Asymptotic eigenvalue distributions of block-transposed Wishart matrices
Résumé
We study the partial transposition ${W}^\Gamma=(\mathrm{id}\otimes \mathrm{t})W\in M_{dn}(\mathbb C)$ of a Wishart matrix $W\in M_{dn}(\mathbb C)$ of parameters $(dn,dm)$. Our main result is that, with $d\to\infty$, the law of $m{W}^\Gamma$ is a free difference of free Poisson laws of parameters $m(n\pm 1)/2$. Motivated by questions in quantum information theory, we also derive necessary and sufficient conditions for these measures to be supported on the positive half line.