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Abstract

Let K be a complete algebraically closed p-adic field of characteristic zero. Let f, g be
two transcendental meromorphic functions in the whole field K or meromorphic functions in
an open disk that are not quotients of bounded analytic functions. Let P be a polynomial of
uniqueness for meromorphic functions in K or in an open disk and let α be a small meromorphic
function with regards to f and g. If f ′P ′(f) and g′P ′(g) share α counting multiplicity, then we
show that f = g provided that the multiplicity order of zeroes of P ′ satisfy certain inequalities.
If α is a Moebius function or a non-zero constant, we can obtain more general results on P .

Introduction and Main Results

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute
value denoted by | . |. We denote by A(K) the K-algebra of entire functions in K, by M(K) the
field of meromorphic functions in K, i.e. the field of fractions of A(K) and by K(x) the field of
rational functions.

Let a ∈ K and R ∈]0,+∞[. We denote by d(a,R) the closed disk {x ∈ K : |x − a| ≤ R} and
by d(a,R−) the open” disk {x ∈ K : |x − a| < R}. We denote by A(d(a,R−)) the set of analytic

functions in d(a,R−), i.e. the K-algebra of power series

∞
∑

n=0

an(x− a)n converging in d(a,R−) and

by M(d(a,R−)) the field of meromorphic functions inside d(a,R−), i.e. the field of fractions of
A(d(a,R−)). Moreover, we denote by Ab(d(a,R

−)) the K - subalgebra of A(d(a,R−)) consisting of
the bounded analytic functions in d(a,R−), i.e. which satisfy sup

n∈N

|an|R
n < +∞ . And we denote

by Mb(d(a,R
−)) the field of fractions of Ab(d(a,R

−)). Finally, we denote by Au(d(a,R
−)) the

set of unbounded analytic functions in d(a,R−), i.e. A(d(a,R−)) \ Ab(d(a,R
−)). Similarly, we set

Mu(d(a,R
−)) = M(d(a,R−)) \Mb(d(a,R

−)).

The problem of value sharing a small function by functions of the form f ′P ′(f) was examined
first when P was just of the form xn [7], [18], [24]. More recently it was examined when P was a
polynomial such that P ′ had exactly two distinct zeroes [15], [17], [20], both in complex analysis
and in p-adic analysis. In [15], [17] the functions where meromorphic on C, with a small function
that was a constant or the identity. In [20], the problem was considered for analytic functions
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in the field K: on one hand for entire functions and on the other hand for unbounded analytic
functions in an open disk.

Here we consider functions f, g ∈ M(K) or f, g ∈ M(d(a,R−)) and ordinary polynomials P :
we must only assume certain hypotheses on the multiplicity order of the zeroes of P ′. The method
for the various theorems we will show is the following: assuming that f ′P ′(f) and g′P ′(g) share a
small function, we first prove that f ′P ′(f) = g′P ′(g). Next, we derive P (f) = P (g). And then,
when P is a polynomial of uniqueness for the functions we consider, we can conclude f = g.

Now, in order to define small functions, we have to briefly recall the definitions of the clas-
sical Nevanlinna theory in the field K and a few specific properties of ultrametric analytic or
meromorphic functions.

Let log be a real logarithm function of base > 1 and let f ∈ M(K)
(

resp. f ∈ M(d(0, R−))
)

having no zero and no pole at 0. Let r ∈]0,+∞[
(

resp. r ∈]0, R[
)

and let γ ∈ d(0, r). If f has a
zero of order n at γ, we put ωγ(h) = n. If f has a pole of order n at γ, we put ωγ(f) = −n and
finally, if f(γ) 6= 0,∞, we put ωγ(f) = 0

We denote by Z(r, f) the counting function of zeroes of f in d(0, r), counting multiplicity, i.e.
we set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

ωγ(f)(log r − log |γ|).

In the same way, we set N(r, f) = Z
(

r,
1

f

)

to denote the counting function of poles of f in

d(0, r), counting multiplicity.

For f ∈ M(d(0, R−)) having no zero and no pole at 0, the Nevanlinna function is defined by
T (r, f) = max

{

Z(r, f) + log |f(0)|, N(r, f)
}

.

Now, we must recall the definition of a small function with respect to a meromorphic function
and some pertinent properties.

Definition. Let f ∈ M(K)
(

resp. let f ∈ M(d(0, R−))
)

such that f(0) 6= 0,∞. A function

α ∈ M(K)
(

resp. α ∈ M(d(0, R−))
)

having no zero and no pole at 0 is called a small function

with respect to f , if it satisfies lim
r→+∞

T (r, α)

T (r, f)
= 0

(

resp. lim
r→R−

T (r, α)

T (r, f)
= 0

)

.

If 0 is a zero or a pole of f or α, we can make a change of variable such that the new origin is
not a zero or a pole for both f and α. Thus it is easily seen that the last relation does not really
depend on the origin.

We denote by Mf(K)
(

resp. Mf(d(0, R
−))

)

the set of small meromorphic functions with

respect to f in K
(

resp. in d(0, R−)
)

.

Let us remember the following definition.

Definition. Let f, g, α ∈ M(K)
(

resp. let f, g, α ∈ M(d(0, R−))
)

. We say that f and g share the

function α C.M., if f − α and g − α have the same zeroes with the same multiplicity in K
(

resp.

in d(0, R−)
)

.
Recall that a polynomial P ∈ K[x] is called a polynomial of uniqueness for a class of functions

F if for any two functions f, g ∈ F the property P (f) = P (g) implies f = g.

Actually, in a p-adic field, we can obtain various results, not only for functions defined in the
whole field K but also for functions defined inside an open disk because the p-adic Nevanlinna
Theory works inside a disk, for functions of Mu(d(0, R

−)).
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We can now state our main theorems on the problem f ′P ′(f), g′P ′(g) share a small function.

Theorem 1. Let P be a polynomial of uniqueness for M(K), let P ′ = b(x− a1)
n

l
∏

i=2

(x − ai)
ki

with b ∈ K
∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =

∑l

i=2 ki. Suppose P satisfies the following
conditions:

n ≥ 10 +

l
∑

i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 2,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩ Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Theorem 2. Let P be a polynomial of uniqueness for M(K), let P ′ = b(x− a1)
n

l
∏

i=2

(x − ai)
ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following
conditions:

n ≥ 9 +

l
∑

i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 2,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Theorem 3. Let P be a polynomial of uniqueness for M(K), let P ′ = b(x− a1)
n

l
∏

i=2

(x − ai)
ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following
conditions:

n ≥ k + 2,

n ≥ 9 +
l

∑

i=3

max(0, 4− ki) + max(0, 5− k2).

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

Theorem 4. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(a,R
−)) and

let P ′ = b(x− a1)
n

l
∏

i=2

(x− ai)
ki with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =

∑l

i=2 ki.

Suppose P satisfies the following conditions:

n ≥ 10 +

l
∑

i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 3,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
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Let f, g ∈ Mu(d(a,R
−)) and let α ∈ Mf(d(a,R

−)) ∩Mg(d(a,R
−)) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Theorem 5. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

b(x− a1)
n

l
∏

i=2

(x− ai) with l ≥ 3 , b ∈ K∗, satisfying:

n ≥ l + 10,
if l = 3, then n 6= 2l− 1.

Let f, g ∈ M(K) be transcendental and let α ∈ Mf(K)∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

Theorem 6. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(a,R
−)) such

that P ′ is of the form P ′ = b(x− a1)
n

l
∏

i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying:

n ≥ l + 10,
if l = 3, then n 6= 2l− 1.

Let f, g ∈ Mu(d(a,R
−)) and let α ∈ Mf (d(a,R

−)) ∩ Mg(d(a,R
−)) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Theorem 7. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x− a1)
n

l
∏

i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying

n ≥ l + 9,
if l = 3, then n 6= 2l− 1.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Theorem 8. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x− a1)
n

l
∏

i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying n ≥ l+ 9.

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

Theorem 9. Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K)∩Mg(K) be non-identically
zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and if n ≥ 12,

then either f = g or there exists h ∈ M(K) such that f =
a(n+ 2)

n+ 1

(hn+1 − 1

hn+2 − 1

)

h and g =

a(n+ 2)

n+ 1

(hn+1 − 1

hn+2 − 1

)

. Moreover, if α is a constant or a Moebius function, then the conclusion

holds whenever n ≥ 11.

Inside an open disk, we have a version similar to the general case in the whole field.

Theorem 10. Let f, g ∈ Mu(d(0, R
−)), and let α ∈ Mf (d(0, R

−)) ∩ Mg(d(0, R
−)) be non-

identically zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and

n ≥ 12, then either f = g or there exists h ∈ M(d(0, R−)) such that f =
a(n+ 2)

n+ 1

(hn+1 − 1

hn+2 − 1

)

h

and g =
a(n+ 2)

n+ 1

(hn+1 − 1

hn+2 − 1

)

.
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Specific Lemmas

Lemma 1. Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(d(0, R
−))). Let P (x) =

xn+1Q(x) be a polynomial such that n ≥ deg(Q) + 2 (resp. n ≥ deg(Q) + 3). If P ′(f)f ′ = P ′(g)g′

then P (f) = P (g).

Lemma 2. Let Q(x) = (x − a1)
n
∏l

i=2(x − ai)
ki ∈ K[x] (ai 6= aj , ∀i 6= j) with l ≥ 2 and

n ≥ max{k2, .., kl} and let k =
∑l

i=2 ki. Let f, g ∈ M(K) be transcendental (resp. f, g ∈
Mu(d(0, R

−))) such that θ = Q(f)f ′Q(g)g′ is a small function with respect to f and g. We have
the following :

If l = 2 then n belongs to {k, k + 1, 2k, 2k + 1, 3k + 1}.
If l = 3 then n belongs to {k

2 , k + 1, 2k + 1, 3k2 − k, .., 3kl − k}.
If l ≥ 4 then n = k + 1.
If θ is a constant and f, g ∈ M(K) then n = k + 1.
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