ(j)}|.

The satisfaction of CCSL relations is defined by:
• σ |=ccsl c1 ⊂ c2 iff for every 0 ≤ i < |σ|, if c1 ∈ σ(i)

then c2 ∈ σ(i).
We also note σ |=ccsl c1 = c2 iff σ |=ccsl c1 ⊂ c2
and σ |=ccsl c2 ⊂ c1.

• σ |=ccsl c1 # c2 iff for every 0 ≤ i < |σ| we have
c1 6∈ σ(i) or c2 6∈ σ(i).

• σ |=ccsl c1 ≺ c2 iff for every 0 ≤ i < |σ| we have
c2 ∈ σ(i) implies χσ(c1, i− 1) > χσ(c2, i− 1).

• σ |=ccsl c1 4 c2 iff for every 0 ≤ i < |σ| we have
χσ(c1, i) ≥ χσ(c2, i).

CCSL can also express more complicated constraints be-
tween clocks using clock definitions. CCSL clock definitions
allow the definition of a clock as the combination of other

clocks given as arguments. A clock definition is of the form
c , e where c ∈ VAR and e is a clock expression defined
by the following grammar:

e := c | e + e | e ∗ e | e D e | e C e | e  e | e H bw
| e $e n | e ∨ e | e ∧ e

where c ∈ VAR, n ∈ N∗ and bw : N∗ → B is an ultimately
periodic binary word (of the form u · vω). The expressions
e1 + e2 and e1 ∗ e2 represent respectively the union and
intersection of e1 and e2. The strict and non-strict sample
expressions are denoted by e1 D e2 and e1 C e2. The delay
operation e1 $e2 n is a variation of sampling that samples
e1 on the nth occurrence of e2. The expression e1  e2 is
the preemption (e1 up to e2), e H bw represents the filtering
operation. Finally, e1 ∨ e2 (resp. e1 ∧ e2) represents the
fastest (resp. slowest) of the clocks that are slower (resp.
faster) than both e1 and e2. This corresponds to greatest
lower bound and lowest upper bound.

Given a clock expression e and a CCSL model σ we note
σ, i |=ccsl e iff the expression e holds at position i of σ.
• σ, i |=ccsl c iff c ∈ σ(i).
• σ, i |=ccsl e1 + e2 iff σ, i |=ccsl e1 or σ, i |=ccsl e2.
• σ, i |=ccsl e1 ∗ e2 iff σ, i |=ccsl e1 and σ, i |=ccsl e2.
• σ, i |=ccsl e1 D e2 iff

– σ, i |=ccsl e2,
– there is 0 ≤ j < i such that σ, j |=ccsl e1 and for

every j ≤ k < i we have σ, k 6|=ccsl e2.
• σ, i |=ccsl e1 C e2 iff

– σ, i |=ccsl e2,
– there is 0 ≤ j ≤ i such that σ, j |=ccsl e1 and for

every j ≤ k < i we have σ, k 6|=ccsl e2.
• σ, i |=ccsl e1 $e2 n there exists 0 ≤ j ≤ i such that

– σ, j |=ccsl e1 and
– there are exactly n distinct positions i1, . . . , in

(in = i) such that for every k ∈ {1, . . . , n} we
have j < ik ≤ i and σ, ik |=ccsl e2.

• σ, i |=ccsl e1  e2 iff
– σ, i |=ccsl e1,
– for every 0 ≤ j ≤ i we have σ, j 6|=ccsl e2.

• σ, i |=ccsl e H bw iff
– σ, i |=ccsl e
– bw(χσ(e, i)) = 1.

• σ, i |=ccsl e1 ∧ e2 iff either
– χσ(e1, i) > χσ(e2, i) and σ, i |=ccsl e1,
– or χσ(e1, i) < χσ(e2, i) and σ, i |=ccsl e2,
– or χσ(e1, i) = χσ(e2, i) and σ, i |=ccsl e1 and
σ, i |=ccsl e2.

• σ, i |=ccsl e1 ∨ e2 iff either
– χσ(e1, i) > χσ(e2, i) and σ, i |=ccsl e2,
– or χσ(e1, i) < χσ(e2, i) and σ, i |=ccsl e1,
– or χσ(e1, i) = χσ(e2, i) and we have σ, i |=ccsl e1

or σ, i |=ccsl e2.
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The function χσ above is extended to expressions in a
natural way:

χσ(e, i) = |{j ∈ N s.t. j ≤ i and σ, j |=ccsl e}|.
A CCSL specification is a list of definitions and relations

seen as a conjunction of constraints. We can represent it by
a triple 〈C,Def ,Rel〉 such that C ⊆ VAR is a set of clocks,
Def is a set of definitions, Rel is a set of relations. A model
σ over 2C satisfies the specification iff for every definition
c , e in Def we have c ∈ σ(i) iff σ, i |=ccsl e, and every
relation in Rel is satisfied by σ.

From the basis CCSL language, one can define other
expressions and relations. For instance, the following ex-
pressions and relations are used later:
• c1 − c2 is the difference of clocks c1 and c2. The

definition c , c1 − c2 can be encoded with the

definition c1 , c + c2 and the relation c # c2.
• c $c n is a particular case of delay expression that we

shortly note c $ n. It represents the usual synchronous
delay operation. The resulting expression starts at the
nth occurrence of c and then coincides with c.

• Right weak alternation c1 ∼= c2 is defined by the

relations c1 4 c2 and c2 ≺ c′1 where c′1 , c1 $ 1.
Similarly, left weak alternation c1 =

∼ c2 is defined by

c1 4 c2 and c2 ≺ c′1.

B. Property Specification Language

The IEEE standard PSL [10] has been designed to provide
an interface to hardware formal verification. Its temporal
layer is a textual language to build temporal logic ex-
pressions. PSL assertions can then be validated by model-
checking or equivalence checking techniques. The underly-
ing linear-time logic in PSL extends LTL with regular ex-
pressions and sugaring constructs. However PSL remains as
expressive as ω-regular languages. As it would be tedious to
consider the sugaring operators of PSL in formal reasoning,
we use the minimal core language defined in [3].

Let VAR be a set of propositions (Boolean variables) that
aims at representing signals of the system. PSL atomic for-
mulas are called Sequential Extended Regular Expressions
(SERE). SEREs are basically regular expressions built over
the Boolean algebra:

b ::= x | x | b ∧ b | b ∨ b
where x ∈ VAR is a Boolean variable. We also consider
the standard implication and equivalence operators ⇒ and
⇔ that can be defined from the grammar above. The set of
SEREs is defined by:

r ::= b | r · r | r ∪ r | r∗

where b is a Boolean formula. The operators have their usual
meaning: r1 ·r2 is the concatenation, r1∪r2 the union and r∗

is the Kleene star operator. From these regular expressions,
PSL linear properties are defined by:

φ ::= r | φ ∧ φ | ¬φ | Xφ | φUφ | r� φ.

where r is a SERE. The operators X (next) and U (until)
are the classical temporal logic operators. We also use
the classical abbreviations Fφ ≡ >Uφ (eventually) and
Gφ ≡ ¬F¬φ (always). The formula r � φ is a “suffix
conjunction” operator meaning that there must exist a finite
prefix satisfying r and that φ must be satisfied at the position
corresponding to the end of this prefix (with a one-letter
overlap between the prefix and the suffix).

The semantics of PSL is defined in such a way that
properties can be interpreted over infinite words as well as
finite or truncated words. This is important for applications
like simulation or bounded model-checking. Similarly to
CCSL, the models of PSL are finite or infinite sequences
over elements of 2VAR.

For every X ∈ 2VAR and p ∈ VAR, we note X |=b p iff
p ∈ X and X |=b p iff p 6∈ X . The remaining of the Boolean
satisfaction relation |=b are standard. SEREs refer to a finite
(possibly empty) prefix of the model. So σ is supposed to
be finite in the SERE satisfaction relation (which is not the
case in the PSL satisfaction relation). The SERE satisfaction
is defined by induction as follows:
• σ |=re b iff |σ| = 1 and σ(0) |=b b,
• σ |=re r1 · r2 iff there are σ1, σ2 such that σ = σ1σ2

and σ1 |=re r1 and σ2 |=re r2.
• σ |=re r1 ∪ r2 iff σ |=re r1 and σ |=re r2.
• σ |=re r

∗ iff either σ = ε (empty sequence) or there
exist σ1 6= ε and σ2 such that σ = σ1σ2, σ1 |=re r and
σ2 |=re r

∗.
Finally, the satisfaction of PSL properties is defined by:
• σ |=psl ¬φ iff σ 6|=psl φ,
• σ |=psl φ1 ∧ φ2 iff σ |=psl φ1 and σ |=psl φ2,
• σ |=psl Xφ iff |σ| > 1 and σ1 |=psl φ,
• σ |=psl φ1Uφ2 iff there is 0 ≤ i < |σ| such that

– σi |=psl φ2 and
– for every 0 ≤ j < i we have σj |=psl φ1,

• σ |=psl r � φ iff there is a finite prefix σ1α of σ
(α ∈ 2VAR is a single letter) such that

– σ = σ1ασ2,
– σ1α |=re r and
– ασ2 |=psl φ,

• σ |=psl r iff for every finite prefix σ1 of σ there is a
finite word σ2 such that σ1σ2 |=re r� >.

C. Comparing PSL and CCSL

The CCSL semantics we consider in this paper is re-
stricted. In the general definition, models of CCSL speci-
fications do not need to be totally ordered. However, under
this restriction CCSL and PSL share common models. So
we can compare the classes of properties they can express.
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Let S be a CCSL specification over a set of variables
VS ⊆ VAR and φ a PSL formula over a set of variables
Vφ ⊆ VAR. We will say that S is encoded by (or simulated
by) φ such that VS ⊆ Vφ iff every model of φ is also
a model of S and every model of S can be extended on
Vφ to a model of φ. The converse simulation relation is
a bit different. CCSL models have the properties that one
can add an unbounded amount of empty states between two
relevant states and leave the satisfaction unchanged. This can
easily be proved by induction on the structure of a CCSL
specification.

Lemma 1. Let S be a CCSL specification. For all model σ
satisfying S and every 0 ≤ i ≤ |σ| the model σ′ defined by

σ′(j) = σ(j) for every j < i
σ′(i) = ∅
σ′(j) = σ(j − 1) for every i < j ≤ |σ|+ 1

also satisfies S.

This property is a consequence of the multiclock aspect
of CCSL. It is not possible to completely link the execution
of a CCSL specification to a global clock. However, the
states where no clocks occur are irrelevant in the CCSL
point of view as they do not make the system evolve. So
it is not really a problem to discard them. We will say that
φ is simulated by S such that Vφ ⊆ VS iff every model of
S with no irrelevant states is also a model of φ and every
model of φ can be extended to a model of S.

Some CCSL relations or expressions implicitly introduce
unbounded counters. For instance, one has to store the
number of occurrences of the clocks c1 and c2 (or the
difference between them) to encode the precedence relation
c1 4 c2. The corresponding language is made of all the
words such that every finite prefix contains more occurrences
of c1 than c2. Such a language is neither regular nor ω-
regular and cannot be encoded in PSL. The same remark
holds for the expressions c1 ∧ c2 and c1 ∨ c2. On the
other hand, CCSL relations and expressions only state safety
constraints. As a specification is a conjunction of such
constraints, the result is always a safety property. CCSL
cannot express liveness like the reachability property Fp.
For finite executions, there is also no way to express that
the model must have a next position which can be stated by
X> in PSL. To summarize, the preliminary comparison of
expressiveness of CCSL and PSL gives the following results.

Theorem 1. (I) There are PSL formulas that cannot be
encoded in CCSL. (II) There are CCSL specifications that
cannot be encoded in PSL.

It is now clear that PSL and CCSL are not comparable
in their whole definition. We show in the remainder that
restricting the properties of each language according to the
observations above is enough to obtain large fragments that
can express the same set of properties. We define a method to

encode a property in each of these fragments into the other,
which is based on intermediate translation into automata.

III. BOOLEAN AUTOMATA

We introduce in this section the class of automata we use
to define relations between PSL and CCSL fragments.

A. Definition

We consider automata that handle propositional variables
in VAR. The transitions are labeled by Boolean formulas
interpreted like guards. Formally, a Boolean automaton is
a structure A = 〈Q, q0, F,A, V, δ〉 such that Q is a set of
states and q0 ∈ Q an initial state, F ⊆ Q and A ⊆ Q are
respectively the set of final and accepting states, V ⊆ VAR
is a set of propositions, δ : Q×Bool(V )×Q is a transition
relation where Bool(V ) is the set of Boolean formulas over
V . We use the definitions of Sect. II-B for Boolean formulas.
A Boolean automaton is deterministic iff for every state in
Q there do not exist two outgoing transitions labeled with
φ and φ′ such that φ ∧ φ′ is satisfiable.

A configuration of A is a pair 〈q,X〉 composed of a state
in Q and a subset of V . We note 〈q,X〉 φ−→ 〈q′, X ′〉 iff there
is a transition q

φ−→ q′ such that X |=b φ. A run of A is
a sequence σ : N → (Q × 2V ) such that σ(0) is of the
form 〈q0, X0〉 (one starts in the initial state) and for every
i ∈ N, there exists φi such that σ(i)

φi−→ σ(i + 1). A finite
run is accepting iff it ends in a final state. An infinite run
is accepting iff it visits infinitely often an accepting state
(Büchi condition). The language accepted by A is the set of
words on the alphabet 2V corresponding to accepting runs.

Let A1 = 〈Q1, (q0)1, F1, A1, V1, δ1〉 and A2 =
〈Q2, (q0)2, F2, A2, V2, δ2〉 be two Boolean automata. The
product automaton A = A1 × A2 is the structure
〈Q, q0, F,A, V, δ〉 such that:
• Q = Q1 ×Q2 × {0, 1} where the component in {0, 1}

is only needed for the Büchi acceptance condition,
• V = V1 ∪ V2,
• q0 = 〈(q0)1, (q0)2, 0〉,
• F = F1 × F2 × {0, 1} and A = Q1 ×A2 × {1},
• For every 〈q1, q2, i〉 and 〈q′1, q′2, i′〉 in Q we have
〈q1, q2, i〉 φ−→ 〈q′1, q′2, i′〉 iff
- there exist q1

φ1−→ q′1 and q2
φ2−→ q′2 such that φ is

equivalent to φ1 ∧ φ2,
- if i = 0 then i′ = 1 iff q1 ∈ A1,
- if i = 1 then i′ = 0 iff q2 ∈ A2.

Note that the last component of each state is not needed
when every state is accepting (A1 = Q1 and A2 = Q2).

B. CCSL and Boolean automata

Since CCSL expresses only safety, the acceptance condi-
tion of automata cannot be encoded. However, if every run is
accepting we can encode a deterministic Boolean automaton
into a CCSL specification.
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Lemma 2. Every deterministic Boolean automaton such that
every execution is accepting can be simulated by a CCSL
specification.

Proof: Consider a deterministic Boolean automaton
A = 〈Q, q0, V, δ〉. We forget accepting and final states
since every valid execution is accepted. We define the set
of clocks C = V ]Q. To encode A, we need the following
CCSL definitions. We define a global clock and a clock
corresponding to the set of states Q as follows:

(1) Glob ,
∑
c∈C

c and Q ,
∑
q∈Q

q

where
∑
c∈X c is the CCSL union of all the clocks in X .

Similarly, we note
∏
c∈X c the CCSL intersection of all the

clocks in X . For ease of presentation, we note q X−→ q′ iff
there is a transition q

φ−→ q′ in A such that X |=b φ. For every
state q ∈ Q \ {q0}, we define the clock Iq corresponding to
the incoming transitions of q:

(2) Iq ,
∑
q′

X−→q

(
q′ ∗ (

∏
p∈X

p) − (
∑
p 6∈X

p)
)
.

Now we build the set of CCSL relations. First we express
that at every position in the run, exactly one state of the
automaton holds. This corresponds to the relations

(3) Q = Glob and q # q′ for all q, q′ ∈ Q (q 6= q′).

We also impose that the global clock always coincides with
a valid transition in order to avoid unexpected behaviors:

(4) Glob = Trans where Trans ,
∑
q∈Q

IQ.

The transition relation is such that every state alternates with
its incoming transitions. So, for every q ∈ Q

(5) q0 ∼= Iq0 and Iq =∼ q.

The relation is symmetric for q0 since the execution starts
in this state. The alternation is not strict on the side of the
incoming transition since it is allowed to return immediatly
to the same state (self loop).

We now have to show that a model σ satisfies the CCSL
specification obtained iff there is a run ρ of A such that for
every 0 ≤ i ≤ |σ|, for every c ∈ V we have c ∈ σ(i) iff
ρ(i) = 〈qi, Xi〉 and c ∈ Xi. We consider only runs where
at least one variable holds at each position. They are the
only relevant runs according to the simulation relation. By
construction, in such runs the clock Glob always holds. So
we can identified the steps with the occurrences of Glob.

We need intermediate properties to show that each ex-
ecution corresponds to a run of A. Let CI be the set of
clocks of the form Iq for every q. Since the clocks in CI
are defined wrt. a deterministic transition relation (cf. (2))
and at each step exactly one element of Q holds (by (3)),

we have at most one element of CI occurring at each step.
Combined with (4), this implies that if the current state is
not a deadlock then there is exactly one element of CI and
one of Q belonging to σ(i) for every 0 ≤ i < |σ|. In
presence of deadlock, the CCSL execution also deadlocks.
By hypothesis, the corresponding finite run is accepted and
there is no infinite run possible from this prefix.

The property above allows us to prove that for every
0 ≤ i < |σ| if Iq ∈ σ(i) then q ∈ σ(i + 1). At the first
position, the only state that can occur is q0. Indeed, (5)
prevents the other states since no clock of CI has occurred
yet. Suppose that Iq ∈ σ(0) (Iq is unique, see above). At the
next position the situation is the following (as consequences
of (5)):
• q0 has occurred and cannot occur until Iq0 has occurred.
Note that Iq0 can occur at the first position since the
alternance relation is weak.
• every other state q′ can occurs only if Iq′ has occurred at
the first position.
So the only state that can occur at the second step is q. The
induction step is similar. Just replace q0 by the state that
holds at the current position. Indeed, every clock that does
not occur is still waiting for the next occurrence of the clock
corresponding to its incoming transition.

It is now easy to show that σ corresponds to a run of
A. We have already proved that for every execution q0
always holds at the first position (cf. (5)). Moreover, at
each position i exactly one Iq′i ∈ CI and one qi ∈ Q

hold. By construction, it is obvious that qi
Xi−→ q′i where

Xi = σ(i) ∩ V is a valid transition in A (recall that Iq ′i
encodes q′i incoming transitions). Moreover, we have shown
that Iq ′i ∈ σ(i) implies that q′i ∈ σ(i+1). So qi+1 = q′i. By
in induction, this proves that σ encodes a run of A.

Conversely, let ρ be a run of A. We suppose that the prop-
erty holds until position i, ρ(i) = 〈qi, Xi〉 and qi ∈ σ(i). The
demonstration is symmetrical. There is a unique transition
qi

φ−→ qi+1 such that Xi |= φ because the transition relation is
deterministic and complete. Let set σ(i) such that for every
c ∈ VAR we have c ∈ σ(i) iff c ∈ Xi. By construction, we
must have Iq i+1 ∈ σ(i) and so qi+1 ∈ σ(i+ 1). Thus, one
can build by induction σ verifying the property.

The converse translation is not possible. Index dependent
relations or operators like precedence cannot be encoded by
using finite state systems (see Sect. II-C).

C. PSL and Boolean automata
It is well known that one can build a finite automaton or

a Büchi automaton that accepts respectively the finite and
infinite models of a given PSL formula. Given a formula φ,
the construction defined in [3] can easily be adapted to build
a Boolean automaton accepting the set of models of φ.
Lemma 3. From any PSL property φ one can build a Boolean
automataAφ such that the language accepted by A is exactly
the set of models of φ.
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The converse translation is easy since the definition of
LTL is included in PSL. A construction similar to [11] allows
the encoding of a Boolean automaton into an LTL formula.

Lemma 4. From any Boolean automaton A, one can build a
PSL formula φA such that the set of models of φA encodes
the set of runs of A.

The statement above means that each model of φA is
accepted by A and each accepting run of A can be extended
to a model of φA. Indeed, the construction of φA uses
additional variables to encode the states of A. The extension
of a run of A into a model of φA is straightforward
considering this information.

IV. TRANSLATIONS FOR CCSL AND PSL FRAGMENTS

We identify in this section large fragments of CCSL and
PSL that can be simulated in each other. We define trans-
lations between these fragments using intermediate Boolean
automata encodings.

A. From PSL to CCSL

Lemma 2 states that deterministic Boolean automata can
be encoded in CCSL when every run is accepting. Thus
we restrict ourselves to the class of PSL formulas that can
be translated into this subclass of Boolean automata. We
consider the safety fragment of PSL defined similarly to [5]
by restricting the use of negations. A PSL formula belongs
to the set of safety PSL formulas iff (S1) subformulas of
the form φ1Uφ2 and r � φ never occur under an even
number of negations, and (S2) SEREs never occur under an
odd number of negations. For the finite case, we also have
to restrict the definition of the next operator to its weak
variant (the formula is satisfied also if the model has no
next position).

Lemma 5. For every property φ in safety PSL, one can build
a deterministic Boolean automaton such that every run is
accepting which accepts exactly the set of models of φ.

The proof is a variant of the construction in [3] (see the
details in [4]). We just have to ensure that every execution is
accepting. By Lemmas 5 and 2 we can encode every safety
PSL formula into CCSL specifications.

Theorem 2. Every safety PSL formula can be encoded by a
CCSL specification.

For example, let us consider the PSL formula G(p0 ⇒
¬(p1U(p1 ∧ p2))) meaning that “there is always p1 in
an interval starting with p0 and ending with p2”. Fig. 1
represents a Boolean automaton recognizing the models of
this formula. Every state of this automaton is accepting and
final. This automaton corresponds to the CCSL specification
〈C,Def ,Rel〉 such that,

Def = { Q , q0 + q1, Glob , Q + p0 + p1 + p2,

Iq0 ,
(
(q0 − p0) + (q0 ∗ p0 ∗ p1) + (q1 ∗ p1)

)
,

q0 q1

p0 ∧ p1 ∧ p2

p1

p0 ∧ p1

p0

p1 ∧ p2

Figure 1. Boolean automaton

Iq1 , ((q0 ∗ p0) − (p1 + p2)) + (q1 − (p1 + p2))

Trans , Iq0 + Iq1 }

and Rel = { Glob = Q, q0 # q1, Glob = Trans,

q0 =
∼ Iq0, Iq1 ∼= q1 }.

The set C contains all the clocks used in these different
expressions and relations.

B. From CCSL to PSL

To obtain a fragment of CCSL that can be encoded in PSL,
we restrict the precedence relations and the operators c1 ∧ c2
and c1 ∨ c2. We define precedence relations such that the
advance of the fastest clock is bounded. We denote these
relations ≺n and 4n where n ∈ N. A model σ satisfies
c1 ≺n c2 iff for all i ∈ N we have χσ(c2, i) < χσ(c1, i) ≤
χ(c2, i)+n. The relation 4n is defined similarly with non-
strict inequalities. We define similar variants c1 ∧n c2 and
c1 ∨n c2 restricting the difference between the clocks c1
and c2 to be bounded by n.

We call bounded CCSL the language obtained by replac-
ing in CCSL the precedence relations, greatest lower bound
and lowest upper bound operators by their bounded variants.
This language is subsumed by CCSL. Indeed, the operators
can be defined in CCSL:
• c1 ≺n c2 is equivalent to c1 ≺ c2 and c2 ≺ c′1

where c′1 , c1 $ n.

• c , c1 ∧n c2 is equivalent to the conjunction of

c , c1 ∧ c2 with c1 4 c′2 and c2 4 c′1 where

c′1 , c1 $ n and c′2 , c2 $ n.
The non-strict bounded precedence can be defined similarly
(with non strict relations) as well as the operator c1 ∨n c2.
These restrictions allow us to establish the following results.
Theorem 3. Every bounded CCSL specification can be
encoded (I) by a Boolean automata (II) and a PSL formula.

Proof: (I) We proceed by induction on the structure
of CCSL specifications. As all the states in the resulting
automaton are final and accepting, we do not mention them.
First, let us consider CCSL relations. For every Boolean for-
mula φ we denote by Bφ the single-state Boolean automaton
with a self loop labeled by φ.
• The relation c1 ⊂ c2 can be encoded by B(c1∨c2).
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0 1 2 3
c1 ∧ c2

c1 ∧ c2

c2 ∧ c1

c1 ∧ c2

c2 ∧ c1
c1 ∧ c2 c1 ∧ c2 c1 ∧ c2 c1 ∧ c2

c1 ∧ c2 c1 ∧ c2

Figure 2. Boolean automaton for c1 ≺3 c2

• Similarly, c1 # c2 can be encoded by B(c1∨c2).
• The bounded precedence relation c1 ≺n c2 can be en-
coded by an automaton with n states. These states simulate
the incrementation and decrementation of a counter that
stores the advance of c1 on c2. So one needs to move to
the next state when only c1 is true, to move back when only
c2 is true and to stay in the same state when both or neither
are true (except at the bounds). Fig. 2 is the automaton for
n = 3.

• The construction for the relation c1 4n c2 is similar with
additional loops labeled by c1 ∧ c2 on states 0 and n and a
transition from state 1 back to state 0.

A definition of the form c , e can be encoded by the
product automaton Ae × Bc⇔e where Ae is defined below.
• If e is of the form e1 + e2 then Ae can be obtained by

making the product of Ae1 , Ae2 and B((e1∨e2)⇔e).
• The automaton for e1 ∗ e2 is built similarly by replacing
the third automaton by B((e1∧e2)⇔e).
• The encoding of e1 D e2 is a bit more complex. Consider
two copies A and A′ of the product automaton Ae1 ×Ae2 .
We denote by q0, q1 . . . the states of A and q′0, q

′
1 . . . the

states of A′ such that qi and q′i represent the same state in
the different copies. We use A to simulate the part where e1
has not occurred yet and A′ the part where e1 has occurred
and we wait for the next occurrence of e2. We have to move
from A to A′ when e1 is true. Then we move back to A and
set e to true when e2 is true. This automaton is obtained by
making the following transformations on A and A′.
(?) For every transition qi

φ−→ qj in A we replace the label
φ by φ ∧ e1 ∧ e and add the transition qi

φ∧e1∧e−−−−→ q′j from A
to A′.
(??) For every transition q′i

φ−→ q′j in A′ we replace φ by

φ∧ e2∧ e and add the transition q′i
φ∧e2∧e−−−−→ qj from A′ to A.

Obviously if the Boolean formula of a label reduces to false
then the corresponding transition is removed (or not added).

• The encoding of e1 C e2 is very close to the case e1 D e2.
The difference is that when we are in the first copy and both
e1 and e2 are true then e is also true and we stay in the same
copy. We only move to the second copy when e1 is true and
e2 is false. So the step (?) has to be replaced by:
(?′) For every transition qi

φ−→ qj in A we replace the label

by φ ∧ e1 ∧ e and add the two transitions qi
φ∧e1∧e2∧e−−−−−−→ q′j

and qi
φ∧e1∧e2∧e−−−−−−→ qj .

• The encoding of e1 $e2 n is a generalization of the
previous construction. When e1 holds we have to wait for
n positions where e2 holds. This can be done with n + 1
copies of Ae1×Ae2 . Another point of view is that a counter
is encoded in the states of the resulting automaton. Similarly
to the construction for the case e1 D e2 we add transitions
between the different copies as follows:
- from the first copy to the second when e1 occurs,
- from the ith to the i+1th when e2 occurs for 2 ≤ i ≤ n+1,
- from the n + 1th to the first when e2 occurs and this
corresponds to the transitions where e must occur.

• Now we consider the filtering operation e1 H bw . Suppose
that bw = u · vω . The expression can also be encoded
similarly with |u|+|v| copies ofAe1 . Each copy is associated
with positions in bw in a natural way. The transition from
a copy to the next one is done when e1 holds and after
the last copy we jump to the (|u| + 1)th one (periodic
part). The variable e occurs iff e1 occurs in a copy whose
corresponding position in bw is equal to 1.

• The automaton when e is of the form e1  e2 can easily
be obtained from the product automaton A = Ae1 ×Ae2 ×
B((e1∧e2)⇔e) as follows.
- We add a sink state qs with a loop qs

e−→ qs.
- We replace every transition q

φ−→ q′ in A (q, q′ 6= qs) by
q
φ∧e2−−→ q′ and we add the transition q

φ∧e2−−→ qs.
This operation prevents future occurrences of e as soon as
e2 has occurred.

• The way of encoding e1 ∨n e2 is close to the bounded
precedence relation since we need to store the difference
between the occurrences of c1 and c2. To do this we need
2n + 1 states. The expression e holds when the variable
that has the least occurrences holds. Fig. 3 is the automaton
for n = 2. The right part (positive labels) corresponds to
positions where the number of occurrences of c1 is greater
than c2. So c is true in this part whenever c2 is true. The
left part is symmetrical.

• The case e1 ∧n e2 is quite similar. For n = 2 the
automaton is obtained by switching e and e in the transitions
that are not loops in Fig. 3.

The global automaton corresponding to a given CCSL
specification is the product of all the automata corresponding
to the different definitions and relations. The set of runs
corresponding to such an automaton is the same as the set of
models of the CCSL specification. Indeed, a careful analysis
of the different steps shows that this construction strictly
follows CCSL semantics.

(II) Direct consequence of (I) and Lemma 4.
The formula obtained by composing the transformation

from CCSL to automata and from automata to PSL is
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0 1 2-1-2

c1 ∧ c2 ∧ e

c2 ∧ c1 ∧ e

c1 ∧ c2 ∧ e

c2 ∧ c1 ∧ e

c1 ∧ c2 ∧ e

c2 ∧ c1 ∧ e

c1 ∧ c2 ∧ e

c2 ∧ c1 ∧ e

c1 ∧ c2 ∧ e c1 ∧ c2 ∧ e c1 ∧ c2 ∧ ec1 ∧ c2 ∧ ec1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e c1 ∧ c2 ∧ e c1 ∧ c2 ∧ ec1 ∧ c2 ∧ ec1 ∧ c2 ∧ e

Figure 3. Boolean automaton for c1 ∧2 c2

not minimal. Our intent is not to define an optimal trans-
formation but to prove that a PSL encoding is possible.
Moreover, our automaton encoding should be more useful
to define interfaces between CCSL and verification tools.
Direct translation from bounded CCSL to PSL would not
give much better results. The encoding of the counters
of relations like precedence, filtering or delay is tedious
with propositional variables. It should be more efficient in
practice to use a richer temporal logic with counters or to
consider more restricted fragments of CCSL.

In this section, we have arbitrarily chosen to bound some
operators to define a syntactic fragment of CCSL. However,
in there are CCSL specifications where the context already
bounds the difference between the arguments of these opera-
tors. The characterization of the maximal semantic fragment
of CCSL corresponding to systems with a finite state-space
is an open question. Note also that the alternation operators
used in the proof of Lemma 2 can be expressed in the
bounded fragment. For instance, c1 =

∼ c2 is equivalent

to the conjunction of c1 ≺2 c2 and c2 42 c′1 where

c′1 , c1 $ 1. As a consequence we have the following
corollary.

Corollary 1. Every PSL formula can be encoded by a
bounded CCSL specification .

V. CONCLUSION

We have compared the formal languages CCSL and PSL.
Both languages can be used to specify behavioral properties
in the domain of hardware electronic systems but at different
design levels. Our results contribute to clarify their role when
addressing this domain.

We have identified the CCSL constructs that cannot be
expressed in PSL and the class of PSL formulas that cannot
be stated in CCSL. Then, we have defined fragments of
CCSL and PSL that can be encoded into each other. A
sufficient condition to translate CCSL into PSL is to restrict
operators that need to count the occurrences of clocks in
such a way that they can be expressed with bounded coun-
ters. Conversely, CCSL cannot express the class of liveness
properties but can express every PSL safety property.

We have defined translations between these fragments
using an intermediate automata-based approach. The au-
tomata encoding could be used to establish comparisons of

CCSL with other languages or to apply some verification
algorithms. We do not claim that these preliminary results
can directly be applied in concrete system design and anal-
ysis. However, this translation is an important step towards
the formal verification of a CCSL specifications and the
exploration of its state space.
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