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Morphology of air invasion in an immersed granular layer
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Ecole Normale Supérieure - CNRS,

46 Allée d’Italie, 69364 Lyon Cedex, France

(Dated: May 24, 2011)

We report a study of the paths formed by a finite volume of air gently injected at the base of
an immersed granular material. A two-dimensional model, based on experimental observations,
shows that the typical height and width of the region explored by the branched path depend not
only on the injected volume V but also on a dimensionless parameter χ which accounts for the
relative effects of the gravity and capillarity: for a given injected volume V , larger gravity effects
lead to taller and narrower structures; for a given χ, the typical height and width of the structure
scale like V 1/2 and V 1/4, respectively while the typical gaseous fraction in the corresponding region
increases accordingly like V 1/4. Such results could be of practical importance: for instance, gas can
be trapped on purpose in an underground natural container below a granular slurry. Our results can
help in predicting if the gas is likely to reach the free surface and escape the system if the container
presents a defect (hole or fracture).

PACS numbers: 83.80.Fg : Granular materials, rheology; 47.57.Gc : Granular flow, complex fluid;

47.85.Dh : Hydrodynamics, applied fluid mechanics

I. INTRODUCTION

The invasion of a gas in porous media is encountered
in a wide range of systems, from industrial processes (oil
industry [1, 2], methane hydrate dissociation [3], etc.) to
geophysical phenomena [4–7]. A typical example of ap-
plication is the air sparging [8]: air is injected into the
subsurface below the lowest known depth of contamina-
tion and, due to buoyancy, air serves to remove or helps
degrade the contaminants. Concerning natural processes,
the study of gas emission at the sea floor (venting dy-
namics) have led to the study of the release of methane
from pockmarks in the mid-Atlantic continental shelf [9].
These studies contributed to the understanding of the
carbon-cycle perturbations. The results are important
because these latters are likely to induce global climate
changes [10].

Because of their implication in a wide range of sys-
tems and because of the potentially huge economical ben-
efits, the understanding of such invasion processes has
attracted the scientific community. They resemble many
growth processes such as the Eden cluster model [11], bal-
listic models [12, 13], dendritic growth or the Diffusion-
Limited Agregation (DLA) [14]. These models, which
have been intensively studied [15, 16], especially in nu-
merical simulations, consider a homogeneous media in
the absence of external forces [17].

One can also mention various numerical studies of sim-
ilar systems, from the destabilization produced by grav-
ity in 2D porous media [18–20] to the study of the frac-
tal dimension in an etched network [21]. Most of the
systems involve tip effects in which the local growth ve-
locity is proportional to the local gradient of an external
field (pressure, impurity concentration, etc.). We also
point out that a very similar growth or propagation phe-
nomenon is observed in the mining industry when frag-

ments are extracted from an extraction point at the base
of the ore bed (draw body, [22]).

Concerning, in particular, the injection of a gas in
granular materials, we can distinguish the biphasic case
(grains and air) [23] from triphasic case (grains, fluid
and air) [24, 25], the latter being more complex and not
fully understood. The dynamics of the interface between
air and an immersed granular material has been exper-
imentally studied in a Hele-Shaw cell [26], mainly in a
regime in which the gas forms a finger, reminiscent of the
Saffman-Taylor finger. In this regime, the grains are dis-
placed by the interface. The main physical mechanisms
at play involve the surface tension, the viscous dissipa-
tion and a pressure gradient. The morphology produced
during the air injection can be influenced by the rate of
gas delivery and the vertical distance from the source
[27]. We lately showed that, in a regime in which the
air creates a path between the grains without moving
them, the region invaded by the gas can be described as
the result of a diffusion process [24]. The first simplistic
approach was neglecting the formation of side branches
during the growth of the air path. Here, we propose a nu-
merical analysis, based on experimental observations, of
the role played by the injected volume and by the prop-
erties of the granular bed in the morphology of the region
invaded by the gas, taking into account the formation of
side branches.

II. PROBLEM STATEMENT

We aim at characterizing the geometry of the region
invaded by a gas locally injected at the base of an im-
mersed granular bed. In [24], we reported experimental
results obtained in both three- (3D) and two-dimensional
(2D) experimental setups. The 2D system proved to be
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very useful as it makes it possible to vizualize the paths
created by the gas within the granular matrix. Thus,
we will limit the present study to experimental examples
obtained in a thin Hele-Shaw cell and numerical results
from a (2D) model. We were previously interested in the
loci of the gas emission at the free surface resulting from
a continuous injection of gas. Here, we consider a quali-
tatively different situation in which a finite amount of gas
is injected so that the invaded region does not reach the
free surface. We aim at characterizing its morphology.

A. Summary and limitations of the former results

Long term experiments [24] showed that, for the (2D)
cell, the invasion of the immersed granular bed by the
gas can be interpreted in term of a diffusive-like model,
the system exhibiting at long times a parabolic fluidized
region whose width w depends on the vertical distance
z from the lower edge as w =

√
D z. We proposed that

the diffusion coefficient D was an increasing function of
a unique parameter of the system, χ ≡ σP /ρgd which
compares the width σP of the distribution of the cap-
illary overpressure associated with the passage between
the grains with the typical hydrostatic pressure variation
ρgd over the grain size d. The result can be understood
as follows: for very small grains, the hydrostatic pressure
difference is very small compared to the capillary over-
pressure which scales like 1/d (thus much smaller than
the width of its distribution) and, locally, the air creating
its path between the grains ‘feels’ an isotropic system.
The width of the invaded region is large, which corre-
sponds to large D. To the contrary, if the effect of the
gravity is much larger than the capillary overpressure,
the growth of an air finger in the system is not limited
by the capillarity and the gas crosses the system straight
along the vertical (very large grains). The invaded region
is narrow, which corresponds to small D.

The previous experimental results were worth to be ex-
tended in several aspects. First, we were not able to check
experimentally the dependence of D on χ. Indeed, one
can barely vary χ in well-controlled manner by changing
the grain size d because the polydispersity of the sam-
ples and the packing of the grains are difficult to control.
Second, in the theoretical approach, we assumed that the
air was creating paths without side branches, which is ob-
viously not the case when the effects of the gravity are
weak. Finally, from a practical point of view, the geome-
try of the region invaded by a constant volume of gas is,
at least, as interesting as the loci of the gas emission at
the free surface in the continuous regime. Thus, we aim
here at extending the previous results to branched inva-
sion paths in the case of the injection of a finite volume.

α

π/2−α

camera

water

grains

air

Hele-Shaw cell

FIG. 1. (Color online) Sketch of the experimental setup. A
total volume V of air is injected at constant flow rate Φ into a
thin vertical cell (Hele-Shaw cell) containing a granular layer
immersed in water. The effective gravity is changed by tilting
the cell by an angle α (from 0 to 90 deg). The formation
of the pattern in the granular bed is recorded with a camera
positioned in front of the experimental cell.

B. Preliminary experimental results

In order to directly observe the paths of air within the
granular material, we designed a (2D) setup that con-
sists of a vertical Hele-Shaw cell (Fig. 1): the granular
matter, immersed in water, is contained between two ver-
tical walls (glass plates 40 cm wide, 30 cm high, gap 2
mm). In order to control the gravity effects, the cell can
be tilted by an angle α with respect to the vertical so
as to produce an effective gravity geff ≡ g cosα. The
experimental setup thus makes possible to change χ, the
granular material remaining unchanged. The injection of
air through an inlet located at the center of the lower edge
is insured by a mass-flow controller (Bronkhorst, Mass-
Stream Series D-5111). The flow rate Φ can be tuned in
the range 0.2 to 2.2 mL/s. The granular material con-
sists of glass beads (USF Matrasur, sodosilicated glass)
previously sieved in order to control their size (diameter
d =150-250, 250-425, and 425-600 µm). A webcam (Log-
itech, QuickCam S7500, 640×480 px2, 20 images/sec)
is used to image the system from the side, whereas the
light source consists of a transparency flat viewer (Just
NormLicht, Classic Line) positioned behind the cell. The
initial state of the system consists of an immersed gran-
ular bed (typical depth 24 cm), free of bubbles, whose
surface is leveled. A chosen volume of air, V , is then
gently injected in the system.

The preliminary experimental results (Fig. 2) show
that the branches are more numerous and, thus, the pat-
tern more compact when the effective gravity is reduced
by tilting the experimental cell. Accordingly, the invaded
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(a) (b)
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FIG. 2. Images of the experimental pattern. The 2D exper-
iment reveals that, for the same volume V = 1.98 mL, the
path created by the injected gas has a drastically different
geometry depending on the effective gravity geff . (a) For an
almost horizontal cell [α = 80 deg], one observes a highly
branched pattern, which remains located around the outlet
(Note that its typical width compares with its typical height.
(b) By contrast, for a vertical cell [α = 0 deg], even if the
image reveals a significant number of branches, the maximum
height reached by the gaseous structure is much larger than
its width (d = 250 - 425 µm).

region is broader and smaller in this case whereas an in-
crease of geff leads to a narrower and taller pattern with
less branches. In order to characterize the average geom-
etry of the invaded region, we would have to repeat the
experiment a large number of times, which is difficult.
Indeed, once the pattern is formed, in order to reset the
initial condition, one must open the cell to remove the air
trapped in the system, which takes a long time. More-
over, we would not be sure to prepare the system in the
exact same way and the state of the granular packing (its
density, for instance) might be different from one run to
another.
Thus, in order to overcome the difficulty, we performed

the numerical analysis of the problem that is thoroughly
described in the next section III.

III. NUMERICAL ANALYSIS

In order to assess the dependence of the geometry of
the invaded region on the problem parameters, especially
χ and the injected volume V , we perform the simple
numerical analysis whose ingredients and results are re-
ported in the next sections III A and III B, respectively.

A. Ingredients

In a simplified 2D approach of the system, we con-
sider that the granular packing reduces to a 2D square
network, each vertex corresponding to the void space be-
tween four grains. The size of the network (1200× 1000)
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FIG. 3. Air paths from the numerical simulations. Note
first that the numerical procedure allows the creation of side
branches. For the same injected volume, thus the same num-
ber N = 4000 of occupied vertices, one observes that the
geometry of the path depends drastically on the control pa-
rameter χ [(a) χ = 1000; (b) χ = 100]. As expected and also
observed experimentally, for smaller χ (larger gravity effects)
the finger exhibits less branches and reaches a larger height.

compares with the typical size of the experimental cell
in unit of grains (typically 1600 grains in width by 1200
grains in height) and is large enough to avoid boundary
effects on the sides and at the top. The only bound-
ary condition is that the gas cannot trespass the bottom
plane.

The propagation of an air finger in the material is lim-
ited by the capillary overpressure δPc to overcome to go
from one vertex to a neighbour one. Considering that the
typical size of the pass between two void spaces scales
like the grain diameter d [25], we estimate that, in av-
erage, δPc ∼ γ/d, where γ denotes the air-water surface
tension. However, due to the local heterogeneity of the
system (polydispersity, wetting conditions, local arrange-
ment of the grains,. . . ), δPc differs from one pass to an-
other. Thus, in order to account for the heterogeneity, we
assume that the links between the vertices are associated
with capillary overpressures distributed according to a
Gaussian distribution of width σP around the nominal
value ∆Pc which, we remind, is of the order of γ/d.

The propagation of the air finger along the vertical
is favored by the additional contribution of the hydro-
statics. Indeed, in the experiments, the water that fills
the space between the grains is subjected to the grav-
ity so that, for instance, the pressure difference in the
water between one vertex and the first neighbour above
is δPg = ρgeffd, where ρ denotes the density of water.
In the numerical computations, the effects of the gravity
are accounted for by considering that the threshold over-
pressure to overcome to go from one vertex to another is
δPt = δPc − ρgeffz, where z (positive) denotes the verti-
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FIG. 4. Superposition of 2000 paths for the same injected volume V and different values of χ. The morphology of the invasion
region goes from an almost circular pattern for a horizontal cell [(a), zero effective gravity, χ = ∞] to a vertically elongated
shape when χ is decreased [N = 8000, (a) χ = ∞; (b) χ = 1250; (c) χ = 250; (d) χ = 166; (e) χ = 100].

cal distance from the outlet plane (bottom edge). Tech-
nically, we associate with each of the links the threshold
overpressure δPt by adding the corresponding contribu-
tion of the gravity to the previously chosen map δPc.
The air path is calculated as follows: First, the fin-

ger is grown from the virtual outlet, at the center of the
bottom edge. Second, during the finger growth, from an
already existing path, we consider the whole set of links
connected to vertices occupied by the gas and determine
the one corresponding to the smallest value of the thresh-
old overpressure, δPt. We make the air invade the cor-
responding vertex, by adding the latter to the air path.
The procedure thus allows the generation of branches
(Fig. 3). We repeat the process until a chosen number
of vertices (N = 2000, 4000 and 8000), corresponding to
a chosen volume V ≡ Nvp (vp is the typical volume as-
sociated with the void space between the grains), are
occupied. Finally, in order to get a relevant estimate of
the average geometry of the invaded region, we repeat
the whole process 2000 times for the same parameters
(for given χ and N).

B. Results

In the present section, we discuss the geometrical prop-
erties of the region invaded by the gas. The discussion is
based on averages of 2000 numerical paths (Fig. 4).

1. Geometrical characteristics of the invaded region

As expected, for χ = ∞ (Fig. 4a), the gas invades
the granular packing in an almost isotropic manner, the
paths filling half a disk above the outlet. The only
anisotropy results from the boundary condition (no air
flow) at the lower edge of the system. The observed pat-
tern resulting from a pure diffusive process with a re-
flecting boundary the typical size of the invaded region
scales like d

√
N . When χ is decreased and, thus, the

pressure gradient increased, the invaded region elongates
along the vertical. However, one can notice that, for a
given injected volume, the width of the structure does
not change significantly whereas its height significantly
increases (Fig. 4b – e).

In order to report a qualitative behaviour of the sys-
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FIG. 5. (Color online) Contours, width ∆x and height ∆z of
the invaded region and aspect ratio ∆z/∆x vs. χ. (a) We
report the contours (lines) for f = 2, 4 and 60/00(over 2000
paths, χ = 25 and N = 4000). (b) The width ∆x is defined
to be the width at half height, over the entire pattern, of
the intensity profile along the x-axis. (c) The height ∆z is
that of the point at half the plateau value, over the entire
pattern, of the intensity profile along the z-axis. (d) Aspect
ratio ̺ ≡ ∆z/∆x vs. χ for three values of the injected volumes
(H : N = 2000, � : N = 4000 and • : N = 8000). Inset: a
collapse of the measurements is observed when reporting the
aspect ratio as a function of χ/

√
N .
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FIG. 6. Shape of the invaded region vs. N and χ. Contours
are reported in average over 2000 paths for f = 20/00. (a) Con-
tours for increasing volumes (N = 2000, 4000, 6000 and 8000)
for χ = 125. (b) Contours for decreasing effective gravity
(χ = 1.6, 5.0, 12.5, 25, 50, 100,∞) for the same injected vol-
ume (N = 2000).

tem, we first determine contours of the invaded region
associated with isodensity lines in Fig. 4: a contour is
defined by the fraction f such that, over 2000 paths, the
contour is locally crossed 2000f times (Fig. 5a).
A quantitative characterization of the structure ge-

ometry is provided by measurements of its width ∆x
and height ∆z. From the superposition of 2000 paths
(Fig. 5a), we consider the intensity profile along the
x-axis, estimated over the whole height of the system
(Fig. 5b). As expected, the profile is symmetric and
we consider ∆x to be the width at half the peak value.
In the same way, we consider the intensity profile along
the z-axis, estimated over the whole width of the system
(Fig. 5c). We observe that the profile is almost flat and
suddenly descreases above a given altitude. We define
∆z as the altitude of the point corresponding to half the
plateau value.

2. Dependence on V and χ

Reporting the contours of the invaded region for vari-
ous values of the injected volume (various N) and effec-
tive gravity (various χ), one observes that, qualitatively,
the geometry of the pattern highly depends on both con-
trol parameters. First, one observes that, for increas-
ing injected volumes (Fig. 6a), the height ∆z increases
almost linearly with N . We observe that ∆z increases
faster than the average width ∆x, which results in an in-
crease of the aspect ratio ̺ (Fig. 5d). Second, for a given
injected volume (Fig. 6b), a decrease in χ results in an
increase in the height ∆z and in a decrease in the width
∆x, which result in a drastic increase in ̺. Note that,
when χ is decreased the shape of the invaded region goes
from a half-disk to a parabola or cone. We expect that
the air goes straight up through the system for χ ≪ 1.
The quantitative changes in the shape of the invaded
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FIG. 7. Analysis of the probability profiles. (a) Superposition
of 2000 paths for χ = 166. The gray horizontal lines are asso-
ciated to the profiles reported in the right panel. The dashed
gray lines represent three different heights. (b) Profiles of the
probability density at three different altitudes z = 14, 65 and
240. (c) Square σ2 of the distribution width as a function of
the altitude z for χ = 5, 50, 166, 500, 1666 and ∞. The system
exhibits a diffusive behavior for small χ. The curvature of the
invaded region near the outlet is obtained from the slope at
z = 0 (N = 8000).

region can be assessed by reporting ̺ as a function of χ
(Fig. 5d). For the whole set of experimental data, we
observe that ̺ ∝ 1/

√
χ in a wide range of χ and reaches

a plateau value of the order of the unity ̺ ≃ 0.82 for
large χ. For a compact stucture (isodensity), one would
expect the aspect ratio to tend to 1 in absence of gravity,
in absence of lower boundary. Taking into account that
the density is not constant within the structure and that
the air flow is limited by the lower edge, we are not thus
surprized that the ratio tends to a value of the order of
the unity but not exactly to 1. Interestingly, we note a
collapse of the measurements when reporting the ̺ as a
function of χ/

√
N : the scaling ̺ ∝ 1/

√
χ holds true for

χ . 30
√
N whereas ̺ ≃ 0.82 for larger values.

Additional pieces of information about the invasion
process can be obtained by considering in Fig. 7a the
probability density along x for a given altitude z: from
the superposition of 2000 paths, one obtains the number
of passages at a distance x from the axis, for a given alti-
tude z, by considering the corresponding density profiles
(Fig. 7b). From the profiles, one gets the typical width
σ of the region crossed by the air paths as a function of
z (Fig. 7c). We observe that for small enough values of
χ and z, σ2 is proportional to z, which accounts for the
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FIG. 8. Coefficient Deff and velocity νz vs. parameter χ. The
radius of curvature of the invaded region, near the outlet, is
independant of the injected volume (H : N = 2000, � : N =
4000 and • : N = 8000) and is given by Deff ≃ dχ provided

that the gravity effects are large enough (χ . 30
√
N). In the

same conditions, the typical vertical size of the structure ∆z
increases linearly with N . The velocity (the slope) νz scales
like d/

√
χ, the prefactor being of the order of the unity.

parabolic shape of the invaded region near the outlet. By
extension, whatever the value of χ, the shape of the inva-
sion pattern near the outlet can be accounted for by its
radius of curvature, equivalent to an effective diffusion
coefficient Deff ≡ ∂σ2/∂z|z=0 (Fig. 8a). We obtain that

Deff ≃ dχ for, again, χ . 30
√
N . Finally, to complete

the description of the invasion pattern, one must consider
the relation between the height ∆z and N (the injected
volume). For large enough injected volumes (large N , ie

χ . 30
√
N), ∆z depends linearly on N so that one can

define the typical vertical growth velocity νz ≡ d∆z/dN .
One oberves that, numerically, νz ∝ d/

√
χ, the prefactor

(about 0.8) being of the order of the unity (Fig. 8b).

IV. DISCUSSION AND CONCLUSION

Contrary to classical growth models [11–14], our model
takes into account both a heterogeneous medium (capil-
lary overpressure distribution) and the effect of an exter-
nal field (gravity). Previous studies of fluid invasion in
a two-dimensional porous medium, including the gravity
destabilizing effect, focused on the geometry of a single
invasion pattern [18, 19]. By contrast, our work aims at
characterizing the morphology of the region potentially
explored by the invading fluid. The numerical results
show that, as expected, the shape of the invaded region
depends drastically on χ (ie on the effective gravity).
Less obvious, an increase of N (ie of the injected vol-

ume) does no simply lead to a dilation of the invaded
region but to a change in ̺ (ie in the geometry).

The present numerical model exhibits a much richer
behavior than that exhibited by our previous analytical
analysis [24]. Indeed, formerly, the side-branching and
the return of the air path to a previous lower position
were not allowed. The path was forced to grow upwards.
The main difference in the results is that, formerly, the
radius of curvature (or effective diffusion coefficient) Deff

was predicted to be a complex function of χ whereas
the prediction of the present numerical results is that
Deff ≃ dχ for χ . 30

√
N . In addition, we report that

the vertical size of the structure is linear as a function of
the injected volume V and we estimate the dependence
of the associated velocity on the control parameter χ,
νz ≃ 0.8d/

√
χ.

It is particularly interesting to interpret the parameter
χ ≡ σP /ρgd, which compares the width of the distri-
bution of the capillary overpressure within the pores to
the variation of the hydrostatic pressure over the grain
size. On the one hand, for a given injected volume N ,
the air inside the existing path being connected, one can
consider the path as an isobar. On the other hand, the
pressure in the liquid, outside the air path, increases from
the path tip (its highest point) downwards, which makes
the formation of a side branches more and more difficult
at depth, below the path tip. Considering the meaning
of χ, one can estimate that side branches cannot form
at a distance larger than dχ below the tip. As a conse-
quence, the gas injection results either in the formation
of side-branches in a region of typical height dχ (in a lo-
cal increase of the gas fraction or in the widening of the
structure) or in the growth of the tip upwards. The result
of such complex dynamics is a complex path exhibiting
more or less side branches depending on the value of χ.
Interestingly, in average, the gas occupies an elongated
region whose radius of curvature near the outlet is dχ,
as shown by the numerical results.

From the dependence of the height ∆z and typical
width

√
Deff∆z, we can estimate the typical gaseous frac-

tion F inside the invaded region. Estimating the corre-
sponding surface area

√
Deffh

3/2, one gets from simple
algebra F ∼ χ1/4/

√
N , thus dependent on χ and on the

injected volume (on N). The fraction F slightly increases
when χ increases, ie when the gravity effects are reduced
and the side branching enhanced. In addition, denoting
w the typical relative variation of the pore size as pro-
posed in [24], one can estimate further that σp ∼ wγ/d
and, thus, that χ ∼ wγ/(ρgeffd

2). Thus, considering that
the pore volume vp ∝ d2 and taking into account the re-
sult obtained for νz, we are taught that the maximum
height reached by the gas within the granular does not
depend on the grain size and scales like V/(lc

√
w) where

lc ≡
√

γ/ρgeff. Thus, provided that the proposed esti-
mate of χ is correct, for a given volume V , the maximum
height is controlled by the capillary length lc and the rel-
ative width w which account for the heterogeneity of the
capillary overpressure.
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In conclusion, we reported results of a numerical study
which makes it possible to predict from the knowledge of
one single control parameter χ, the typical height, width
and gaseous fraction of the region invaded by a given vol-
ume of gas liberated at the base of an immersed granular
bed. Such results could be of practical importance: for
instance, gas can be trapped on purpose in an under-
ground natural container below a granular slurry. Our
results can help in predicting if the gas is likely to reach
the free surface and escape the system if the container
presents a defect (hole or fracture). The present study
will be extended, from the theoretical point of view, to

slightly different geometrical situation, especially to the
3D case and, from the experimental point of view, to the
case of a horizontal liquid flow.
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