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 Abstract 20 
 21 
The complexity of the relationships between Alexandrium minutum (A.m.) concentration in 22 

the water ([A.m.]w), Paralytic Shellfish Poisoning contamination in the digestive gland 23 

([PSP]dg) and valve behavior was explored in oysters Crassostrea gigas. Two experiments 24 

were conducted, during which oysters’ valve behaviour were analyzed. Oysters, first 25 

acclimated for 10-days with the non harmful microalgae Heterocapsa triquetra (H.t.) were 26 

exposed to 4 microalgae mixtures at constant total concentrations of 10·103 cells.ml-1 27 

(experiment-1) and 5·103 cells.ml-1 (experiment-2): 100% A.m.; 50% A.m.-50% H.t.; 25% 28 

A.m.-75% H.t.; 100% H.t. At the end of experiment-2, [PSP]dg were measured. 29 

At 10·103 cells.ml-1, the microalgal ingestion decreased (p < 0.05) with increasing [A.m.]w but 30 

not at 5·103 cells.ml-1 (p > 0.05). The frequency of microclosures specifically increased with 31 

[A.m.]w (p < 0.05) and the opening duration with [PSP]dg (p < 0.0001). Oysters exhibiting the 32 

maximum increase in opening duration also exhibited the highest [PSP]dg. The results are 33 

discussed in terms of oyster physiology and origin of the behavioral response. 34 

35 
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Introduction 35 

Recent studies have tested modification of shell valve activity in bivalves following 36 

harmful microalgal exposure (Nagai et al., 2006; Basti et al., 2009; Tran et al., 2010). The 37 

scallop Pinctada fucata exposed to Heterocapsa circularisquama showed an increased 38 

frequency of valve adductions or microclosures (Nagai et al., 2006). Similarly, Ruditapes 39 

philippinarum increased the frequency of valve adductions and decreased amplitude of valve 40 

openings upon exposure to H. circularisquama (Basti et al., 2009). In oysters, Crassostrea 41 

gigas, exposed to Alexandrium minutum, Tran et al. (2010) also described an increased 42 

frequency of microclosures as well as an increase in valve-opening duration. This increased 43 

interest in behavioral responses has two major aims: to improve our understanding of the 44 

physiological impact of harmful microalgae on bivalve physiology and ecology; to test the 45 

putative interest of behavioral change to detect the presence of harmful microalgae or to 46 

monitor depuration processes in the field and oyster farms. However, much remains to 47 

explore, both in the lab and in the field. The aim of the present study was to gain more 48 

insights into the relationship between C. gigas behavior, characterized by shell valve activity, 49 

concentration of the harmful microalgae A. minutum in the ambient water and accumulation 50 

of PSPs in the digestive gland. 51 

Among harmful microalgae, Alexandrium species are known to produce Paralytic 52 

Shellfish Toxins (PSPs). Several commercial bivalve species, such as oysters and mussels, 53 

accumulate PSPs by feeding on phytoplanktonic PSP producers (Oshima et al., 1990; Bricelj 54 

and Shumway, 1998). PSP accumulation and detoxification kinetics, as well as 55 

biotransformation of the toxins, were reviewed in Bricelj and Shumway (1998) and have been 56 

well documented for the oyster, Crassostrea gigas, exposed to Alexandrium minutum or A. 57 

catenella (Lassus et al., 2005, 2007; Guéguen et al., 2008). 58 

Beyond behavioral studies on valve activity, authors have mainly focused on bivalve 59 

feeding and/or digestive responses (Bardouil et al., 1993; Wildish et al., 1998; Li et al., 2001; 60 

Bougrier et al., 2003; Lassus et al., 2004; Navarro et al., 2008; Fernández-Reiriz et al., 2008). 61 

In the oyster, C. gigas (Bardouil et al., 1993; Wildish et al., 1998; Lassus et al., 2004) and 62 

mussel, Mytilus chilensis, (Navarro et al., 2008) an inhibition of feeding activity was reported 63 

when animals were exposed to harmful Alexandrium species. In M. chilensis exposed to A. 64 

catenella, the inhibition appeared to be reversible after a few days, even though exposure 65 

continued, suggesting that mussels can acclimate to feeding on toxic microalgae (Navarro et 66 

al., 2008). 67 
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Relationships between the accumulation potential of different bivalve species for PSPs and 68 

the ingestion and absorption rates were described by Bricelj et al. (1990) and Bricelj and 69 

Shumway (1998). These studies demonstrated an inverse relationship between sensitivity to 70 

toxin and potential toxin accumulation. For example, the oyster C. virginica, with high nerve 71 

sensitivity to PSPs, potentially accumulates fewer toxins by decreasing ingestion and 72 

absorption rates (Bricelj and Shumway, 1998). On the contrary, the mussel Mytilus edulis, 73 

which has a low nerve sensitivity to PSPs, accumulates a higher amount of toxins. Another 74 

level of complexity has been discussed by Lassus et al. (2000) at the intra-populational level. 75 

In C. gigas exposed to A. minutum, they suggested that the variability of contamination status 76 

could be related to inter-individual differences in valve and/or clearance activities. This inter-77 

individual variability was used by Bougrier et al. (2003) to investigate the relationship 78 

between PSP content and clearance rates of C. gigas exposed to A. minutum.  79 

The objective of this work was to go further to the previous study performed by Tran 80 

et al., (2010) by i) exposing oysters to different concentrations of A. minutum and ii) 81 

measuring PSP concentrations in oyster digestive glands. This allows to evaluate if behavioral 82 

responses of the Pacific oyster C. gigas are related to the presence and concentration of 83 

harmful microalgae in water and/or to toxin concentration in their digestive gland. This is part 84 

of a more general work in which the impact of toxic micro-algae on bivalves physiology and 85 

the underlying mechanisms explaining behavior variability in the field are studied (Schmitt et 86 

al. 2011; Tran et al., 2011). 87 

88 
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Materials and methods 88 

 89 

Oyster characteristics 90 

Two experiments were carried out at two different periods, in November-December 91 

(Experiment 1) and January-February (Experiment 2), with Pacific oysters, Crassostrea gigas 92 

at the University of Brest. Oysters were obtained from a shellfish farmer in the bay of Brest 93 

(France). Two homogenous groups of oysters (n = 32 per experiment) were chosen a priori 94 

according to the shell length (75 mm shell length, 40 ± 1 g total weight). No death was 95 

observed during the experiments. 96 

 97 

Microalgal cultures 98 

The dinoflagellate Alexandrium minutum (Halim, strain AM89BM) was grown in 10-99 

liter batch cultures using autoclaved seawater filtered to 1µm and supplemented with L1 100 

enrichment (Guillard and Hargraves, 1993). Cultures were maintained at 16 ± 1°C and 100 101 

µmol photon.m-2.s-1, with a dark:light cycle of 12:12h. A. minutum was harvested after 12 102 

days, while still in the exponential growth phase under our conditions. At this age, this strain 103 

produced 1.3 ± 0.1 pg eq. STX per cell, as measured by the method of Oshima (1995). 104 

The dinoflagellate Heterocapsa triquetra (strain HT99PZ - Ehrenberg, 1840) was 105 

grown in 10 L batch cultures in autoclaved, 1µm-filtered seawater enriched with L1 nutrients. 106 

Cultures were maintained for 5 days at 16 ± 1°C and 100 µmol photon m-2 s-1, with a 107 

dark:light cycle of 12:12h. 108 

 109 

Experimental procedure for oyster exposure 110 

The non-toxic dinoflagellate H. triquetra was chosen as a control because of its 111 

similarity to A. minutum, in terms of size and shape characteristics: H. triquetra cell size (19-112 

28 µm) is similar to A. minutum cell size (23-29 µm). Importantly, A. minutum and H. 113 

triquetra have different green auto-fluorescence characteristics which allow their individual 114 

quantification in mixtures. 115 

The experiments were conducted in an isolated room with minimal human activity to 116 

limit inadvertent stimulation of oysters. Experimental tanks were installed on antivibrating 117 

benches to minimize any external disturbance that could interfere with the behavior of the 118 

oysters. Experiments were carried out with a photoperiod of 12h light / 12h dark and seawater 119 

was maintained at a temperature of 16 ± 1°C. Prior to the experiments, oysters were 120 
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distributed randomly into eight 10-liter tanks (four tests and four controls), with four oysters 121 

per tank. Oysters were maintained in the same tanks during the entire experiment to avoid 122 

behavioral disturbance from handling. Each tank was individually supplied with cultured 123 

microalgal suspensions using a multichannel peristaltic pump. Central air-lifts were used to 124 

homogenize microalgal concentration and water in the tanks. Present experiments were 125 

performed at two different total microalgae concentrations (10·103 cells·ml-1 and 5·103 126 

cells·ml-1), which correspond with bloom concentrations observed on French coast (Belin and 127 

Raffin, 1998). 128 

 129 

Experiment 1. As a first step to characterize a relationship between concentration of A. 130 

minutum in water and behavior of oysters, oysters were exposed to four different microalgal 131 

mixtures, at an identical total concentration of microalgae of 10·103 cells.ml-1. Three different 132 

phases were considered: acclimation period (Acc.; t0 – t10), exposure period (Exp.; t11 – t12) 133 

and recovery period (Rec.; t13 – t18). During the 10-day acclimation period, each tank received 134 

a continuous flow of 12.5 L·day-1 of seawater (filtered to 0.5 µm) with H. triquetra at 1·104 135 

cells·ml-1. Following the acclimation period, four supply tanks were used to distribute 136 

microalgal suspensions into the respective, replicated experimental tanks (two tanks per 137 

condition). Supply tanks were prepared with each of four microalgal mixtures: i) 100% A. 138 

minutum (1·104 cells·ml-1), ii) 50% A. minutum- 50% H. triquetra (5·103 cells·ml-1 of A. 139 

minutum and 5·103 cells·ml-1 of H. triquetra), iii) 25% A. minutum- 75% H. triquetra (2.5·103 140 

cells·ml-1 of A. minutum and 7.5·103 cells·ml-1 of H. triquetra) and iv) 100% H. triquetra 141 

(1·104 cells·ml-1). Each tank received a continuous flow of 12.5 L·day-1 of each microalgal 142 

treatment. The exposure period continued for two days, followed by five days of recovery 143 

(12.5 L·day-1 of seawater with H. triquetra at 1·104 cells·ml-1). 144 

Experiment 2. To test the possible relationship between behavior and toxin 145 

accumulation, toxin contents in the digestive glands of the oysters were determined at the end 146 

of the exposure period. Two different phases were considered: acclimation period (Acc., t0 – 147 

t10) and a 5-days exposure period (Exp., t11 – t15). During the 10-day acclimation period, each 148 

tank received a continuous flow of 12.5 L.day-1 (8.7 ml.min-1) of seawater (filtered to 0.5 µm) 149 

with H. triquetra at 5.103 cells.ml-1. Following the acclimation period, four microalgal supply 150 

tanks were used to distribute microalgal suspensions into the respective, replicated 151 

experimental tanks (two tanks per condition). Supply tanks were prepared with each of four 152 

microalgal mixtures: i) 100% A. minutum (5·103 cells.ml-1), ii) 50% A. minutum- 50% H. 153 

triquetra (2.5·103 cells.ml-1 of A. minutum and 2.5·103 cells.ml-1 of H. triquetra), iii) 25% A. 154 
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minutum- 75% H. triquetra (1.25·103 cells.ml-1 of A. minutum and 3.75·103 cells.ml-1 of H. 155 

triquetra) and iv) 100% H. triquetra (5·103 cells.ml-1). Each tank received a continuous flow 156 

of 12.5 L.day-1 of each microalgal treatment. At the end of the exposure period, the digestive 157 

glands of individual oysters were dissected, weighed, frozen immediately in liquid nitrogen, 158 

and stored at -80°C until analysis. Later, digestive glands were ground with a “Dangoumeau” 159 

homogenizer into liquid nitrogen and this sample was used to measure toxin content. 160 

 161 

C. gigas valve-activity measurement 162 

To evaluate the effect of A. minutum on the valve behavior of C. gigas throughout the 163 

experiment, we recorded the valve activity continuously with a laboratory made valvometer. 164 

The oysters were equipped (at t0) with light weight (≈ 1 g) electromagnetic electrodes glued 165 

onto both shells. The electrodes allow the oysters to move their valves without constraint. 166 

More details are described in Tran et al. (2003) and Chambon et al. (2007), as well as data 167 

about the required adaptation periods before experimental set-up (Tran et al., 2003). The 168 

record of valve activity started at t0. 169 

The free ends of the electrodes were connected to an electronic apparatus composed 170 

mainly of a multiplexer that switched the current every 300 msec from one pair of electrodes 171 

to another, and a computer driving the apparatus via a data acquisition card (LAB PC 1200; 172 

National Instruments, Austin, TX, USA), using LabView 8.0 software (National Instruments).  173 

 174 

Phytoplankton sampling 175 

During exposure periods, 1-ml water samples were collected from supply tanks, both 176 

at the input and within the oyster tanks, in order to determine microalgal cell densities. 177 

Samples were collected and fixed in 3% formaldehyde (final concentration) at 1, 3, 5, 6, 7, 23, 178 

24 and 27h30 after the beginning of the exposure for experiment 1 and at 1, 15, 17, 20, 24, 26, 179 

40, 48 and 64 h for experiment 2. Samples were analyzed by flow cytometry within one day 180 

of sampling. 181 

 182 

Measurements of dinoflagellate cell densities by flow cytometry 183 

Measurements of dinoflagellate cell concentrations were performed using a 184 

FACScalibur (BD Biosciences, San Jose, CA USA) flow cytometer (FCM) equipped with a 185 

488 nm argon laser. Threshold was set to FL3 (red fluorescence, 550-600 nm) to detect only 186 

chlorophyll-containing cells. Settings were adjusted to visualize dinoflagellate cells on two 187 

cytograms with i) Forward Scatter (FSC, related to cell size) vs Side Scatter (SSC, related to 188 
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cell internal complexity), and ii) red auto-fluorescence (FL3) vs green auto-fluorescence 189 

(FL1) as parameters. Cells of A. minutum and H. triquetra possess similar FSC and SSC 190 

characteristics, but A. minutum has higher FL1 in comparison to H. triquetra, making the two 191 

cells distinguishable in a mixed suspension. Cell densities were estimated from flow-rate 192 

measurement of the flow-cytometer (Marie et al., 1999), as all samples were run for 1 min. 193 

Results were expressed as number of cells per ml. 194 

 195 

Toxin content  196 

Digestive gland (ground, 0.5 g) was extracted in 1 ml of 0.1 N HCl (2 v/w) at 4°C. 197 

After centrifugation (3,000 × g, 15 min, 4°C), pH of extracts was adjusted to 3.0 with 12 N 198 

HCl. After half-dilution, supernatants were ultra-filtered (20 kDa, Sartorius Centrisart) and 199 

stored at 4°C until analysis. PSPs were analyzed by ion-pairing, high-performance liquid 200 

chromatography (IP-HPLC) according to the method of Oshima (1995). The molar 201 

concentration (µmol.l-1) was converted into μg STX equiv. 100 g-1 of digestive gland by using 202 

the conversion factors of Oshima (1995). Results were expressed in μg STX equiv. 100 g-1 of 203 

digestive gland wet weight.  204 

 205 

Statistical analysis 206 

Results are expressed as mean  confidence interval (CI). Differences between variables 207 

before and during A. minutum exposure were determined using the T-test, after checking 208 

assumptions (normality and homoscedasticity of the error term). 209 

Homogenous groups were identified using multiple range comparison tests (ANOVA) to 210 

determine which means were significantly different from which others and Fisher's least 211 

significant difference (LSD) procedure discriminated among the means. On graphics, the 212 

same letter was used for means which were not statistically different. 213 

A statistical regression was used to correlate toxin content and behavioral variables. The fit 214 

between predicted and measured values was tested statistically using ANOVA. For all 215 

statistical results, a probability of p < 0.05 was considered significant. Statistical analyses 216 

were performed using Statgraphics Plus (Manugistics, Inc, Rockville, MD, USA). 217 

218 
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Results 218 

 219 

Under acclimation conditions, in tanks fed with 10·103 cells.ml-1 without A. minutum, 220 

oysters consumed 92.5 ± 4.6 % of the microalgae supplied in the tanks (Fig. 1A). This 221 

percentage decreased with increasing ratio of A. minutum added (79.5 ± 9.9 % at 25% A.m./75 222 

% H.t.; 81.7 ± 6.8 % at 50% A.m./50 % H.t. and 48.8 ± 12.6 % at 100% A.m./0 % H.t.). On 223 

the contrary, when animals were fed with half the concentration of microalgae, 5·103 cells.ml-224 
1, all microalgae were consumed, independent of the Alexandrium concentration in the input 225 

water (Fig. 1B). In all conditions, no microalgal sedimentation was observed and no 226 

noticeable amount of feces and/or pseudofeces were found in the tanks. Similar decreases of 227 

both microalgae in the mixture (A. minutum and H. triquetra) were measured showing that C. 228 

gigas fed equally on both species. 229 

Figure 2 illustrates the similarity and replicability of the present experimental 230 

conditions: no statistical difference was observed between any of the 8 tanks that were 231 

running in parallel, during both acclimation conditions (p > 0.05) or during the second day of 232 

recovery (p > 0.05). Similarly, paired comparison between the two series of replicate did not 233 

reveal statistical difference. This allowed evidencing dose-response relationship between 234 

behavioral responses and water concentration of A. minutum in C. gigas. During the 2-day 235 

exposure period, the oysters exhibited significantly more valve micro-closures in the presence 236 

of A. minutum (see inserts in Fig. 2). The number of valve micro-closures was 3.5 times 237 

higher in the presence of 100 % A. minutum, 3.1 times higher at 50 % and 1.9 times higher at 238 

25 %, in relation to the acclimation period of the oysters in the same tanks. It is only 239 

following the exposure to 25% A. minutum that valve micro-closure was not significantly 240 

different from the acclimation period and the 2 days of recovery. Figure 3 presents the mean 241 

values in the above series of replicates (Experiment 1) and demonstrates how the number of 242 

micro-closures statistically increased at higher A. minutum concentrations. During recovery, it 243 

significantly decreased towards acclimation values (see inserts in Fig. 2). 244 

 245 

Figure 4A and C shows the absence of a relationship between PSP concentration in the 246 

digestive gland and concentration of A. minutum in the water supplying the tanks (p > 0.05) 247 

while figure 4B and D (data analysis either performed per oyster, 4B, or per tank, 4D) shows 248 

a positive correlation between toxin accumulation and daily opening duration. Figure 5A and 249 

C demonstrates that the contamination status was not related to the opening-duration behavior 250 
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prior exposure (mean value during the 5 last day acclimation period, p > 0.05). This is 251 

coherent with the absence of significant difference within the whole set of reference and 252 

recovery conditions (low acclimation variability). This low variability completely vanished 253 

under exposure conditions. The more “responsive” animals (Fig 5B) or tanks (Fig. 5D), 254 

identified as those showing the most dramatic differences in daily opening duration between 255 

acclimation and exposure phases, were those exhibiting the highest accumulation of PSP in 256 

their digestive gland (Fig. 5B; p < 0.0001, R2 = 0.67). A comparison between the opening 257 

duration between the acclimation period (Fig. 5A, per individual, or 5C, per tank) and the 258 

exposure period (Fig. 4B, per individual, or 4D, per tank) shows a greatly increased 259 

variability in the presence of A. minutum. Under acclimation conditions the min-max values 260 

were 18-40 % of opening duration while they were 19-85 % with A. minutum. 261 

262 
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Discussion 262 

The objective of this work was to evaluate if behavioral responses of the Pacific oyster 263 

C. gigas are related to the presence and concentration of harmful microalgae in water and/or 264 

to toxin concentration in their digestive gland. A dose-response relationship was observed 265 

between the frequency of micro-closures and the concentration of A. minutum in the ambient 266 

water but no dose-response relationship between micro-closures and the PSP concentration in 267 

the digestive gland. On the contrary, opening-duration showed a dose-response relationship to 268 

the PSP concentration in the digestive gland but not to the concentration of A. minutum in the 269 

water. In addition, data showed that the inter-individual variability of opening-duration 270 

increased during exposure in comparison to the acclimation period. Oysters exhibiting the 271 

largest increase in opening duration were those with the largest toxin content in the digestive 272 

gland. There was no relationship between acclimation and intensity of response during 273 

exposure as regard to the opening duration. 274 

 275 

Behavioral changes versus total microalgae concentrations 276 

Present experiments were performed at two different total microalgal concentrations 277 

(10·103 cells·ml-1 and 5·103 cells·ml-1), with the aim to experimentally manipulate oyster 278 

feeding activity. Analysis of experiment 1 (10·103 cells·ml-1) suggested that feeding activity 279 

slightly decrease with increasing proportion of A. minutum in the mixture. Such decreases of 280 

filtration rate were previously reported in C. gigas exposed to the toxic dinoflagellate 281 

Alexandrium tamarense (Bardouil et al., 1993) and A. minutum (Lassus et al., 1999). Lassus et 282 

al. (2004) also reported an inhibition effect at 10·103 cells·ml-1 in C. gigas fed with A. 283 

minutum. Present results showed that feeding was partly inhibited at 10·103 of A. minutum but 284 

not at 5·103 cells·ml-1. This could be the result of a balance between feeding requirements and 285 

a protective response. 286 

 287 

Impact of the A. minutum concentration in the water 288 

Among the variables measured to describe oyster behavior, the frequency of valve 289 

micro-closures was positively correlated to the percentage of A. minutum added, at a constant 290 

total microalgae concentration. Tran et al., (2010), previously suggested that such behavior 291 

could be related to an avoidance response to minimize contact with harmful cells and/or 292 

effects of toxins released during digestion of A. minutum cells. This behavior could also help 293 

the animal to rapidly test the ambient water content (back and forth water movements across 294 
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the mantle border and in the palleal cavity). The present report demonstrates that, in the 295 

present experimental conditions, this was associated to the concentration of A. minitum in the 296 

water and not to the PSP accumulation in the animal. Similar increases of valve micro-297 

closures, correlated with increased concentrations of harmful microalgae, have been observed 298 

by Basti et al. (2009) in R. philippinarum exposed to Heterocapsa circularisquama. The 299 

absence of PSP toxin production by H. circularisquama demonstrated that the presence of this 300 

toxin is not a prerequisite to induce an increase of micro-closures. 301 

 302 

Relationship with toxin concentration in the digestive gland 303 

In C. gigas, 90 % of PSP toxins are accumulate in the digestive gland (Guéguen et al., 304 

2008; Lassus et al., 2007) explaining why PSPs were only analyzed in this organ. Present data 305 

showed that valve opening duration was dose-related to the concentration of PSP in the 306 

digestive gland. A comparison with previous reports shows that a positive relationship 307 

between feeding time and tissue PSP concentration was reported in C. gigas and Pecten 308 

maximus exposed to A. minutum (Bougrier et al., 2003). In this study, feeding time activity 309 

was indirectly evaluated by measuring the decrease in toxic cell density at the outlets of 310 

experimental tanks and biodeposit production. Although mean oyster responses to microalgal 311 

treatments and toxin accumulation are well documented in the literature, it is known that 312 

response intensity at the individual level is quite variable, from no change at all to very 313 

important and dramatic changes (see for examples Bricelj and Shumway, 1998; Lassus et al., 314 

2007). This is also similar to PSP accumulation in C. gigas: numerous animals remained in 315 

the low range of the global distribution data while a minority accumulated the largest amounts 316 

(present report; Fig. 6 in Lassus et al., 2007). The present report demonstrates that this inter-317 

individual variability of bioaccumulation was positively correlated to the opening duration 318 

during the exposure period (Fig. 4B, 4D) but not before it (Fig. 5A, 5C). Was the presence of 319 

larger quantities of PSP in the digestive gland responsible for the longer opening duration 320 

during exposure? Or, alternatively, was the longer opening duration, and incidentally a larger 321 

clearance value, responsible for a larger toxin bioaccumulation? 322 

 323 

The hen and egg problem  324 

One must recall first that with A. minutum we are dealing with a paralyzing toxin, that 325 

we measured it in the digestive gland following a 5 day exposure period and that its 326 

distribution in the whole animal was presumably not time limited. Was the presence of larger 327 

quantities of PSP in the digestive gland responsible for the longer opening duration? Among 328 
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the presently known physiological and behavioral alterations induced by PSP, are (i) 329 

alterations of action potential transmission by blocking sodium conductance in nerve fibers 330 

(Narahashi and Moore, 1968) and (ii) absence of response to mechanical stimulation of the 331 

gills and adductor muscle in gaping Crassostrea virginica (Hégaret et al., 2007). In the 332 

softshell clam Mya arenaria, Bricelj et al. (2005) reported muscle paralysis induced by 333 

paralytic shellfish toxin and in C. gigas, Haberkorn et al. (2010) described important 334 

morphological alterations of the adductor muscle. Physiological impacts could explain the 335 

larger opening durations. Alternatively, Tran et al. (2010) suggested muscular fibers of gills 336 

(Medler and Silverman, 2001) could be targets of PSP toxins. This could lead to a decrease in 337 

pumping efficiency in terms of volume of water ventilated per unit of time. Thus, a reduction 338 

of filtration efficiency during exposure to A. minutum would be compensated for by longer 339 

ventilatory periods in order to fulfill the animal’s O2-requirements and/or nutritional needs. 340 

Was the longer opening duration, and a larger filtered volume of water, responsible for 341 

a larger toxin bioaccumulation? Feeding behavior was hypothesized by Bricelj and Shumway 342 

(1998) to be one of the parameters responsible for inter-individual variation in toxin 343 

accumulation. The present results show that in C. gigas there was no relationship between 344 

acclimation opening duration and contamination levels (Fig. 5A, 5C) nor between acclimation 345 

opening duration and animal reactivity (measured as test – acclimation opening duration) to 346 

A. minutum. On the contrary, present results suggest the existence of an inter-individual 347 

reactivity that may reflect differences in sensitivity to PSPs or to any other compounds or 348 

characteristics associated with A. minutum. In that view, oysters accumulating the largest 349 

amounts of toxins could be considered less sensitive in comparison to oysters accumulating 350 

fewer toxins. This hypothesis has already been formulated by Bricelj and Shumway (1998) 351 

for different bivalve species. Bivalve species possessing low nerve sensitivity to PSP (e.g. M. 352 

edulis) were found to readily feed on toxic cells and thus accumulate high levels of toxins 353 

(Bricelj and Shumway, 1998). In contrast, oysters (e.g. C. virginica) described as PSP-354 

sensitive species accumulated less PSP (Bricelj and Shumway, 1998). Differences in toxin 355 

accumulation (up to five times), observed between different populations of the same clam 356 

species, M. arenaria, were related to intra-species variability, in terms of PSP sensitivity. A 357 

natural mutation of a single amino acid residue decreases affinity (1,000-fold) of the 358 

saxitoxin-binding site in the sodium channel pore. This mutation was found to be responsible 359 

for the difference in nerve sensitivity between the two populations of M. arenaria exposed to 360 

PSP-producing Alexandrium fundyense (Bricelj et al., 2005). Furthermore, the present results 361 

underscore the possibility of finding differences in sensitivity to PSPs within an oyster stock 362 
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(intra-population). Less-sensitive oysters would open their valves longer and would consume 363 

more toxic dinoflagellates. This is of course speculation but opens exciting research directions 364 

for the future. 365 

To go further in understanding relationships between oysters behavior, toxin 366 

accumulation and A. minutum concentration in water, it would be interesting to use the same 367 

experimental design, but by maintaining constant A. minutum concentration during the whole 368 

exposure period. To better understand if behavioral changes were because of PSP content, 369 

oysters could be exposed to PSP producer A. minutum strain and non-PSP producer A. 370 

minutum strain. 371 

372 
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Figure captions 481 
 482 
Fig. 1: Total microalgae concentrations measured in the inflow (black bars) and outflow (grey 483 
bars) of experimental tanks, for different experimental conditions, during experiments 1 (A) 484 
and 2 (B). Mean ± confidence interval, n = 8 samples per condition. Letters (a, b, c and d) 485 
represent 4 homogenous groups, identified using multiple range comparison tests whenever 486 
ANOVA was significant. 487 
 488 
Fig. 2: Experiment 1. Dose-response behavior at various concentrations of A. minutum in the 489 
ambient water. Frequency of micro-closures, expressed in number per hour, in 8 different 490 
experimental tanks running in parallel (4 conditions and 2 replicates). Acc. (48 h of 491 
acclimation), Exp. (48 h of exposure) and Rec. (48 h of recovery). Mean ± confidence 492 
interval, n = 4 oysters per tank. * significantly different from Acc., ** significantly different 493 
from Exp. 494 
 495 
Fig. 3. Experiment 1, mean dose-response behavior. Mean frequency of valve micro-closures 496 
in oysters C. gigas exposed to different A. minutum concentrations in 8 different experimental 497 
tanks running in parallel (4 conditions and 2 replicates). Mean ± confidence interval, n = 4 498 
oysters per tank. Letters (a, b, c and d) represent 4 homogenous groups, identified using 499 
multiple range comparison tests whenever ANOVA was significant. 500 
 501 
Fig. 4: Experiment 2, change of toxin contents in oysters, expressed as µg STX eq. 100 g-1 502 
digestive gland wet weight (DGWW), either per individual oyster (A, B) or experimental tank 503 
(C, D): toxin content as a function of (A and C) concentration of A. minutum in the inflow 504 
water and of (B and D) valve-opening duration. Five days of exposure duration; A, B, n = 24 505 
oysters; C, D, n = 6 tanks, mean ± confidence interval. 506 
 507 
Fig. 5: Experiment 2, change of toxin contents in oysters, expressed as µg STX eq. 100 g-1 508 
digestive gland wet weight (DGWW), either per individual oyster (A, B) or experimental tank 509 
(C, D): toxin content as a function of (A and C) opening duration during acclimation period 510 
and of (B and D) difference of valve-opening duration between Exposure and Acclimation 511 
period (Exp – Acc). Five days of exposure duration; A, B, n = 24 oysters; C, D, n = 6 tanks, 512 
mean ± confidence interval. 513 
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