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Introduction

Recent studies have tested modification of shell valve activity in bivalves following harmful microalgal exposure [START_REF] Nagai | Detecting the shellfish killer Heterocapsa circularisquama (Dinophyceae) by measuring bivalve valve activity with a Hall element sensor[END_REF][START_REF] Basti | Effects of the toxic dinoflagellate Heterocapsa circularisquama on the valve movement behaviour of the Manila clam Ruditapes philippinarum[END_REF][START_REF] Tran | Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum[END_REF]. The scallop Pinctada fucata exposed to Heterocapsa circularisquama showed an increased frequency of valve adductions or microclosures [START_REF] Nagai | Detecting the shellfish killer Heterocapsa circularisquama (Dinophyceae) by measuring bivalve valve activity with a Hall element sensor[END_REF]. Similarly, Ruditapes philippinarum increased the frequency of valve adductions and decreased amplitude of valve openings upon exposure to H. circularisquama [START_REF] Basti | Effects of the toxic dinoflagellate Heterocapsa circularisquama on the valve movement behaviour of the Manila clam Ruditapes philippinarum[END_REF]. In oysters, Crassostrea gigas, exposed to Alexandrium minutum, [START_REF] Tran | Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum[END_REF] also described an increased frequency of microclosures as well as an increase in valve-opening duration. This increased interest in behavioral responses has two major aims: to improve our understanding of the physiological impact of harmful microalgae on bivalve physiology and ecology; to test the putative interest of behavioral change to detect the presence of harmful microalgae or to monitor depuration processes in the field and oyster farms. However, much remains to explore, both in the lab and in the field. The aim of the present study was to gain more insights into the relationship between C. gigas behavior, characterized by shell valve activity, concentration of the harmful microalgae A. minutum in the ambient water and accumulation of PSPs in the digestive gland.

Among harmful microalgae, Alexandrium species are known to produce Paralytic Shellfish Toxins (PSPs). Several commercial bivalve species, such as oysters and mussels, accumulate PSPs by feeding on phytoplanktonic PSP producers [START_REF] Oshima | Comparative studies on paralytic shellfish toxin profile of dinoflagellates and bivalves[END_REF][START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF]. PSP accumulation and detoxification kinetics, as well as biotransformation of the toxins, were reviewed in [START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF] and have been well documented for the oyster, Crassostrea gigas, exposed to Alexandrium minutum or A. catenella [START_REF] Lassus | Improving detoxification efficiency of PSP-contaminated oysters (Crassostrea gigas Thunberg)[END_REF][START_REF] Lassus | Modelling the accumulation of PSP toxins in Thau Lagoon oysters (Crassostrea gigas) from trials using mixed cultures of Alexandrium catenella and Thalassiosira weissflogii[END_REF][START_REF] Guéguen | Detoxification of Pacific oyster Crassostrea gigas fed on diets of Skeletonema costatum with and without silt, following PSP contamination by Alexandrium minutum[END_REF].

Beyond behavioral studies on valve activity, authors have mainly focused on bivalve feeding and/or digestive responses [START_REF] Bardouil | Experimental study of the effects of a toxic microalgal diet on feeding of the oyster Crassostrea gigas Thunberg[END_REF][START_REF] Wildish | Effect of the PSP-causing dinoflagellate, Alexandrium sp., on the initial feeding response of Crassostrea gigas[END_REF]Li et al., 2001;[START_REF] Bougrier | Paralytic shellfish poison accumulation yields and feeding timeactivity in the Pacific oyster (Crassostrea gigas) and king scallop (Pecten maximus)[END_REF][START_REF] Lassus | Paralytic shellfish poison outbreaks in the Penze estuary: Environmental factors affecting toxin uptake in the oyster, Crassostrea gigas[END_REF][START_REF] Navarro | Short-term feeding response of the mussel Mytilus chilensis exposed to diets containing the toxic dinoflagellate Alexandrium catenella[END_REF][START_REF] Fernández-Reiriz | Trophic interactions between the toxic dinoflagellate Alexandrium catenella and Mytilus chilensis: Feeding and digestive behaviour to long-term exposure[END_REF].

In the oyster, C. gigas [START_REF] Bardouil | Experimental study of the effects of a toxic microalgal diet on feeding of the oyster Crassostrea gigas Thunberg[END_REF][START_REF] Wildish | Effect of the PSP-causing dinoflagellate, Alexandrium sp., on the initial feeding response of Crassostrea gigas[END_REF][START_REF] Lassus | Paralytic shellfish poison outbreaks in the Penze estuary: Environmental factors affecting toxin uptake in the oyster, Crassostrea gigas[END_REF] and mussel, Mytilus chilensis, [START_REF] Navarro | Short-term feeding response of the mussel Mytilus chilensis exposed to diets containing the toxic dinoflagellate Alexandrium catenella[END_REF] an inhibition of feeding activity was reported when animals were exposed to harmful Alexandrium species. In M. chilensis exposed to A. catenella, the inhibition appeared to be reversible after a few days, even though exposure continued, suggesting that mussels can acclimate to feeding on toxic microalgae (Navarro et al., 2008).

Relationships between the accumulation potential of different bivalve species for PSPs and the ingestion and absorption rates were described by [START_REF] Bricelj | Uptake kinetics of paralytic shellfish toxins from the dinoflagellate Alexandrium fundyense in the mussel Mytilus edulis[END_REF] and [START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF]. These studies demonstrated an inverse relationship between sensitivity to toxin and potential toxin accumulation. For example, the oyster C. virginica, with high nerve sensitivity to PSPs, potentially accumulates fewer toxins by decreasing ingestion and absorption rates [START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF]. On the contrary, the mussel Mytilus edulis, which has a low nerve sensitivity to PSPs, accumulates a higher amount of toxins. Another level of complexity has been discussed by [START_REF] Lassus | Comparative efficiencies of different non-toxic microalgal diets in detoxification of PSPcontaminated oysters (Crassostrea gigas Thunberg)[END_REF] at the intra-populational level.

In C. gigas exposed to A. minutum, they suggested that the variability of contamination status could be related to inter-individual differences in valve and/or clearance activities. This interindividual variability was used by [START_REF] Bougrier | Paralytic shellfish poison accumulation yields and feeding timeactivity in the Pacific oyster (Crassostrea gigas) and king scallop (Pecten maximus)[END_REF] to investigate the relationship between PSP content and clearance rates of C. gigas exposed to A. minutum.

The objective of this work was to go further to the previous study performed by [START_REF] Tran | Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum[END_REF] by i) exposing oysters to different concentrations of A. minutum and ii) measuring PSP concentrations in oyster digestive glands. This allows to evaluate if behavioral responses of the Pacific oyster C. gigas are related to the presence and concentration of harmful microalgae in water and/or to toxin concentration in their digestive gland. This is part of a more general work in which the impact of toxic micro-algae on bivalves physiology and the underlying mechanisms explaining behavior variability in the field are studied [START_REF] Schmitt | Statistical study of bivalve high frequency microclosing behavior: scaling properties and shot noise analysis[END_REF][START_REF] Tran | Field chronobiology in a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms[END_REF].

Materials and methods

Oyster characteristics

Two experiments were carried out at two different periods, in November-December (Experiment 1) and January-February (Experiment 2), with Pacific oysters, Crassostrea gigas at the University of Brest. Oysters were obtained from a shellfish farmer in the bay of Brest (France). Two homogenous groups of oysters (n = 32 per experiment) were chosen a priori according to the shell length (75 mm shell length, 40 ± 1 g total weight). No death was observed during the experiments.

Microalgal cultures

The dinoflagellate Alexandrium minutum (Halim, strain AM89BM) was grown in 10liter batch cultures using autoclaved seawater filtered to 1µm and supplemented with L1 enrichment [START_REF] Guillard | Stichochrysis immobilis is a diatom, not a chrysophyte[END_REF]. Cultures were maintained at 16 ± 1°C and 100 µmol photon.m -2 .s -1 , with a dark:light cycle of 12:12h. A. minutum was harvested after 12 days, while still in the exponential growth phase under our conditions. At this age, this strain produced 1.3 ± 0.1 pg eq. STX per cell, as measured by the method of [START_REF] Oshima | Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins[END_REF].

The dinoflagellate Heterocapsa triquetra (strain HT99PZ -Ehrenberg, 1840) was grown in 10 L batch cultures in autoclaved, 1µm-filtered seawater enriched with L1 nutrients.

Cultures were maintained for 5 days at 16 ± 1°C and 100 µmol photon m -2 s -1 , with a dark:light cycle of 12:12h.

Experimental procedure for oyster exposure

The non-toxic dinoflagellate H. triquetra was chosen as a control because of its similarity to A. minutum, in terms of size and shape characteristics: H. triquetra cell size (19- The experiments were conducted in an isolated room with minimal human activity to limit inadvertent stimulation of oysters. Experimental tanks were installed on antivibrating benches to minimize any external disturbance that could interfere with the behavior of the oysters. Experiments were carried out with a photoperiod of 12h light / 12h dark and seawater was maintained at a temperature of 16 ± 1°C. Prior to the experiments, oysters were distributed randomly into eight 10-liter tanks (four tests and four controls), with four oysters per tank. Oysters were maintained in the same tanks during the entire experiment to avoid behavioral disturbance from handling. Each tank was individually supplied with cultured microalgal suspensions using a multichannel peristaltic pump. Central air-lifts were used to homogenize microalgal concentration and water in the tanks. Present experiments were performed at two different total microalgae concentrations (10•10 3 cells•ml -1 and 5•10 3 cells•ml -1 ), which correspond with bloom concentrations observed on French coast [START_REF] Belin | Les espèces phytoplanctoniques toxiques et nuisibles sur le littoral français de 1984 à1995, résultats du REPHY (Réseau de surveillance du phytoplancton et des phycotoxines)[END_REF].

Experiment 1. As a first step to characterize a relationship between concentration of A. minutum in water and behavior of oysters, oysters were exposed to four different microalgal mixtures, at an identical total concentration of microalgae of 10•10 3 cells.ml -1 . Three different phases were considered: acclimation period (Acc.; t 0 -t 10 ), exposure period (Exp.; t 11 -t 12 ) and recovery period (Rec.; t 13 -t 18 ). During the 10-day acclimation period, each tank received a continuous flow of 12.5 L•day -1 of seawater (filtered to 0.5 µm) with H. triquetra at 1•10 4 cells•ml -1 . Following the acclimation period, four supply tanks were used to distribute microalgal suspensions into the respective, replicated experimental tanks (two tanks per condition). Supply tanks were prepared with each of four microalgal mixtures: i) 100% A. minutum (1•10 4 cells•ml -1 ), ii) 50% A. minutum-50% H. triquetra (5•10 3 cells•ml -1 of A. minutum and 5•10 3 cells•ml -1 of H. triquetra), iii) 25% A. minutum-75% H. triquetra (2.5•10 3 cells•ml -1 of A. minutum and 7.5•10 3 cells•ml -1 of H. triquetra) and iv) 100% H. triquetra (1•10 4 cells•ml -1 ). Each tank received a continuous flow of 12.5 L•day -1 of each microalgal treatment. The exposure period continued for two days, followed by five days of recovery (12.5 L•day -1 of seawater with H. triquetra at 1•10 4 cells•ml -1 ).

Experiment 2. To test the possible relationship between behavior and toxin accumulation, toxin contents in the digestive glands of the oysters were determined at the end of the exposure period. Two different phases were considered: acclimation period (Acc., t 0t 10 ) and a 5-days exposure period (Exp., t 11 -t 15 ). During the 10-day acclimation period, each tank received a continuous flow of 12.5 L.day -1 (8.7 ml.min -1 ) of seawater (filtered to 0.5 µm) with H. triquetra at 5.10 3 cells.ml -1 . Following the acclimation period, four microalgal supply tanks were used to distribute microalgal suspensions into the respective, replicated experimental tanks (two tanks per condition). Supply tanks were prepared with each of four microalgal mixtures: i) 100% A. minutum (5•10 3 cells.ml -1 ), ii) 50% A. minutum-50% H. triquetra (2.5•10 3 cells.ml -1 of A. minutum and 2.5•10 3 cells.ml -1 of H. triquetra), iii) 25% A. minutum-75% H. triquetra (1.25•10 3 cells.ml -1 of A. minutum and 3.75•10 3 cells.ml -1 of H. triquetra) and iv) 100% H. triquetra (5•10 3 cells.ml -1 ). Each tank received a continuous flow of 12.5 L.day -1 of each microalgal treatment. At the end of the exposure period, the digestive glands of individual oysters were dissected, weighed, frozen immediately in liquid nitrogen, and stored at -80°C until analysis. Later, digestive glands were ground with a "Dangoumeau" homogenizer into liquid nitrogen and this sample was used to measure toxin content.

C. gigas valve-activity measurement

To evaluate the effect of A. minutum on the valve behavior of C. gigas throughout the experiment, we recorded the valve activity continuously with a laboratory made valvometer.

The oysters were equipped (at t 0 ) with light weight (≈ 1 g) electromagnetic electrodes glued onto both shells. The electrodes allow the oysters to move their valves without constraint.

More details are described in [START_REF] Tran | Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium[END_REF] and [START_REF] Chambon | Influence of the parasite worm Polydora sp. on the behavior of the oyster Crassostrea gigas: a study of the respiratory impact and associated oxidative stress[END_REF], as well as data about the required adaptation periods before experimental set-up [START_REF] Tran | Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium[END_REF]. The record of valve activity started at t 0 .

The free ends of the electrodes were connected to an electronic apparatus composed mainly of a multiplexer that switched the current every 300 msec from one pair of electrodes to another, and a computer driving the apparatus via a data acquisition card (LAB PC 1200; National Instruments, Austin, TX, USA), using LabView 8.0 software (National Instruments).

Phytoplankton sampling

During exposure periods, 1-ml water samples were collected from supply tanks, both at the input and within the oyster tanks, in order to determine microalgal cell densities.

Samples were collected and fixed in 3% formaldehyde (final concentration) at 1, 3, 5, 6, 7, 23, 24 and 27h30 after the beginning of the exposure for experiment 1 and at 1, 15, [START_REF] Lassus | Paralytic shellfish poison outbreaks in the Penze estuary: Environmental factors affecting toxin uptake in the oyster, Crassostrea gigas[END_REF]20,24,26,40,48 and 64 h for experiment 2. Samples were analyzed by flow cytometry within one day of sampling.

Measurements of dinoflagellate cell densities by flow cytometry

Measurements of dinoflagellate cell concentrations were performed using a FACScalibur (BD Biosciences, San Jose, CA USA) flow cytometer (FCM) equipped with a 488 nm argon laser. Threshold was set to FL3 (red fluorescence, 550-600 nm) to detect only chlorophyll-containing cells. Settings were adjusted to visualize dinoflagellate cells on two cytograms with i) Forward Scatter (FSC, related to cell size) vs Side Scatter (SSC, related to cell internal complexity), and ii) red auto-fluorescence (FL3) vs green auto-fluorescence (FL1) as parameters. Cells of A. minutum and H. triquetra possess similar FSC and SSC characteristics, but A. minutum has higher FL1 in comparison to H. triquetra, making the two cells distinguishable in a mixed suspension. Cell densities were estimated from flow-rate measurement of the flow-cytometer [START_REF] Marie | Current Protocols in Cytometry, chap. Enumeration of phytoplankton, bacteria, and viruses in marine samples[END_REF], as all samples were run for 1 min.

Results were expressed as number of cells per ml.

Toxin content

Digestive gland (ground, 0.5 g) was extracted in 1 ml of 0.1 N HCl (2 v/w) at 4°C.

After centrifugation (3,000 × g, 15 min, 4°C), pH of extracts was adjusted to 3.0 with 12 N HCl. After half-dilution, supernatants were ultra-filtered (20 kDa, Sartorius Centrisart) and stored at 4°C until analysis. PSPs were analyzed by ion-pairing, high-performance liquid chromatography (IP-HPLC) according to the method of [START_REF] Oshima | Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins[END_REF]. The molar concentration (µmol.l -1 ) was converted into μg STX equiv. 100 g -1 of digestive gland by using the conversion factors of [START_REF] Oshima | Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins[END_REF]. Results were expressed in μg STX equiv. 100 g -1 of digestive gland wet weight.

Statistical analysis

Results are expressed as mean  confidence interval (CI). Differences between variables before and during A. minutum exposure were determined using the T-test, after checking assumptions (normality and homoscedasticity of the error term).

Homogenous groups were identified using multiple range comparison tests (ANOVA) to determine which means were significantly different from which others and Fisher's least significant difference (LSD) procedure discriminated among the means. On graphics, the same letter was used for means which were not statistically different.

A statistical regression was used to correlate toxin content and behavioral variables. The fit between predicted and measured values was tested statistically using ANOVA. For all statistical results, a probability of p < 0.05 was considered significant. Statistical analyses were performed using Statgraphics Plus (Manugistics, Inc, Rockville, MD, USA).

Results

Under acclimation conditions, in tanks fed with 10•10 3 cells.ml -1 without A. minutum, oysters consumed 92.5 ± 4.6 % of the microalgae supplied in the tanks (Fig. 1A). This percentage decreased with increasing ratio of A. minutum added (79.5 ± 9.9 % at 25% A.m./75 % H.t.; 81.7 ± 6.8 % at 50% A.m./50 % H.t. and 48.8 ± 12.6 % at 100% A.m./0 % H.t.). On the contrary, when animals were fed with half the concentration of microalgae, 5•10 3 cells.ml - 1 , all microalgae were consumed, independent of the Alexandrium concentration in the input water (Fig. 1B). In all conditions, no microalgal sedimentation was observed and no noticeable amount of feces and/or pseudofeces were found in the tanks. Similar decreases of both microalgae in the mixture (A. minutum and H. triquetra) were measured showing that C. gigas fed equally on both species.

Figure 2 illustrates the similarity and replicability of the present experimental conditions: no statistical difference was observed between any of the 8 tanks that were running in parallel, during both acclimation conditions (p > 0.05) or during the second day of recovery (p > 0.05). Similarly, paired comparison between the two series of replicate did not reveal statistical difference. This allowed evidencing dose-response relationship between behavioral responses and water concentration of A. minutum in C. gigas. During the 2-day exposure period, the oysters exhibited significantly more valve micro-closures in the presence of A. minutum (see inserts in Fig. 2). The number of valve micro-closures was 3.5 times higher in the presence of 100 % A. minutum, 3.1 times higher at 50 % and 1.9 times higher at 25 %, in relation to the acclimation period of the oysters in the same tanks. It is only following the exposure to 25% A. minutum that valve micro-closure was not significantly different from the acclimation period and the 2 days of recovery. Figure 3 presents the mean values in the above series of replicates (Experiment 1) and demonstrates how the number of micro-closures statistically increased at higher A. minutum concentrations. During recovery, it significantly decreased towards acclimation values (see inserts in Fig. 2).

Figure 4A and C shows the absence of a relationship between PSP concentration in the digestive gland and concentration of A. minutum in the water supplying the tanks (p > 0.05) while figure 4B and D (data analysis either performed per oyster, 4B, or per tank, 4D) shows a positive correlation between toxin accumulation and daily opening duration. Figure 5A and C demonstrates that the contamination status was not related to the opening-duration behavior prior exposure (mean value during the 5 last day acclimation period, p > 0.05). This is coherent with the absence of significant difference within the whole set of reference and recovery conditions (low acclimation variability). This low variability completely vanished under exposure conditions. The more "responsive" animals (Fig 5B) or tanks (Fig. 5D), identified as those showing the most dramatic differences in daily opening duration between acclimation and exposure phases, were those exhibiting the highest accumulation of PSP in their digestive gland (Fig. 5B; p < 0.0001, R 2 = 0.67). A comparison between the opening duration between the acclimation period (Fig. 5A, per individual, or 5C, per tank) and the exposure period (Fig. 4B, per individual, or 4D, per tank) shows a greatly increased variability in the presence of A. minutum. Under acclimation conditions the min-max values were 18-40 % of opening duration while they were 19-85 % with A. minutum.

Discussion

The objective of this work was to evaluate if behavioral responses of the Pacific oyster C. gigas are related to the presence and concentration of harmful microalgae in water and/or to toxin concentration in their digestive gland. A dose-response relationship was observed between the frequency of micro-closures and the concentration of A. minutum in the ambient water but no dose-response relationship between micro-closures and the PSP concentration in the digestive gland. On the contrary, opening-duration showed a dose-response relationship to the PSP concentration in the digestive gland but not to the concentration of A. minutum in the water. In addition, data showed that the inter-individual variability of opening-duration increased during exposure in comparison to the acclimation period. Oysters exhibiting the largest increase in opening duration were those with the largest toxin content in the digestive gland. There was no relationship between acclimation and intensity of response during exposure as regard to the opening duration.

Behavioral changes versus total microalgae concentrations

Present experiments were performed at two different total microalgal concentrations (10•10 3 cells•ml -1 and 5•10 3 cells•ml -1 ), with the aim to experimentally manipulate oyster feeding activity. Analysis of experiment 1 (10•10 3 cells•ml -1 ) suggested that feeding activity slightly decrease with increasing proportion of A. minutum in the mixture. Such decreases of filtration rate were previously reported in C. gigas exposed to the toxic dinoflagellate Alexandrium tamarense [START_REF] Bardouil | Experimental study of the effects of a toxic microalgal diet on feeding of the oyster Crassostrea gigas Thunberg[END_REF] and A. minutum [START_REF] Lassus | Effect of a continuous supply of the toxic dinoflagellate Alexandrium minutum Halim on the feeding behavior of the Pacific oyster (Crassostrea gigas Thunberg)[END_REF]. [START_REF] Lassus | Paralytic shellfish poison outbreaks in the Penze estuary: Environmental factors affecting toxin uptake in the oyster, Crassostrea gigas[END_REF] also reported an inhibition effect at 10•10 3 cells•ml -1 in C. gigas fed with A. minutum. Present results showed that feeding was partly inhibited at 10•10 3 of A. minutum but not at 5•10 3 cells•ml -1 . This could be the result of a balance between feeding requirements and a protective response.

Impact of the A. minutum concentration in the water Among the variables measured to describe oyster behavior, the frequency of valve micro-closures was positively correlated to the percentage of A. minutum added, at a constant total microalgae concentration. [START_REF] Tran | Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum[END_REF], previously suggested that such behavior could be related to an avoidance response to minimize contact with harmful cells and/or effects of toxins released during digestion of A. minutum cells. This behavior could also help the animal to rapidly test the ambient water content (back and forth water movements across the mantle border and in the palleal cavity). The present report demonstrates that, in the present experimental conditions, this was associated to the concentration of A. minitum in the water and not to the PSP accumulation in the animal. Similar increases of valve microclosures, correlated with increased concentrations of harmful microalgae, have been observed by [START_REF] Basti | Effects of the toxic dinoflagellate Heterocapsa circularisquama on the valve movement behaviour of the Manila clam Ruditapes philippinarum[END_REF] in R. philippinarum exposed to Heterocapsa circularisquama. The absence of PSP toxin production by H. circularisquama demonstrated that the presence of this toxin is not a prerequisite to induce an increase of micro-closures.

Relationship with toxin concentration in the digestive gland

In C. gigas, 90 % of PSP toxins are accumulate in the digestive gland [START_REF] Guéguen | Detoxification of Pacific oyster Crassostrea gigas fed on diets of Skeletonema costatum with and without silt, following PSP contamination by Alexandrium minutum[END_REF][START_REF] Lassus | Modelling the accumulation of PSP toxins in Thau Lagoon oysters (Crassostrea gigas) from trials using mixed cultures of Alexandrium catenella and Thalassiosira weissflogii[END_REF] explaining why PSPs were only analyzed in this organ. Present data showed that valve opening duration was dose-related to the concentration of PSP in the digestive gland. A comparison with previous reports shows that a positive relationship between feeding time and tissue PSP concentration was reported in C. gigas and Pecten maximus exposed to A. minutum [START_REF] Bougrier | Paralytic shellfish poison accumulation yields and feeding timeactivity in the Pacific oyster (Crassostrea gigas) and king scallop (Pecten maximus)[END_REF]. In this study, feeding time activity was indirectly evaluated by measuring the decrease in toxic cell density at the outlets of experimental tanks and biodeposit production. Although mean oyster responses to microalgal treatments and toxin accumulation are well documented in the literature, it is known that response intensity at the individual level is quite variable, from no change at all to very important and dramatic changes (see for examples [START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF][START_REF] Lassus | Modelling the accumulation of PSP toxins in Thau Lagoon oysters (Crassostrea gigas) from trials using mixed cultures of Alexandrium catenella and Thalassiosira weissflogii[END_REF]. This is also similar to PSP accumulation in C. gigas: numerous animals remained in the low range of the global distribution data while a minority accumulated the largest amounts (present report; Fig. 6 in [START_REF] Lassus | Modelling the accumulation of PSP toxins in Thau Lagoon oysters (Crassostrea gigas) from trials using mixed cultures of Alexandrium catenella and Thalassiosira weissflogii[END_REF]. The present report demonstrates that this interindividual variability of bioaccumulation was positively correlated to the opening duration during the exposure period (Fig. 4B,4D) but not before it (Fig. 5A,5C). Was the presence of larger quantities of PSP in the digestive gland responsible for the longer opening duration during exposure? Or, alternatively, was the longer opening duration, and incidentally a larger clearance value, responsible for a larger toxin bioaccumulation?

The hen and egg problem One must recall first that with A. minutum we are dealing with a paralyzing toxin, that we measured it in the digestive gland following a 5 day exposure period and that its distribution in the whole animal was presumably not time limited. Was the presence of larger quantities of PSP in the digestive gland responsible for the longer opening duration? Among the presently known physiological and behavioral alterations induced by PSP, are (i) alterations of action potential transmission by blocking sodium conductance in nerve fibers [START_REF] Narahashi | Neuroactive agents and nerve membrane conductances[END_REF]) and (ii) absence of response to mechanical stimulation of the gills and adductor muscle in gaping Crassostrea virginica [START_REF] Hégaret | Toxic dinoflagellates (Alexandrium fundyense and A. catenella) have little apparent effect on oyster hemocytes[END_REF]. In the softshell clam Mya arenaria, [START_REF] Bricelj | Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP[END_REF] reported muscle paralysis induced by paralytic shellfish toxin and in C. gigas, [START_REF] Haberkorn | Effects of Alexandrium minutum exposure on nutrition-related processes and reproductive output in oysters Crassostrea gigas[END_REF] described important morphological alterations of the adductor muscle. Physiological impacts could explain the larger opening durations. Alternatively, [START_REF] Tran | Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum[END_REF] suggested muscular fibers of gills [START_REF] Medler | Muscular alteration of gill geometry in vitro: implications for bivalve pumping processes[END_REF]) could be targets of PSP toxins. This could lead to a decrease in pumping efficiency in terms of volume of water ventilated per unit of time. Thus, a reduction of filtration efficiency during exposure to A. minutum would be compensated for by longer ventilatory periods in order to fulfill the animal's O 2 -requirements and/or nutritional needs.

Was the longer opening duration, and a larger filtered volume of water, responsible for a larger toxin bioaccumulation? Feeding behavior was hypothesized by [START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF] to be one of the parameters responsible for inter-individual variation in toxin accumulation. The present results show that in C. gigas there was no relationship between acclimation opening duration and contamination levels (Fig. 5A, 5C) nor between acclimation opening duration and animal reactivity (measured as test -acclimation opening duration) to A. minutum. On the contrary, present results suggest the existence of an inter-individual reactivity that may reflect differences in sensitivity to PSPs or to any other compounds or characteristics associated with A. minutum. In that view, oysters accumulating the largest amounts of toxins could be considered less sensitive in comparison to oysters accumulating fewer toxins. This hypothesis has already been formulated by [START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF] for different bivalve species. Bivalve species possessing low nerve sensitivity to PSP (e.g. M. edulis) were found to readily feed on toxic cells and thus accumulate high levels of toxins [START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF]. In contrast, oysters (e.g. C. virginica) described as PSPsensitive species accumulated less PSP [START_REF] Bricelj | Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation[END_REF]. Differences in toxin accumulation (up to five times), observed between different populations of the same clam species, M. arenaria, were related to intra-species variability, in terms of PSP sensitivity. A natural mutation of a single amino acid residue decreases affinity (1,000-fold) of the saxitoxin-binding site in the sodium channel pore. This mutation was found to be responsible for the difference in nerve sensitivity between the two populations of M. arenaria exposed to PSP-producing Alexandrium fundyense [START_REF] Bricelj | Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP[END_REF]. Furthermore, the present results underscore the possibility of finding differences in sensitivity to PSPs within an oyster stock (intra-population). Less-sensitive oysters would open their valves longer and would consume more toxic dinoflagellates. This is of course speculation but opens exciting research directions for the future.

To go further in understanding relationships between oysters behavior, toxin accumulation and A. minutum concentration in water, it would be interesting to use the same experimental design, but by maintaining constant A. minutum concentration during the whole exposure period. To better understand if behavioral changes were because of PSP content, oysters could be exposed to PSP producer A. minutum strain and non-PSP producer A. minutum strain. 

Figure captions

  28 µm) is similar to A. minutum cell size (23-29 µm). Importantly, A. minutum and H. triquetra have different green auto-fluorescence characteristics which allow their individual quantification in mixtures.

Fig. 1 :

 1 Fig. 1: Total microalgae concentrations measured in the inflow (black bars) and outflow (grey bars) of experimental tanks, for different experimental conditions, during experiments 1 (A) and 2 (B). Mean ± confidence interval, n = 8 samples per condition. Letters (a, b, c and d) represent 4 homogenous groups, identified using multiple range comparison tests whenever ANOVA was significant. Fig. 2: Experiment 1. Dose-response behavior at various concentrations of A. minutum in the ambient water. Frequency of micro-closures, expressed in number per hour, in 8 different experimental tanks running in parallel (4 conditions and 2 replicates). Acc. (48 h of acclimation), Exp. (48 h of exposure) and Rec. (48 h of recovery). Mean ± confidence interval, n = 4 oysters per tank. * significantly different from Acc., ** significantly different from Exp. Fig. 3. Experiment 1, mean dose-response behavior. Mean frequency of valve micro-closures in oysters C. gigas exposed to different A. minutum concentrations in 8 different experimental tanks running in parallel (4 conditions and 2 replicates). Mean ± confidence interval, n = 4 oysters per tank. Letters (a, b, c and d) represent 4 homogenous groups, identified using multiple range comparison tests whenever ANOVA was significant. Fig. 4: Experiment 2, change of toxin contents in oysters, expressed as µg STX eq. 100 g -1 digestive gland wet weight (DGWW), either per individual oyster (A, B) or experimental tank (C, D): toxin content as a function of (A and C) concentration of A. minutum in the inflow water and of (B and D) valve-opening duration. Five days of exposure duration; A, B, n = 24 oysters; C, D, n = 6 tanks, mean ± confidence interval. Fig. 5: Experiment 2, change of toxin contents in oysters, expressed as µg STX eq. 100 g -1 digestive gland wet weight (DGWW), either per individual oyster (A, B) or experimental tank (C, D): toxin content as a function of (A and C) opening duration during acclimation period and of (B and D) difference of valve-opening duration between Exposure and Acclimation period (Exp -Acc). Five days of exposure duration; A, B, n = 24 oysters; C, D, n = 6 tanks, mean ± confidence interval.
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