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Mesoscopic systems provide us a unique experimental stage to address nonequilibrium quantum statistical
physics. By using a simple tunneling model, we describe the electron exchange process via a quantum coherent
conductor between two reservoirs, which yields the fluctuation theorem (FT) in mesoscopic transport. We
experimentally show that such a treatment is semiquantitatively validated in the current and noise measurement
in an Aharonov-Bohm ring. The experimental proof of the microreversibility assumed in the derivation of FT is
presented.
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I. INTRODUCTION

Since the 1980s mesoscopic conductors have been serving
as an ideal stage to investigate the quantum scattering problem
both theoretically and experimentally, because the quantum
transport through a single site can be precisely probed in
electronic measurement.1 The Landauer-Büttiker formalism
embodies this advantage of mesoscopic physics, as was
successfully applied to the Aharonov-Bohm ring, the quantum
point contact, and the quantum dot, through which the
mesoscopic physics has been established [see Fig. 1(a)]. Not
only the current averaged over for a certain time (〈I 〉), but
also the current fluctuation 〈(δI )2〉 due to the partition process
is treated in the same framework.2–4 Actually, the quantum
shot noise measurement was successfully demonstrated, for
example, to provide the direct proof of the fractional charge5,6

and the Cooper pair7 by looking at how carriers are scattered
at a mesoscopic conductor.

These days the mesoscopic transport is invoking much
interest from another point of view. As the electron transport
can be viewed as the electron exchange process between
the reservoirs via the conductor as shown in Fig. 1(b), it
serves as a well-defined test stage for nonequilibrium quantum
statistical physics.8 The unique advantage of this approach lies
in that the degree of nonequilibrium can be finely tuned by
the bias voltage applied to the conductor. In addition, many
events, namely numerous electron exchange processes, can be
monitored, which enables us to perform precise measurement.

To quantitatively address the above topic, the fluctuation
theorem (FT)9 is believed to play a central role.8,10–18 Based
on microscopic reversibility (“microreversibility” or detailed
balance), this relation exactly links the probabilities of the pro-
duction and consumption of the entropy in a given system that
is coupled to the reservoir. FT corresponds to a microscopic
expansion of the macroscopic second law of thermodynamics
and is proven to yield the linear-response theory19 and the
Onsager-Casimir relations.13 FT was experimentally proved
to be valid in classical systems such as a colloidal particle

in fluid20 and a resistor.21 Although it was extended to the
quantum regime,22 an experimental check in this regime was
still lacking. More recently, FT was theoretically addressed
in the mesoscopic transport10–12,16–18 even in the presence of
the magnetic field13–15 and was indeed shown to be relevant
in the analysis16 of the electron counting experiments.23,24

While the incoherent tunneling events across the quantum
dot(s) were investigated in the above experiments, the validity
of FT in the quantum coherent regime was left to be addressed.

Recently, we experimentally showed the presence of non-
trivial relations between the nonlinear response and the
nonequilibrium fluctuation in the coherent transport of an
Aharonov-Bohm (AB) ring.25 When the current I and the
current fluctuation (current noise power spectral density) S

are expanded in the Taylor series as a polynomial of the bias
voltage V ,

I (V,B) = G1(B)V + 1

2!
G2(B)V 2 + 1

3!
G3(B)V 3 + · · · (1)

and

S(V,B) = S0(B) + S1(B)V + 1

2!
S2(B)V 2 + · · · , (2)

we showed that there are proportional relations of SS
1 ∝ GS

2 and
SA

1 ∝ GA
2 . Here, the coefficients that are symmetrized (S) or

antisymmetrized (A) with respect to the magnetic field reversal
are defined as

G
S,A
2 (B) ≡ G2(B) ± G2(−B) (3)

and

S
S,A
1 (B) ≡ S1(B) ± S1(−B) (4)

(take + and − for S and A, respectively). This result is
beyond the consequence of the fluctuation-dissipation theo-
rem S0(B) = 4kBT G1(B). Our observation semiquantitatively
agrees with the theoretical prediction on the basis of FT13 and
provides an evidence of FT in the nonequilibrium quantum
regime.

155431-11098-0121/2011/83(15)/155431(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.155431


SHUJI NAKAMURA et al. PHYSICAL REVIEW B 83, 155431 (2011)

(a) (b)

A

L

R

V
|eV|

<I>
δI

Conductor

Left

Reservoir

Right

Reservoir

kBT

A

L

R

|eV|

<I>
δI

Conductor

FIG. 1. (a) Schematic picture of the mesoscopic conductor
coupled to the two reservoirs in the nonequilibrium regime. μL and
μR are the chemical potentials of the left and the right reservoirs,
respectively. Mesoscopic transport based on the Landauer-Büttiker
picture is schematically shown. When a conductor is biased, electrons
injected from one of the reservoirs are either transmitted or reflected
at the conductor, which yields finite current fluctuation [〈(δI )2〉 �= 0].
(b) The transport can be also viewed as the electron exchange process
between the two reservoirs.

In this paper we expand the above work to further support
our previous report. In Sec. II, based on a simple tunneling
model, we derive FT in an applicable form to simple meso-
scopic conductors. In Sec. III we discuss the breakdown of
the Onsager-Casimir reciprocity in the nonequilibrium regime
in the presence of the magnetic field. Then, as a fundamental
aspect of FT in mesoscopic transport, we show that the validity
of the microreversibility can be directly addressed in a quantum
regime.

II. FLUCTUATION THEOREM IN A MESOSCOPIC
SYSTEM

A. Zero-magnetic field case

We explain FT by using the simplest setup and deduce
the aforementioned nonequilibrium fluctuation relations. We
consider a mesoscopic conductor, say a quantum point contact,
where the two quantum wires are coupled by tunneling. While
more systematic and general derivation for these relations
is performed by using a cumulant generating function,12–18

the present simplest model is sufficiently instructive to treat
here. We assume that no energy relaxation takes place inside
the conductor, which is fulfilled in many mesoscopic devices
smaller than the energy relaxation length such as a quantum
dot (QD), chaotic cavity, ring, and so on. First we treat the
zero-magnetic field case to show S1 = 2kBT G2 in Eqs. (1)
and (2). The relations between the coefficients in the current
and the current noise are schematically shown in Fig. 2.

The present system is described by the following
Hamiltonian:

H = HL + HR + HLR, (5)

where HL and HR are the Hamiltonian of the left and right
quantum wires and HLR is the tunneling part between them.
The initial density matrix is decoupled into the equilibrium
states of each wire, where the left and right wires are assumed
to have equal temperature 1/β = kBT and have chemical
potentials μL and μR , respectively. Then the whole density
matrix is described by

ρ̂initial =
∑

nL,nR

ρnL,nR
|nL,nR〉〈nL,nR|, (6)

Noise

V
S0

S

S1V

Current

V
G1V

G2V
2

I

1__
 2

(a) (b)

FIG. 2. (Color online) (a) Current-voltage characteristic as a
function of the bias voltage V . While Ohm’s law holds around V = 0,
the current I is not linear at large V and the I -V characteristics can be
decomposed into a polynomial of V with coefficients G1, G2, G3, . . .

as in Eq. (1). In this study we address G2. This schematic graph
shows the total current I , the G1V contribution, and the 1/2!G2V

2

contribution, in the solid, dashed, and dotted curves, respectively.
The case with a negative G2 is shown. (b) Similarly, the current noise
spectral density S (shown in the solid curve) can be expressed in a
polynomial form of V as in Eq. (2). The Johnson-Nyquist relation
tells that S(V = 0) = S0 = 4kBT G1. This schematic graph shows
the case with a negative S1 in the dashed curve. Here we address the
coefficient of the term linear in V (S1) and the relation between S1

and G2.

ρnL,nR
= e−β[EnL

−μL nL]

ZL

e−β[EnR
−μR nR ]

ZR

, (7)

where ZL and ZR are the normalization factors and |nL,nR〉
defines the state that nL and nR electrons are present inside the
left and right wires with the eigenenergies EnL

and EnR
of HL

and HR , respectively.
The probability of finding the state |n′

L,n′
R〉 after a certain

time τ starting from the initial state |nL,nR〉 is expressed as

P(nL,nR )→(n′
L,n′

R ) =|〈n′
L,n′

R|e −iτ
h̄

H |nL,nR〉|2ρnL,nR
.

The microreversibility or the time reversal symmetry is given
by

|〈n′
L,n′

R|e −iτ
h̄

H |nL,nR〉|2 =|〈nL,nR|e −iτ
h̄

H |n′
L,n′

R〉|2.
Here for simplicity we assume that |nL,nR〉 and |n′

L,n′
R〉 has

the time reversal symmetry as the electron numbers are the
good quantum number, while in the general treatment13 this
assumption is not necessary.

As the electron number conservation nL − n′
L = −(nR −

n′
R) and the energy conservation are satisfied at very large τ ,

En′
L

− EnL
≈ −(En′

R
− EnR

). Using the microreversibility and
the conservation laws, we find the relation

P(nL,nR )→(n′
L,n′

R ) = P(n′
L,n′

R )→(nL,nR )e
A(nL−n′

L),

where A is an affinity A = β(μL − μR). The probabil-
ity that the number of the transmitted electron is Q, is
defined as P (Q) = ∑

nL,nR,n′
L,n′

R
P(nL,nR )→(n′

L,n′
R )δ[Q − (nL −

n′
L)]. Therefore, FT is obtained as the direct consequence of

the microreversibility

P (Q) = P (−Q)eAQ. (8)

This microreversibility ensures the following sum rule, which
is called “global detailed balance” in Ref. 14,

〈eAQ〉 = 1, (9)

155431-2
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since 1 = ∑
Q P (Q) = ∑

Q P (−Q)eAQ = 〈eAQ〉. Here 〈· · ·〉
denotes the expectation 〈· · ·〉 ≡ ∑

Q · · · P (Q).
Now let us discuss the higher order correlations between

the current and its noise power, which are the central topic in
the present paper. With FT (8), we find the following identity:

〈Q〉 =
∑

Q

QP (Q) = −
∑

Q

QP (Q)e−AQ

= −〈Q〉 + A〈Q2〉 − A2

2!
〈Q3〉 + · · · . (10)

Furthermore, we note that 〈Qn〉 can be expanded in the Taylor
series of A with the coefficients 〈Qn〉m (n,m integer)

〈Qn〉 = 〈Qn〉0 + A〈Qn〉1 + A2

2!
〈Qn〉2 + · · · . (11)

Comparing order by order with respect to A, we find infinite
number of relationships among these coefficients, some of
which are given as

〈Q2〉0 = 2〈Q〉1, (12)

〈Q2〉1 = 〈Q〉2. (13)

Averaged current I and current noise power S are defined
as I = 〈Q〉/τ and S = 2(〈Q2〉 − 〈Q〉2)/τ .26 The first relation
(12) is equivalent to the fluctuation dissipation relations19

S0 = 4kBT G1, (14)

and the second relation (13) is to

S1 = 2kBT G2. (15)

This relation is beyond the fluctuation-dissipation relation and
directly links the nonlinearity and the nonequilibrium of the
system.

B. Finite magnetic field case

At B �= 0 the microreversibility requires that the probability
P (Q,B) should satisfy13

P (Q,B) = P (−Q, − B) exp(AQ). (16)

P (Q,B) is now decomposed to the symmetric and antisym-
metric parts regarding the magnetic field reversal P±(Q) ≡
P (Q,B) ± P (Q, − B), which fulfill

P±(Q) = ±P±(−Q)eAQ. (17)

Although the symmetric part P+(Q) produces the same
fluctuation relations as P (Q) does, the antisymmetric prob-
ability gives rise to a nontrivial result. By considering the
antisymmetrized number of charges exchanged between the
reservoirs,

〈Q−〉 ≡
∑

Q

QP−(Q) =
∑

Q

QP−(Q)e−AQ (18)

and defining 〈Qn
−〉m with nonnegative integers n and m as the

coefficients in the Taylor expansion of the above 〈Q−〉 with
regard to A, we obtain

〈Q3
−〉0 = 2〈Q2

−〉1. (19)

By noting the following relation, which is the consequence of
the normalization condition

∑
Q P (Q) = 1:

0 =
∑

Q

P−(Q) = −
∑

Q

P−(Q)e−AQ, (20)

we obtain

3〈Q−〉2 − 3〈Q2
−〉1 + 〈Q3

−〉0 = 0. (21)

The current that is antisymmetrized with regard to the B

reversal is defined as I (V,B) − I (V, − B) = 〈Q−〉/τ and the
current noise power is also defined in the same way, Eqs. (19)
and (21) yields

SA
1 = CA

0 /2kBT (22)

and

SA
1 − 2kBT GA

2 = CA
0 /3kBT , (23)

respectively. Here CA
0 , which originates from the term 〈Q3

−〉0,
is the antisymmetric part of the third cumulant at equilibrium.
These two yield the antisymmetric relation expressed by

SA
1 = 6kBT GA

2 . (24)

The above deduction totally relies on the microreversibility
as is the case in a systematic derivation.13 Recently, however,
an interesting possibility of the broken microreversibility in
mesoscopic conductors is pointed out.14,15 It was discussed
that, because of the global detailed balance expressed by
Eq. (9), the sum rule Eq. (20) and hence Eq. (21) hold true
without microreversibility, even if we do not resort to the
relation P−(Q) = −P−(−Q) exp(AQ) [Eq. (16)]. In this case,
Eq. (19) and the resultant Eq. (22) are no more valid and only
Eq. (23) is expected. To address this issue experimentally is
the main motivation of the present paper.

The conventional current and shot noise formulas in the
Landauer-Büttiker framework can be also expressed in the
polynomial form of V {see Eqs. (39) and (61) in Ref. 4}.
By taking the energy-dependent transmission into account, a
relation similar to Eq. (15) holds true. However, this approach,
which is based on the transmission defined in the equilibrium,
fails to explain the nonlinear conductance that is not symmetric
with respect to the magnetic field reversal. Indeed, it is
established theoretically and experimentally27–31 that due to
electron-electron interactions induced in biased mesoscopic
conductors, the Onsager-Casimir reciprocal relations are bro-
ken, leading to finite GA

2 . We will show the experimental data
regarding this below.

III. MAGNETIC FIELD ASYMMETRY AND
MICROREVERSIBILITY

A. Experiment

We used an Aharonov-Bohm (AB) ring as a typical coherent
conductor. Figure 3(a) shows an atomic force microscope
(AFM) image of the AB ring fabricated by local oxidation
using an AFM33 on a GaAs/AlGaAs heterostructure two-
dimensional electron gas (2DEG) (the electron density 3.7 ×
1011 cm−2, the mobility 2.7 × 105 cm2/V s and the electron
mean free path 2.7 μm). The two-terminal current and noise
measurement setup in a dilution refrigerator is also shown in

155431-3
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FIG. 3. (Color online) (a) Atomic force microscope (AFM) image
of the AB ring fabricated by local oxidation using an AFM33

on a GaAs/AlGaAs 2DEG with the experimental setup for the
two-terminal current and noise measurements. (b) Image plot of the
conductance of the ring as a function of Vg and B (in the lower panel).
The upper panel shows the magnetoconductance at Vg = −0.09 V as
indicated by a white line in the lower panel. (c) Conductance as a
function of Vg at B = ±25 mT [indicated by dashed lines in the
lower panel of (b)]. (d) Equilibrium noise (S0) as a function of Vg at
B = ±25 mT.

Fig. 3(a). The in-plane gates defined by the oxide lines are
grounded in the present measurement. The 2DEG has a back
gate to tune the electron density and the conductance of the
AB ring can be modulated by the back gate voltage Vg and the
magnetic field B by the AB effect. Figure 3(b) shows the image
plot of the conductance as a function of Vg and B. The upper
panel of Fig. 3(b) presents the conductance at Vg = −0.09 V
displaying clear AB oscillations with an oscillation period
being 25 mT in agreement with the ring radius of 230 nm.31,32

The conductance of the ring ranges between 1.3 and 1.7 in
units of 2e2/h ∼ (12.9 k�)−1 with typical visibility of ∼0.13.
The presence of electron interferences guarantees the coherent
electron transport in the device.

In addition to the dc measurement, we performed the noise
measurement as follows [also see Fig. 3(a)]. The voltage
fluctuation across the sample on the resonant circuit, whose
resonant frequency is about 3.0 MHz with the bandwidth of
∼140 kHz, is extracted as an output signal of the cryogenic
amplifier.5,25,34–36 The time-domain signal is then captured by
the two-channel digitizer, and is converted to spectral density
data via FFT. To increase the resolution of the noise spectrum,
we performed the cross-correlation technique by using two
sets of resonant circuit and amplifier. The sample was placed
in a dilution refrigerator whose base temperature is 45 mK
and the electron temperature in the equilibrium was 125 mK
as deduced from the thermal noise. By numerically fitting
the obtained resonant peak, the current noise power spectral
density S is obtained as performed in Ref. 34.

In the analysis of the current I and the current noise S as
polynomials of V , the bias window was set to |eV | � 50 μeV,
which corresponds to 4.6kBT at T = 125 mK. In this bias
range, the Joule heating is expected to be negligible as seen in

previous shot noise measurements for mesoscopic devices.35,36

The coefficients in Eqs. (1) and (2) are deduced from the
numerical fitting to the obtained current and current noise.
The polynomial fitting for I and S was performed by taking
up to the fifth order of V for I and up to the fourth order of
V for S into account, respectively. The analysis up to third or
seventh order of V for I and second order of V for S yields
results consistent with those presented below. We note that the
measurement was carefully performed at several different Vg

and B, and all the results are in a quantitative agreement with
each other within the experimental accuracy of the present
work.

B. Results and Discussions

Figure 3(c) shows the zero-bias conductance G1 obtained at
B = 25 mT and B = −25 mT at 125 mK as a function of the
back gate voltage Vg . Since Vg modulates the electron density
in the ring, hence the interference pattern, the conductance
fluctuates as Vg varies. As the Onsager-Casmir reciprocity
tells, G1 behaves similarly at B = 25 and −25 mT as Vg

changes. The correlation factor (CF) between the two, which
is the covariance of the two divided by the product of their
standard deviations, is 0.91. Similarly, as shown in Fig. 3(d)
the gate-dependent thermal noises (S0) at B = 25 mT and
−25 mT lap over each other with CF = 0.68. Also we note
that the proportionality between G1 and S0 indicates that S0 =
4kBT G1 holds with an electron temperature of T = 125 mK.
The coefficients of the first term in Eqs. (1) and (2) satisfy the
Onsager-Casimir reciprocity as a fundamental property in the
equilibrium.

Next we discuss the coefficients in the second term of
Eqs. (1) and (2). Figures 4(a) and 4(b) show G2 and S1

at B = 25 and −25 mT, respectively. It is remarkable that
unlike the equilibrium property (G1 and S0), G2 and S1 are not
symmetric with respect to the magnetic field reversal. Indeed
CFs between the traces for the negative and positive fields are
as low as 0.20 and 0.38 for G2 and S1, respectively. Regarding
G2, the presence of this asymmetry was reported recently as the
signature of the electron-electron correlation effect induced in
a biased mesoscopic conductor.29–31 The noise measurement
clearly tells that S1 is also not symmetric with respect to the
magnetic field reversal.

Figures 4(c) and 4(d) show GS
2 and GA

2 in the left axis
as a function of Vg , respectively, where SS

1 and SA
1 are

superposed in the right axis. Clearly there appears strong
correlation between GS

2 and SS
1 and between GA

2 and SA
1 with

CF = 0.84 and 0.85, respectively. As the theory predicts that
SS

1 = 2kBT GS
2 and SA

1 = 6kBT GA
2 , Figs. 4(e) and 4(f) show

the plots to compare between the theory and the experiment.
The dotted lines are the prediction. As is consistent with the
previous report,25 the symmetric part deviates from the
theory while the antisymmetric part in Fig. 4(f) is in better
agreement with the theory than the symmetric one in Fig.
4(e). For the presented data set, SS

1 /2kBT GS
2 = 6.00+0.94

−0.98

and SA
1 /6kBT GA

2 = 1.61+0.22
−0.20, being statistically consistent

with the previous report.25,37 The reason for the observed
considerable deviation from the theory in the symmetric part is
not yet clear. We note that in a double-quantum dot experiment
performed in the incoherent regime24 similar large discrepancy
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FIG. 4. (Color online) (a) G2 obtained at B = 25 and −25 mT is
shown as a function of Vg . (b) S1 obtained at B = 25 and −25 mT
is shown as a function of Vg . (c) The symmetrized components GS

2

and SS
1 are shown in the left and right axes. (d) The symmetrized

components GS
2 and SS

1 are shown in the left and right axes. (e) SS
1 is

plotted against 2kBT GS
2 . The dotted line is the prediction. (f) SA

1 is
plotted against 6kBT GA

2 . The dotted line is the prediction.

between the prediction based on FT was reported, where the
back action of the nonequilibrium quantum point contact
attached to the dots to detect their charge states explains
the observation.16 In the present case, as no such detector
is present, further effort is necessary to solve this problem.

Regarding the amplitude of GS
2 and GA

2 , the experiment
on the nonlinear transport in the AB ring fabricated on the
conventional 2DEG was reported before.30 The radius of their
ring is about three times larger than ours. They measured
the temperature dependence of the amplitudes GS

2 and GA
2

and found that the amplitudes rapidly decrease as temperature
increases from 30 mK to 1 K. Similar temperature dependence
was observed in the present ring. At the lowest temperature,
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FIG. 5. (Color online) (a) Based on the data shown in Fig. 4(d)
3kBT (SA

1 − 2kBT GA
2 ) and 2kBT SA

1 are plotted as a function of Vg .
(b) Similar plot is shown for the data set in Fig. 3 in Ref. 25.
(c) 3kBT (SA

1 − 2kBT GA
2 ) vs 2kBT SA

1 obtained at 125 and 450 mK.

the amplitude of GS
2 and GA

2 in the present case is slightly
larger but falls in the same range of their result.

Now let us discuss the microreversibility in the present
system. In the presence of the magnetic field, the possibility
of the absence of the microreversibility in the nonequilibrium
was recently pointed out.14 While the antisymmetric relation is
only given by Eq. (23), the restriction of the microreversibility
simultaneously requires the relation of Eq. (22). Thus we can
basically obtain CA

0 from the experimental data in two ways;
by calculating CA

0 = 3kBT (SA
1 − 2kBT GA

2 ) which holds true
regardless of the microreversibility condition and by calculat-
ing CA

0 = 2kBT SA
1 validated only with the microreversibility.

Figure 5(a) shows the obtained CA
0 from the data set shown

in Fig. 4. Clearly as a function of Vg , CA
0 calculated in two

ways coincide each other. Figure 5(b) shows the result for the
data reported in Fig. 3 in Ref. 25 where the field is swept with
a fixed Vg . In this case too, CA

0 obtained in two ways almost
perfectly equal each other.

In Fig. 5(c) we plot 3kBT (SA
1 − 2kBT GA

2 ) vs 2kBT SA
1 at

125 and 450 mK. As we have seen that SA
1 /6kBT GA

2 deviates
from unity, the slope is slightly different from unity. However,
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within the accuracy of the present experiment, we may claim
that two values are the same. This tells us that in the present
experiment the assumption of the microreversibility is valid.

Finally, we note that the present demonstration gives
a single example of the validity of the microreversibility
in the nonequilibrium quantum regime in the presence of
the magnetic field. This fundamental topic should be ex-
perimentally addressed in many systems such as electron
interferometers,14,15,38 the quantum dot,39 and the macroscopic
inhomogeneous system.40

IV. CONCLUSIONS

We show that the fluctuation theorem is semiquantitatively
valid in the description of the quantum transport in meso-
scopic systems. Unlike the conventional scattering theory, this
description gives a nontrivial relation between the nonlinearity
and the nonequilibrium in the presence of the magnetic field.

The direct test of the validity of the microreversibility was also
addressed. Since the fluctuation theorem does not directly give
the physical interpretation of the current through the device as
the Landauer-Büttiker formalism does, both descriptions are
complementary to each other. We believe that by combining
these two pictures, nonequilibrium properties in mesoscopic
systems in the presence of the interaction effect will be further
addressed.
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