Asymptotic eigenvalue distributions of block-transposed Wishart matrices - Archive ouverte HAL
Article Dans Une Revue Journal of Theoretical Probability Année : 2013

Asymptotic eigenvalue distributions of block-transposed Wishart matrices

Résumé

We study the partial transposition ${W}^\Gamma=(\mathrm{id}\otimes \mathrm{t})W\in M_{dn}(\mathbb C)$ of a Wishart matrix $W\in M_{dn}(\mathbb C)$ of parameters $(dn,dm)$. Our main result is that, with $d\to\infty$, the law of $m{W}^\Gamma$ is a free difference of free Poisson laws of parameters $m(n\pm 1)/2$. Motivated by questions in quantum information theory, we also derive necessary and sufficient conditions for these measures to be supported on the positive half line.

Dates et versions

hal-00597002 , version 1 (30-05-2011)

Identifiants

Citer

Teodor Banica, Ion Nechita. Asymptotic eigenvalue distributions of block-transposed Wishart matrices. Journal of Theoretical Probability, 2013, 26 (3), pp.855-869. ⟨10.1007/s10959-012-0409-4⟩. ⟨hal-00597002⟩
111 Consultations
0 Téléchargements

Altmetric

Partager

More