Kamal Boussaf 
  
Alain Escassut 
  
Jacqueline Ojeda 
  
p-adic meromorphic functions f ′ P ′ (f ), g ′ P ′ (g) sharing a small function

Keywords: 2000 Mathematics Subject Classification: 12J25, 30D35, 30G06. 0 Meromorphic, Nevanlinna, Ultrametric, Sharing Value, Unicity, Distribution of values

published or not. The documents may come    

p-adic meromorphic functions f'P'(f), g'P'(g) sharing a small function

Introduction and Main Results

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value denoted by | . |. We denote by A(K) the K-algebra of entire functions in K, by M(K) the field of meromorphic functions in K, i.e. the field of fractions of A(K) and by K(x) the field of rational functions.

Let a ∈ K and R ∈]0, +∞[. We denote by d(a, R) the closed disk {x ∈ K : |x -a| ≤ R} and by d(a, R -) the open" disk {x ∈ K : |x -a| < R}. We denote by A(d(a, R -)) the set of analytic functions in d(a, R -), i.e. the K-algebra of power series 

b (d(a, R -)) the field of fractions of A b (d(a, R -)). Finally, we denote by A u (d(a, R -)) the set of unbounded analytic functions in d(a, R -), i.e. A(d(a, R -)) \ A b (d(a, R -)). Similarly, we set M u (d(a, R -)) = M(d(a, R -)) \ M b (d(a, R -)).
The problem of value sharing a small function by functions of the form f ′ P ′ (f ) was examined first when P was just of the form x n [7], [START_REF] Ojeda | Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and Non-Archimedean analysis[END_REF], [START_REF] Yi | Uniqueness theorems of meromorphic functions[END_REF]. More recently it was examined when P was a polynomial such that P ′ had exactly two distinct zeroes [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF], [START_REF] Lin | Uniqueness theorems for meromorphic functions concerning fixed-points[END_REF], [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], both in complex analysis and in p-adic analysis. In [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF], [START_REF] Lin | Uniqueness theorems for meromorphic functions concerning fixed-points[END_REF] the functions where meromorphic on C, with a small function that was a constant or the identity. In [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], the problem was considered for analytic functions in the field K: on one hand for entire functions and on the other hand for unbounded analytic functions in an open disk.

Here we consider functions f, g ∈ M(K) or f, g ∈ M(d(a, R -)) and ordinary polynomials P : we must only assume certain hypotheses on the multiplicity order of the zeroes of P ′ . The method for the various theorems we will show is the following: assuming that f ′ P ′ (f ) and g ′ P ′ (g) share a small function, we first prove that f ′ P ′ (f ) = g ′ P ′ (g). Next, we derive P (f ) = P (g). And then, when P is a polynomial of uniqueness for the functions we consider, we can conclude f = g. Now, in order to define small functions, we have to briefly recall the definitions of the classical Nevanlinna theory in the field K and a few specific properties of ultrametric analytic or meromorphic functions.

Let log be a real logarithm function of base > 1 and let f ∈ M(K) resp. f ∈ M(d(0, R -)) having no zero and no pole at 0. Let r ∈]0, +∞[ resp. r ∈]0, R[ and let γ ∈ d(0, r). If f has a zero of order n at γ, we put ω γ (h) = n. If f has a pole of order n at γ, we put ω γ (f ) = -n and finally, if

f (γ) = 0, ∞, we put ω γ (f ) = 0
We denote by Z(r, f ) the counting function of zeroes of f in d(0, r), counting multiplicity, i.e. we set

Z(r, f ) = ωγ (f )>0, |γ|≤r ω γ (f )(log r -log |γ|).
In the same way, we set N (r, f ) = Z r, 1 f to denote the counting function of poles of f in d(0, r), counting multiplicity.

For f ∈ M(d(0, R -)) having no zero and no pole at 0, the Nevanlinna function is defined by

T (r, f ) = max Z(r, f ) + log |f (0)|, N (r, f ) .
Now, we must recall the definition of a small function with respect to a meromorphic function and some pertinent properties.

Definition. Let f ∈ M(K) resp. let f ∈ M(d(0, R -)) such that f (0) = 0, ∞. A function α ∈ M(K) resp. α ∈ M(d(0, R -))
having no zero and no pole at 0 is called a small function with respect to f , if it satisfies lim r→+∞ T (r, α) T (r, f ) = 0 resp. lim

r→R - T (r, α) T (r, f ) = 0 .
If 0 is a zero or a pole of f or α, we can make a change of variable such that the new origin is not a zero or a pole for both f and α. Thus it is easily seen that the last relation does not really depend on the origin.

We denote by M f (K) resp. M f (d(0, R -)) the set of small meromorphic functions with respect to f in K resp. in d(0, R -) .

Let us remember the following definition.

Definition. Let f, g, α ∈ M(K) resp. let f, g, α ∈ M(d(0, R -)) . We say that f and g share the function α C.M., if fα and gα have the same zeroes with the same multiplicity in K resp. in d(0, R -) .

Recall that a polynomial P ∈ K[x] is called a polynomial of uniqueness for a class of functions F if for any two functions f, g ∈ F the property P (f ) = P (g) implies f = g.

Actually, in a p-adic field, we can obtain various results, not only for functions defined in the whole field K but also for functions defined inside an open disk because the p-adic Nevanlinna Theory works inside a disk, for functions of

M u (d(0, R -)). Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. Theorem 5. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3 , b ∈ K * , satisfying: n ≥ l + 10, if l = 3, then n = 2l -1. Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. Theorem 6. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for M u (d(a, R -)) such that P ′ is of the form P ′ = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying: n ≥ l + 10, if l = 3, then n = 2l -1. Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M g (d(a, R -
)) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. Theorem 7. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying n ≥ l + 9, if l = 3, then n = 2l -1.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. Theorem 8. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying n ≥ l + 9.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. 

Theorem 9. Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. Let a ∈ K \ {0}. If f ′ f n (f -a) and g ′ g n (g -a) share the function α C.M. and if n ≥ 12, then either f = g or there exists h ∈ M(K) such that f = a(n + 2) n + 1 h n+1 -1 h n+2 -1 h and g = a(n + 2) n + 1 h n+1 -1 h n+2 -1 . Moreover, if α is a constant

∞

  n=0 a n (xa) n converging in d(a, R -) and by M(d(a, R -)) the field of meromorphic functions inside d(a, R -), i.e. the field of fractions of A(d(a, R -)). Moreover, we denote by A b (d(a, R -)) the K -subalgebra of A(d(a, R -)) consisting of the bounded analytic functions in d(a, R -), i.e. which satisfy sup n∈N |a n |R n < +∞ . And we denote by M

Theorem 10 . 1 h n+1 -1 h n+2 - 1 h 1 h

 10111 or a Moebius function, then the conclusion holds whenever n ≥ 11.Inside an open disk, we have a version similar to the general case in the whole field. Let f, g ∈ M u (d(0, R -)), and letα ∈ M f (d(0, R -)) ∩ M g (d(0, R -)) be nonidentically zero. Let a ∈ K \ {0}. If f ′ f n (fa)and g ′ g n (ga) share the function α C.M. and n ≥ 12, then either f = g or there exists h ∈ M(d(0, R -)) such that f = a(n + 2) n + and g = a(n + 2) n + n+1 -1 h n+2 -1 .
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We can now state our main theorems on the problem f ′ P ′ (f ), g ′ P ′ (g) share a small function.

Theorem 1. Let P be a polynomial of uniqueness for M(K), let

Theorem 2. Let P be a polynomial of uniqueness for M(K), let

Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. Theorem 3. Let P be a polynomial of uniqueness for M(K), let

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. Theorem 4. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for M u (d(a, R -)) and

Suppose P satisfies the following conditions: