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SCHUR ELEMENTS FOR THE ARIKI-KOIKE ALGEBRA AND

APPLICATIONS

MARIA CHLOUVERAKI AND NICOLAS JACON

Abstract. We study the Schur elements associated to the simple modules of the Ariki-Koike
algebra. We first give a cancellation-free formula for them so that their factors can be easily read and
programmed. We then study direct applications of this result. We also complete the determination
of the canonical basic sets for cyclotomic Hecke algebras of type G(l, p, n) in characteristic 0.

1. Introduction

Schur elements play a powerful role in the representation theory of symmetric algebras. In the
case of the Ariki-Koike algebra, that is, the Hecke algebra of the complex reflection group G(l, 1, n),
they are Laurent polynomials whose factors determine when Specht modules are projective irre-
ducible and whether the algebra is semisimple.

Formulas for the Schur elements of the Ariki-Koike algebra have been obtained independently,
first by Geck, Iancu and Malle [11], and later by Mathas [18]. The first aim of this paper is to
give a cancellation-free formula for these polynomials (Theorem 3.2), so that their factors can be
easily read and programmed. We then present a number of direct applications. These include a
new formula for Lusztig’s a-function, as well as a simple classification of the projective irreducible
modules for Ariki-Koike algebras (that is, the blocks of defect 0).

The second part of the paper is devoted to another aspect of the representation theory of these
algebras in connection with these Schur elements: the theory of canonical basic sets. The main
aim here is to obtain a classification of the simple modules for specialisations of cyclotomic Hecke
algebras in characteristic 0. In [7], we studied mainly the case of finite Weyl groups. In this
paper, we focus on cyclotomic Hecke algebras of type G(l, p, n). Using Lusztig’s a-function, defined
from the Schur elements, the theory of canonical basic sets provides a natural and efficient way to
parametrise the simple modules of these algebras.

The existence and explicit determination of the canonical basic sets is already known in the case
of Hecke algebras of finite Weyl groups (see [12] and [7]). The case of cyclotomic Hecke algebras
of type G(l, p, n) has been partially studied in [12, 14], and recently in [6] using the theory of
Cherednik algebras. Answering a question raised in [6], the goal of the last part of this paper is to
complete the determination of the canonical basic sets in this case.

2. Preliminaries

In this section, we introduce the necessary definitions and notation.

2.1. A partition λ = (λ1, λ2, λ3, . . .) is a decreasing sequence of non-negative integers. We define
the length of λ to be the smallest integer ℓ(λ) such that λi = 0 for all i > ℓ(λ). We write
|λ| :=

∑

i≥1 λi and we say that λ is a partition of m, for some m ∈ N, if m = |λ|. We set

n(λ) :=
∑

i≥1(i− 1)λi.

The authors would like to thank I. Gordon, S. Griffeth, M. Fayers and A. Mathas for useful conversations.
In particular, the first author is indebted to Stephen Griffeth for explaining the results of his paper [9], which
inspired part of this paper. Maria Chlouveraki gratefully acknowledges the support of the EPSRC through the grant
EP/G04984X/1.
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We define the set of nodes [λ] of λ to be the set

[λ] := {(i, j) | i ≥ 1, 1 ≤ j ≤ λi}.
A node x = (i, j) is called removable if [λ] \{(i, j)} is still the set of nodes of a partition. Note that
if (i, j) is removable, then j = λi.

The conjugate partition of λ is the partition λ′ defined by

λ′
k := #{i | i ≥ 1 such that λi ≥ k}.

Obviously, λ′
1 = ℓ(λ). The set of nodes of λ′ satisfies

(i, j) ∈ [λ′] ⇔ (j, i) ∈ [λ].

Note that if (i, λi) is a removable node of λ, then λ′
λi

= i. Moreover, we have

n(λ) =
∑

i≥1

(i− 1)λi =
1

2

∑

i≥1

(λ′
i − 1)λ′

i.

If x = (i, j) ∈ [λ] and µ is another partition, we define the generalised hook length of x with respect
to (λ, µ) to be the integer:

hλ,µi,j := λi − i+ µ′
j − j + 1.

For µ = λ, the above formula becomes the classical hook length formula (giving the length of the
hook of λ that x belongs to). Moreover, we define the content of x to be the difference

cont(x) = j − i.

The following lemma, whose proof is an easy combinatorial exercise (with the use of Young dia-
grams), relates the contents of the nodes of (the “right rim” of) λ with the contents of the nodes
of (the “lower rim” of) λ′.

Lemma 2.2. Let λ = (λ1, λ2, . . .) be a partition and let k be an integer such that 1 ≤ k ≤ λ1. Let
q and y be two indeterminates. Then we have

1

(qλ1y − 1)
·




∏

1≤i≤λ′
k

qλi−i+1y − 1

qλi−iy − 1



 =
1

(q−λ′
k
+k−1y − 1)

·




∏

k≤j≤λ1

q−λ′
j+j−1y − 1

q−λ′
j+jy − 1



 .

2.3. Let l and n be positive integers. An l-partition of n is an ordered l-tuple λ = (λ0, λ1, . . . , λl−1)
of partitions such that

∑

0≤s≤l−1 |λs| = n. We denote by Πl
n the set of l-partitions of n.

2.4. Let R be a commutative domain with 1. Fix elements q, Q0, . . . , Ql−1 of R, and assume
that q is invertible in R. Set q := (Q0, . . . , Ql−1 ; q). The Ariki-Koike algebra Hq

n is the unital
associative R-algebra with generators T0, T1, . . . , Tn−1 and relations:

(T0 −Q0)(T0 −Q1) · · · (T0 −Ql−1) = 0,
(Ti − q)(Ti + 1) = 0 for 1 ≤ i ≤ n− 1,

T0T1T0T1 = T1T0T1T0 ,
TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2,

TiTj = TjTi for 0 ≤ i < j ≤ n− 1 with j − i > 1.

The last three relations are the braid relations satisfied by T0, T1, . . . , Tn−1.
The Ariki-Koike algebra Hq

n is a deformation of the group algebra of the complex reflection
group G(l, 1, n) = (Z/lZ) ≀Sn. Ariki and Koike [3] have proved that Hq

n is a free R-module of rank
lnn! = |G(l, 1, n)| (see [2, Proposition 13.11]). In addition, when R is a field, they have constructed
a simple Hq

n-module V λ, with character χλ, for each l-partition λ of n (see [2, Theorem 13.6]).
These modules form a complete set of non-isomorphic simple modules in the case where Hq

n is split
semisimple (see [2, Corollary 13.9]).
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2.5. There is a useful semisimplicty criterion for Ariki-Koike algebras which has been given by
Ariki in [1]. This criterion will be recovered from our results later (see Theorem 4.2), so let us simply
assume from now on that Hq

n is split semisimple. This happens, for example, when q, Q0, . . . , Ql−1

are indeterminates and R = Q(q,Q0, . . . , Ql−1).
Now, there exists a linear form τ : Hl

n → R which was introduced by Bremke and Malle in [4],
and was proved to be symmetrizing by Malle and Mathas in [16] whenever all Qi’s are invertible in
R. An explicit description of this form can be found in any of these two articles. Following Geck’s
results on symmetrizing forms (see [13, Theorem 7.2.6]), we obtain the following definition for the
Schur elements associated to the irreducible representations of Hq

n.

Definition 2.6. Suppose that R is a field and that Hq
n is split semisimple. The Schur elements of

Hq
n are the elements sλ(q) of R such that

τ =
∑

λ∈Πl
n

1

sλ(q)
χλ.

2.7. The Schur elements of the Ariki-Koike algebra Hq
n have been independently calculated by

Geck, Iancu and Malle [11], and by Mathas [18]. From now on, for all m ∈ N, let [m]q :=
(qm− 1)/(q− 1) = qm−1+ qm−2+ · · ·+ q+1. The formula given by Mathas does not demand extra
notation and is the following:

Theorem 2.8. Let λ = (λ0, λ1, . . . , λl−1) be an l-partition of n. Then

sλ(q) = (−1)n(l−1)(Q0Q1 · · ·Ql−1)
−nq−α(λ′)

∏

0≤s≤l−1

∏

(i,j)∈[λs]

Qs[h
λs,λs

i,j ]q ·
∏

0≤s<t≤l−1

Xλ
st,

where

α(λ′) =
1

2

∑

0≤s≤l−1

∑

i≥1

(λs′

i − 1)λs′

i

and

Xλ
st =

∏

(i,j)∈[λt]

(qj−iQt −Qs) ·
∏

(i,j)∈[λs]



(qj−iQs − qλ
t
1Qt)

∏

1≤k≤λt
1

qj−iQs − qk−1−λt′

k Qt

qj−iQs − qk−λt′

k Qt



 .

The formula by Geck, Iancu and Malle is more symmetric, and describes the Schur elements
in terms of beta numbers. If λ = (λ0, λ1, . . . , λl−1) is an l-partition of n, then the length of λ is
ℓ(λ) = max{ℓ(λs) | 0 ≤ s ≤ l − 1}. Fix an integer L such that L ≥ ℓ(λ). The L-beta numbers for
λs are the integers βs

i = λs
i +L− i for i = 1, . . . , L. Set Bs = {βs

1, . . . , β
s
L} for s = 0, . . . , l− 1. The

matrix B = (Bs)0≤s≤l−1 is called the L-symbol of λ.

Theorem 2.9. Let λ = (λ0, . . . , λl−1) be an l-partition of n with L-symbol B = (Bs)0≤s≤l−1, where

L ≥ ℓ(λ). Let aL := n(l − 1) +
(
l
2

)(
L
2

)
and bL := lL(L− 1)(2lL− l − 3)/12. Then

sλ(q) = (−1)aLqbL(q − 1)−n(Q0Q1 . . . Ql−1)
−nνλ/δλ,

where
νλ =

∏

0≤s<t≤l−1

(Qs −Qt)
L

∏

0≤s, t≤l−1

∏

bs∈Bs

∏

1≤k≤bs

(qkQs −Qt)

and
δλ =

∏

0≤s<t≤l−1

∏

(bs,bt)∈Bs×Bt

(qbsQs − qbtQt)
∏

0≤s≤l−1

∏

1≤i<j≤L

(qβ
s
i Qs − qβ

s
jQs).

As the reader may see, in both formulas above, the factors of sλ(q) are not obvious. Hence, it
is not obvious for which values of q the Schur element sλ(q) becomes zero.
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3. A cancellation-free formula for the Schur elements

In this section, we will give a cancellation-free formula for the Schur elements ofHq
n. This formula

is also symmetric.

3.1. Let λ = (λ0, λ1, . . . , λl−1) be an l-partition of n. The multiset (λs
i )0≤s≤l−1, i≥1 is a composition

of n (i.e. a multiset of non-negative integers whose sum is equal to n). By reordering the elements
of this composition, we obtain a partition of n. We denote this partition by λ̄. (e.g., if λ =
((4, 1), ∅, (2, 1)), then λ̄ = (4, 2, 1, 1)).

Theorem 3.2. Let λ = (λ0, λ1, . . . , λl−1) be an l-partition of n. Then

(1) sλ(q) = (−1)n(l−1)q−n(λ̄)(q − 1)−n
∏

0≤s≤l−1

∏

(i,j)∈[λs]

∏

0≤t≤l−1

(qh
λs,λt

i,j QsQ
−1
t − 1).

Since the total number of nodes in λ is equal to n, the above formula can be rewritten as follows:

(2) sλ(q) = (−1)n(l−1)q−n(λ̄)
∏

0≤s≤l−1

∏

(i,j)∈[λs]



[hλ
s,λs

i,j ]q
∏

0≤t≤l−1, t6=s

(qh
λs,λt

i,j QsQ
−1
t − 1)



 .

3.3. We will now proceed to the proof of the above result. Following Theorem 2.8, we have that

sλ(q) = (−1)n(l−1)(Q0Q1 · · ·Ql−1)
−nq−α(λ′)

∏

0≤s≤l−1

∏

(i,j)∈[λs]

Qs[h
λs,λs

i,j ]q ·
∏

0≤s<t≤l−1

Xλ
st,

where

α(λ′) =
1

2

∑

0≤s≤l−1

∑

i≥1

(λs′

i − 1)λs′

i

and

Xλ
st =

∏

(i,j)∈[λt]

(qj−iQt −Qs) ·
∏

(i,j)∈[λs]



(qj−iQs − qλ
t
1Qt)

∏

1≤k≤λt
1

qj−iQs − qk−1−λt′

k Qt

qj−iQs − qk−λt′

k Qt



 .

The following lemma relates the terms q−n(λ̄) and q−α(λ′) .

Lemma 3.4. Let λ be an l-partition of n. We have that

α(λ′) +
∑

0≤s<t≤l−1

∑

i≥1

λs′

i λ
t′

i = n(λ̄).
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Proof. Following the definition of the conjugate partition, we have λ̄
′

i =
∑

0≤s≤l−1 λ
s′

i , for all i ≥ 1.
Therefore,

n(λ̄) =
1

2

∑

i≥1

(λ̄
′

i − 1)λ̄
′

i

=
1

2

∑

i≥1








∑

0≤s≤l−1

λs′

i − 1



 ·
∑

0≤s≤l−1

λs′

i





=
1

2

∑

i≥1




∑

0≤s<t≤l−1

2 · λs′

i λ
t′

i +
∑

0≤s≤l−1

λs′

i

2 −
∑

0≤s≤l−1

λs′

i





=
∑

0≤s<t≤l−1

∑

i≥1

λs′

i λ
t′

i +
1

2

∑

0≤s≤l−1

∑

i≥1

(λs′

i − 1)λs′

i

=
∑

0≤s<t≤l−1

∑

i≥1

λs′

i λ
t′

i + α(λ′)

�

Hence, to prove Equality (2), it is enough to show that, for all 0 ≤ s < t ≤ l − 1,

(3) Xλ
st = q−

∑
i≥1 λ

s′

i λt′

i Q|λt|
s Q

|λs|
t

∏

(i,j)∈[λs]

(qh
λs,λt

i,j QsQ
−1
t − 1) ·

∏

(i,j)∈[λt]

(qh
λt,λs

i,j QtQ
−1
s − 1).

3.5. We will proceed by induction on the number of nodes of λs. We do not need to do the same
for λt, because the symmetric formula for the Schur elements given by Theorem 2.9 implies the
following: if µ is the multipartition obtained from λ by exchanging λs and λt, then

Xλ
st(Qs, Qt) = Xµ

st(Qt, Qs).

If λs = ∅, then
Xλ

st =
∏

(i,j)∈[λt]

(qj−iQt −Qs)

= Q|λt|
s

∏

(i,j)∈[λt]

(qj−iQtQ
−1
s − 1)

= Q|λt|
s

∏

1≤i≤λt′

1

∏

1≤j≤λt
i

(qj−iQtQ
−1
s − 1)

= Q|λt|
s

∏

1≤i≤λt′

1

∏

1≤j≤λt
i

(qλ
t
i−j+1−iQtQ

−1
s − 1)

= Q|λt|
s

∏

(i,j)∈[λt]

(qh
λt,λs

i,j QtQ
−1
s − 1),

as required.

3.6. Now assume that our assertion holds when #[λs] ∈ {0, 1, 2, . . . , N − 1}. We want to show
that it also holds when #[λs] = N ≥ 1. If λs 6= ∅, then there exists i such that (i, λs

i ) is a removable
node of λs. Let ν be the multipartition defined by

νsi := λs
i − 1, νsj := λs

j for all j 6= i, νt := λt for all t 6= s.

Then [λs] = [νs] ∪ {(i, λs
i )}. Since Equation (3) holds for Xν

st and

Xλ
st = Xν

st ·



(qλ
s
i−iQs − qλ

t
1Qt)

∏

1≤k≤λt
1

qλ
s
i−iQs − qk−1−λt′

k Qt

qλ
s
i−iQs − qk−λt′

k Qt



 ,
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it is enough to show that (to simplify notation, from now on set λ := λs and µ := λt):

(4) (qλi−iQs − qµ1Qt)
∏

1≤k≤µ1

qλi−iQs − qk−1−µ′
kQt

qλi−iQs − qk−µ′
kQt

= q
−µ′

λiQt(q
λi−i+µ′

λi
−λi+1

QsQ
−1
t − 1) ·A · B,

where

A :=
∏

1≤k≤λi−1

qλi−i+µ′
k
−k+1QsQ

−1
t − 1

qλi−i+µ′
k
−kQsQ

−1
t − 1

and

B :=
∏

1≤k≤µ′
λi

q
µk−k+λ′

λi
−λi+1

QtQ
−1
s − 1

q
µk−k+λ′

λi
−λiQtQ

−1
s − 1

.

Note that, since (i, λi) is a removable node of λ, we have λ′
λi

= i. We have that

A = qλi−1
∏

1≤k≤λi−1

qλi−iQs − qk−1−µ′
kQt

qλi−iQs − qk−µ′
kQt

.

Moreover, by Lemma 2.2, for y = qi−λiQtQ
−1
s , we obtain that

B =
(qµ1+i−λiQtQ

−1
s − 1)

(q
−µ′

λi
+λi−1+i−λiQtQ

−1
s − 1)

·




∏

λi≤k≤µ1

q−µ′
k
+k−1+i−λiQtQ

−1
s − 1

q−µ′
k
+k+i−λiQtQ

−1
s − 1



 ,

i.e.,

B = Q−1
t q

µ′
λi

−λi+1 (qλi−iQs − qµ1Qt)

(q
µ′
λi

−λi+1+λi−i
QsQ

−1
t − 1)

·




∏

λi≤k≤µ1

qλi−iQs − qk−1−µ′
kQt

qλi−iQs − qk−µ′
kQt



 .

Hence, Equality (4) holds.

4. First consequences

We give here several direct applications of Formula (2) obtained in Theorem 3.2.

4.1. A first application of Formula (2) is that we can easily recover a well-known semisimplicity
criterion for the Ariki-Koike algebra due to Ariki [1]. To do this, let us assume that q, Q0, . . . , Ql−1

are indeterminates and R = Q(q,Q0, . . . , Ql−1). Then the resulting “generic” Ariki-Koike algebra
Hq

n is split semisimple. Now assume that θ : Z[q±1, Q±1
0 , . . . , Q±1

l−1] → K is a specialisation and

let KHq
n be the specialised algebra, where K is any field. Note that for all λ ∈ Πl

n, we have
sλ(q) ∈ Z[q±1, Q±1

0 , . . . , Q±1
l−1]. Then by [13, Theorem 7.2.6], KHq

n is (split) semisimple if and only

if, for all λ ∈ Πl
n, we have θ(sλ(q)) 6= 0. From this, we can deduce the following:

Theorem 4.2 (Ariki). Assume that K is a field. The algebra KHq
n is (split) semisimple if and only

if θ(P (q)) 6= 0, where

P (q) =
∏

1≤i≤n

(1 + q + · · ·+ qi−1)
∏

0≤s<t≤l−1

∏

−n<k<n

(qkQs −Qt)

Proof. Assume first that θ(P (q)) = 0. We distinguish three cases:

(a) If there exists 2 ≤ i ≤ n such that θ(1+ q+ . . .+ qi−1) = 0, then we have θ([hλ
0,λ0

1,n−i+1]q) = 0 for

λ = ((n), ∅, . . . , ∅) ∈ Πl
n. Thus, for this l-partition, we have θ(sλ(q)) = 0, which implies that

KHq
n is not semisimple.
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(b) If there exist 0 ≤ s < t ≤ l − 1 and 0 ≤ k < n such that θ(qkQs − Qt) = 0, then we have

θ(qh
λs,λt

1,n−kQsQ
−1
t − 1) = 0 for λ ∈ Πl

n such that λs = (n), λt = ∅. We have θ(sλ(q)) = 0 and
KHq

n is not semisimple.
(c) If there exist 0 ≤ s < t ≤ l − 1 and −n < k < 0 such that θ(qkQs − Qt) = 0, then we have

θ(qh
λt,λs

1,n+kQtQ
−1
s − 1) = 0 for λ ∈ Πl

n such that λs = ∅, λt = (n). Again, we have θ(sλ(q)) = 0
and KHq

n is not semisimple.

Conversely, if KHq
n is not semisimple, then there exists λ ∈ Πl

n such that θ(sλ(q)) = 0. As for all

0 ≤ s, t ≤ l − 1 and (i, j) ∈ [λs], we have −n < hλ
s,λt

i,j < n, we conclude that θ(P (q)) = 0. �

4.3. We now consider a remarkable specialisation of the generic Ariki-Koike algebra. Let u be an
indeterminate. Let r ∈ Z>0 and let r0, . . . , rl−1 be any integers. Set r := (r0, . . . , rl−1) and ηl :=
exp(2

√
−1π/l). For all i = 0, . . . , l− 1, we set mi := ri/r and we define m := (m0, . . . ,ml−1) ∈ Ql.

Assume that R = Z[q±1, Q±1
0 , . . . , Q±1

l−1] and consider the morphism

θ : R → Z[ηl][u
±1]

such that θ(q) = ur and θ(Qj) = ηjl u
rj for j = 0, 1, . . . , l − 1. We will denote by Hm,r

n the
specialisation of the Ariki-Koike algebra Hq

n via θ. The algebra Hm,r
n is called a cyclotomic Ariki-

Koike algebra. It is defined over Z[ηl][u
±1] and has a presentation as follows:

• generators: T0, T1,. . . , Tn−1,
• relations:

(T0 − ur0)(T0 − ηlu
r1) · · · (T0 − ηl−1

l url−1) = 0

(Tj − ur)(Tj + 1) = 0 for j = 1, ..., n − 1

and the braid relations symbolised by the diagram

t 4 t t · · · t

T0 T1 T2 Tn−1
.

We set K := Q(ηl). The algebra K(u)Hm,r
n , which is obtained by extension of scalars to K(u),

is a split semisimple algebra. As a consequence, one can apply Tits’s Deformation Theorem (see,
for example, [13, §7.4]), and obtain that

Irr(K(u)Hm,r
n ) = {V λ | λ ∈ Πl

n}.

Using the Schur elements, one can attach to every simple K(u)Hm,r
n -module V λ a rational

number a(m,r)(λ), by setting a(m,r)(λ) to be the the negative of the valuation of the Schur element
of V λ in u, that is, the negative of the valuation of θ(sλ(q)). We call this number the a-value of λ
. By [12, §5.5], this value may be easily computed combinatorially: Let λ ∈ Πl

n and let s ∈ Z>0 be
such that

s ≥ min{i ∈ Z | ∀j ∈ {0, 1, . . . , l − 1}, λj
i = 0}.

Let B be the shifted m-symbol of λ of size s ∈ Z>0. This is the l-tuple (B0, . . . ,Bl−1) where, for
all j = 0, . . . , l − 1 and for all i = 1, . . . , s + [mj ] (where [mj] denotes the integer part of mj), we
have

B
j
i = λj

i − i+ s+mj and B
j = (Bj

s+[mj ]
, . . . ,Bj

1) .

Write

κ1 ≥ κ2 ≥ · · · ≥ κh
7



for the elements ofBwritten in decreasing order (allowing repetitions), where h = ls+
∑

0≤j≤l−1[mj ].

Let κm(λ) = (κ1, . . . , κh) ∈ Qh
≥0 and define

nm(λ) :=
∑

1≤i≤h

(i− 1)κi.

Then, by [12, Proposition 5.5.11], the a-value of λ is :

a(m,r)(λ) = r(nm(λ)− nm(∅)).

Generalising the dominance order for partitions, we will write κm(λ)⊲κm(µ) if κm(λ) 6= κm(µ)
and

∑

1≤i≤t κi(λ) ≥
∑

1≤i≤t κi(µ) for all t ≥ 1. The following result [12, Proposition 5.5.16] will
be useful in then next sections:

Proposition 4.4. Assume that λ and µ are two l-partitions with the same rank such that κm(λ)⊲

κm(µ). Then a(m,r)(µ) > a(m,r)(λ).

Now, Formula (2) allows us to give an alternative description of the a-value of λ:

Proposition 4.5. Let λ ∈ Πl
n. The a-value of λ is

a(m,r)(λ) = r



n(λ)−
∑

0≤s≤l−1

∑

(i,j)∈[λs]

∑

0≤t≤l−1,t6=s

min(hλ
s,λt

i,j +ms −mt, 0)



 .

4.6. We now consider another type of specialisation. Let v0, . . . , vl−1 be any integers. Let k
be a subfield of C and let η be a primitive root of unity of order e > 1. Assume that R =
Z[q±1, Q±1

0 , . . . , Q±1
l−1] and consider the morphism

θ : R → k(η)

such that θ(q) = η and θ(Qj) = ηvj for j = 0, 1, . . . , l− 1. By Theorem 4.2, the specialised algebra
k(η)Hq

n is not generally semisimple, and a result by Dipper and Mathas which will be specified
later (see §5.2) implies that the study of this algebra is enough for studying the non-semisimple
representation theory of Ariki-Koike algebras in characteristic 0. Let

D = ([V λ : M ])λ∈Πl
n,M∈Irr(k(η)Hq

n)

be the associated decomposition matrix (see [13, §7.4]), which relates the irreducible representations
of the split semisimple Ariki-Koike algebra Hq

n and the specialised Ariki-Koike algebra k(η)Hq
n.

We are interested in the classification of the blocks of defect 0. That is, we want to classify the
l-partitions λ ∈ Πl

n which are alone in their blocks in the decomposition matrix. These correspond
to the modules V λ which remain projective and irreducible after the specialisation θ. By [17,
Lemme 2.6], these elements are characterized by the property that θ(sλ(q)) 6= 0. In our setting,
using Formula (2), we obtain the following:

Proposition 4.7. Under the above hypotheses, λ ∈ Πl
n is in a block of defect 0 if and only if, for all

0 ≤ s, t ≤ l − 1 and (i, j) ∈ [λs], e does not divide hλ
s,λt

i,j + vs − vt.

Remark 4.8. As pointed out by M. Fayers and A. Mathas, the above proposition should also be
obtained using [10].
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5. Canonical basic sets for Ariki-Koike algebras

In this part, we generalise some known results on basic sets for Ariki-Koike algebras, using a
fundamental result by Dipper and Mathas. This will help us determine the canonical basic sets for
cyclotomic Ariki-Koike algebras in full generality.

5.1. We consider the cyclotomic Ariki-Koike algebra Hm,r
n defined in §4.3, replacing from now on

the indeterminate u by the indeterminate q (following the usual notation). Let θ : Z[ηl][q
±1] → K(η)

be a specialisation such that θ(q) = η ∈ C∗. We obtain a specialised Ariki-Koike algebra K(η)Hm,r
n .

The relations between the generators are the usual braid relations together with the following ones:

(T0 − ηr0)(T0 − ηlη
r1) · · · (T0 − ηl−1

l ηrl−1) = 0

(Tj − ηr)(Tj + 1) = 0 for j = 1, ..., n − 1.

Let

D = ([V λ : M ])λ∈Πl
n,M∈Irr(K(η)Hm,r

n )

be the associated decomposition matrix (see [13, §7.4]). The matrix D relates the irreducible
representations of the split semisimple Ariki-Koike algebra K(q)Hm,r

n and the specialised Ariki-
Koike algebra K(η)Hm,r

n . The goal of this section is to study the form of this matrix in full
generality.

First assume that η is not a root of unity. Then, for all 0 ≤ i 6= j ≤ l − 1, we have

ηi−j
l ηri−rj 6= ηrd

for all d ∈ Z>0. By the criterion of semisimplicty due to Ariki (Theorem 4.2), this implies that the
algebra K(η)Hm,r

n is split semisimple, and thus D is the identity matrix. Hence, from now, one
may assume that η is a primitive root of unity of order e > 1. Then there exists k ∈ Z>0 such that
gcd(k, e) = 1 and η = exp(2

√
−1πk/e).

5.2. We will now use a reduction theorem by Dipper and Mathas which will help us understand
the form of D. Set I = {0, 1, . . . , l − 1}. There is a partition

I = I1 ⊔ I2 ⊔ . . . ⊔ Ip

such that
∏

1≤α<β≤p

∏

(i,j)∈Iα×Iβ

∏

−n<d<n

(ηrd − ηi−j
l ηri−rj) 6= 0.

For all i = 1, . . . , p, we set li := |Ii| and we consider Ii as an ordered set

Ii = (i1, i2, . . . , ili) with i1 < i2 < · · · < ili .

We define
πi : Ql → Qli

(x0, x1, . . . , xl−1) 7→ (xi1 , xi2 , . . . , xili )

For ni ∈ Z≥0, we have an Ariki-Koike algebra of type G(li, 1, ni) which we denote by H
mi,r
ni

with mi := πi(m) = (mi1 ,mi2 , . . . ,mili
). The relations between the generators are the usual braid

relations together with the following ones:

(T0 − ηi1l qri1 )(T0 − ηi2l qri2 ) · · · (T0 − η
ili
l q

rili ) = 0

(Tj − qr)(Tj + 1) = 0 for j = 1, ..., ni − 1.
9



Note however that H
mi,r
ni is not a cyclotomic Ariki-Koike algebra in general, because li 6= l. The

specialisation θi : Z[ηl][q
±1] → K(η) such that θ(q) = η defines a specialised algebra K(η)Hmi,r

ni ,
and we have an associated decomposition matrix

Di
ni

= ([V λ : M ])
λ∈Π

li
ni

,M∈Irr(K(η)Hmi,r
ni

)
.

In [8], Dipper and Mathas have shown that K(η)Hm,r
n is Morita equivalent to the algebra

⊕

n1, . . . , np ≥ 0
n1 + · · ·+ np = n

K(η)Hm1,r
n1

⊗K(η) K(η)Hm2,r
n2

⊗K(η) · · · ⊗K(η) K(η)Hmp,r
np

.

Thus, for a suitable ordering of the rows and columns, D has the form of a block diagonal matrix
where each block is given by D1

n1
⊗ · · · ⊗Dp

np with n1 + . . .+ np = n. More precisely, we have the
following result ([8, Proposition 4.11]):

Theorem 5.3 (Dipper-Mathas). Let λ ∈ Πl
n and M ∈ Irr(K(η)Hm,r

n ). There exist integers n1, . . . , np ≥
0 with n1 + · · ·+ np = n, and Mi ∈ Irr(K(η)Hmi,r

ni ) such that

[V λ : M ] =







∏

1≤i≤p[V
πi(λ) : Mi], if πi(λ) ∈ Πli

ni
∀i ∈ [1, p]

0, otherwise.

5.4. We now fix i ∈ {1, . . . , p}. By definition of Ii = (i1, i2, . . . , ili), one may assume that, for all
j = 1, . . . , li, there exist sj ∈ Z such that

η
ij−i1
l ηrij−ri1 = ηrsj

(with s1 = 0). We have
rij − ri1 = rsj − e(ij − i1)/(kl),

whence we deduce the following relation:

(5) mij −mi1 = sj − e(ij − i1)/(klr).

Set si := (s1, . . . , sli).

5.5. Keeping the above notation, let us consider the Ariki-Koike algebra K(η)Hmi,r
ni of type

G(li, 1, ni) (with ni ≤ n) with relations

(T0 − ηi1l ηri1 )(T0 − ηi2l ηri2 ) · · · (T0 − η
ili
l η

rili ) = 0

(Tj − ηr)(Tj + 1) = 0 for j = 1, ..., ni − 1.

This is then isomorphic to the Ariki-Koike algebra with relations

(T0 − ηrs1)(T0 − ηrs2) · · · (T0 − ηrsli ) = 0

(Tj − ηr)(Tj + 1) = 0 for j = 1, ..., ni − 1.

The following is a direct consequence of [12, Theorem 6.7.2].

Proposition 5.6. Under the above hypothesis, there exists a set Φli
ni
(si) ⊂ Πli

ni
with

|Φli
ni
(si)| = | Irr(K(η)Hmi,r

ni
)|

such that the following property is satisfied: For any M ∈ Irr(K(η)Hmi,r
ni ), there exists a unique

li-partition λM ∈ Φli
ni
(si) such that
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• [V λM : M ] = 1 and

• [V λ : M ] 6= 0 for λ ∈ Πli
ni

only if κmi(λM ) ⊲ κmi(λ) or λ = λM .

Proof. For j = 1, 2, . . . , li, set mij
:= sj − eij/(klr) and mi := (mi1

, . . . ,mili
). By [12, Theorem

6.7.2], there exists a set Φli
ni

⊂ Πli
ni

satisfying the property of the proposition except that κmi is
replaced by κmi . By Equality (5), we have

mij
= mij −mi1 +mi1

.

It easily follows that κmi(λM ) ⊲ κmi(λ) if and only if κmi(λM ) ⊲ κmi(λ), which yields the desired
result. �

5.7. We now need an easy combinatorial lemma. In this section, all multisets of rational numbers
are ordered so that their elements form decreasing sequences. Moreover, if X and Y are multisets,
we will write X ⊔ Y for the multiset consisting of all the elements of X and Y together, so that
|X ⊔ Y | = |X|+ |Y |.
Lemma 5.8. Let µ and ν be two multisets of positive rational numbers. Assume that there exist
multisets µ1, µ2, . . . , µh and ν1, ν2, . . . , νh such that

µ =
h⊔

i=1

µi, ν =
h⊔

i=1

νi and µi D νi for all i = 1, . . . , h.

Then µ D ν (with the equality holding only when µi = νi for all i = 1, . . . , h).

Proof. If h = 1, there is nothing to prove. Suppose that h = 2, and let t ≥ 1. We have
∑

1≤j≤t µj =
∑

1≤j≤t µ
1
j +

∑

1≤j≤t2
µ2
j for some t1, t2 ≥ 1 such that t1 + t2 = t, and

∑t
j=1 νj =

∑

1≤j≤t′1
ν1j +

∑

1≤j≤t′2
ν2j for some t′1, t

′
2 ≥ 1 such that t′1 + t′2 = t. Suppose that t1 ≥ t′1. Then t2 ≤ t′2, and we

have ∑

1≤j≤t

µj =
∑

1≤j≤t′1

µ1
j +

∑

t′1+1≤j≤t1

µ1
j +

∑

1≤j≤t2

µ2
j

Now,
∑

1≤j≤t′1

µ1
j +

∑

t′1+1≤j≤t1

µ1
j +

∑

1≤j≤t2

µ2
j ≥

∑

1≤jt′1

µ1
j +

∑

t2+1≤j≤t′2

µ2
j +

∑

1≤j≤t2

µ2
j

≥
∑

1≤j≤t′1

ν1j +
∑

1≤j≤t′2

ν2j .

and we can conclude because ∑

1≤j≤t′1

ν1j +
∑

1≤j≤t′2

ν2j =
∑

1≤j≤t

νj

Induction yields the result for h > 2. �

5.9. We are now in position to prove the main result of this section:

Theorem 5.10. In the setting of §4.3, the algebra Hm,r
n admits a canonical basic set Bθ with respect

to any specialisation θ : Z[ηl][q
±1] → K(η) such that θ(q) = η ∈ C∗, i.e., there exists a set Bθ ⊂ Πl

n

with
|Bθ| = | Irr(K(η)Hm,r

n )|
such that the following property is satisfied: For any M ∈ Irr(K(η)Hm,r

n ), there exists a unique
l-partition λM ∈ Bθ such that

• [V λM : M ] = 1 and

• [V λ : M ] 6= 0 for λ ∈ Πl
n only if a(m,r)(λ) > a(m,r)(λM ) or λ = λM .
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In addition, we have that λ ∈ Bθ if and only if there exist integers n1, . . . , np ≥ 0 with n1+· · ·+np =

n such that, for all i = 1, . . . , p, πi(λ) ∈ Φli
ni
(si).

Proof. Let

Bθ = {λ ∈ Πl
n | ∃n1, . . . , np ≥ 0, n1 + · · ·+ np = n : ∀i ∈ [1, p], πi(λ) ∈ Φli

ni
(si)}.

First note that, by §5.2, we have

|Bθ| = | Irr(K(η)Hm,r
n )|.

Let λ ∈ Πl
n and M ∈ Irr(K(η)Hm,r

n ). By Proposition 5.3, there exist integers n1, . . . , np ≥ 0

with n1 + · · ·+ np = n, and Mi ∈ Irr(K(η)Hmi,r
ni ) such that

(6) [V λ : M ] =







∏

1≤i≤p[V
πi(λ) : Mi], if πi(λ) ∈ Πli

ni
∀i ∈ [1, p]

0, otherwise.

We consider the l-partition λM ∈ Πl
n such that πi(λM ) = λMi

for all i = 1, . . . , p, where
λMi

∈ Φli
ni
(si) is defined in Proposition 5.6. Note that we have λM ∈ Bθ and [V λM : M ] = 1.

Now let λ ∈ Πl
n, λ 6= λM . Following Equation (6) and Proposition 5.6, if [V λ : M ] 6= 0, then,

for all i = 1, . . . , p,

either πi(λ) = λMi
= πi(λM ) or κmi(πi(λM ))⊲ κmi(πi(λ)).

By the definition of κm, we have κm(λ) =
⊔p

i=1 κmi(πi(λ)). By Lemma 5.8, since λ 6= λM , we
must have κm(λM )⊲ κm(λ). The result follows now from Proposition 4.4. �

Remark 5.11. If r = 1, then the elements of Bθ are the e-Uglov l-partitions of n. (cf. [15, Definition
3.2]). For r > 1, we will refer to the elements of Bθ as generalised e-Uglov l-partitions of n.

5.12. Let us give an example, where we calculate the canonical basic set when n = 2, r = 6 and
m = (1/2,−1/6,−1/3). Consider the cyclotomic Ariki-Koike algebra Hm,r

2 of type G(3, 1, 2), with
generators T0, T1 and relations

T0T1T0T1 = T1T0T1T0, (T0 − q3)(T0 − η3q
−1)(T0 − η23q

−2) = 0, (T1 − q6)(T1 + 1) = 0.

Let θ : Z[η3][q
±1] → Q(η12) be a specialisation such that θ(q) = η12 (we have e = 12 and k = 1).

Then the specialised Ariki-Koike algebra Q(η12)Hm,r
2 is generated by T0 and T1 with relations

T0T1T0T1 = T1T0T1T0, (T0 − i)2(T0 + 1) = 0, (T1 + 1)2 = 0.

By [8, Theorem 1.1], the specialised Ariki-Koike algebra Q(η12)Hm,r
2 is Morita equivalent to the

algebra

Q(η12)H
m1,r
2 ⊕

(

Q(η12)H
m1,r
1 ⊗Q(η12)H

m2,r
1

)

⊕Q(η12)H
m2,r
2 ,

where m1 = (1/2,−1/6) and m2 = (−1/3). We now have that

• the algebra Q(η12)H
m1,r
2 is isomorphic to the cyclotomic Ariki-Koike algebra of typeG(2, 1, 2) ∼=

B2 with generators T0 and T1, and relations

T0T1T0T1 = T1T0T1T0, (T0 − i)2 = 0, (T1 + 1)2 = 0,

• the algebra Q(η12)H
m1,r
1 is isomorphic to the cyclotomic Ariki-Koike algebra of typeG(2, 1, 1) ∼=

Z/2Z with quadratic relation (T0 − i)2 = 0,

• the algebra Q(η12)H
m2,r
1 is isomorphic to the algebra of the trivial group, and

• the algebra Q(η12)H
m2,r
2 is isomorphic to the cyclotomic Ariki-Koike algebra of typeG(1, 1, 2) ∼=

S2 with quadratic relation (T1 + 1)2 = 0.

Keeping the notation of §5.4 and Proposition 5.6, we obtain:
12



• Φ2
2(s

1) = {((2), ∅), ((1), (1))},
• Φ2

1(s
1) = {((1), ∅)},

• Φ1
1(s

2) = {(1)},
• Φ1

2(s
2) = {(2)}.

Therefore, the canonical basic set with respect to θ for Hm,r
2 is

Bθ = {((2), ∅, ∅), ((1), (1), ∅), ((1), ∅, (1)), (∅, ∅, (2))}.

6. Canonical basic sets for cyclotomic Hecke algebras of type G(l, p, n)

The purpose of this last part is to deduce from the last section the existence of the explicit
parametrisation of the basic sets for Cyclotomic Hecke algebra of type G(l, p, n).

6.1. Let l, p, n be three positive integers with n > 2 (we can also take n = 2, but then we must
assume that p is odd). Set d := l/p. Let r ∈ Z>0 and let r0, r1, . . . , rd−1 be any integers. For all i =
0, . . . , d−1, we setmi := ri/(pr) and we definem := (m0, . . . ,md−1,m0, . . . ,md−1, . . . ,m0, . . . ,md−1) ∈
Ql (where the d-tuple (m0, . . . ,md−1) is repeated p times). We consider the cyclotomic Hecke al-
gebra Hm,pr

p,n of type G(l, p, n) over Z[ηl][q
±1] with presentation as follows:

• generators: t0, t1,. . . , tn,
• relations:

(t0 − qpr0)(t0 − ηdq
pr1) · · · (t0 − ηd−1

d qprd−1) = 0

(tj − qpr)(tj + 1) = 0 for j = 1, ..., n

and the braid relations
– t1t3t1 = t3t1t3, tjtj+1tj = tj+1tjtj+1 for j = 2, . . . , n− 1,
– t1t2t3t1t2t3 = t3t1t2t3t1t2,
– t1tj = tjt1 for j = 4, . . . , n,
– titj = tjti for 2 ≤ i < j ≤ n with j − i > 1,
– t0tj = tjt0 for j = 3, . . . , n,
– t0t1t2 = t1t2t0,
– t2t0t1t2t1t2t1 . . .

︸ ︷︷ ︸

p+1 factors

= t0t1t2t1t2t1t2 . . .
︸ ︷︷ ︸

p+1 factors

.

6.2. Let us denote by G the cyclic group of order p. The algebra Hm,pr
p,n can be viewed as a

subalgebra of index p of the cyclotomic Hecke algebra Hm,pr
n of type G(l, 1, n): in fact, Hm,pr

n is a
“twisted symmetric algebra” of G over Hm,pr

p,n (see [5, §5.5.1]). The action of G on Irr(K(q)Hm,pr
n )

corresponds to the action generated by the cyclic permutation by d-packages on the l-partitions of
n:

σ : λ = (λ0, . . . , λd−1, λd, . . . , λ2d−1, . . . , λpd−d, . . . , λpd−1)

7→ σλ = (λpd−d, . . . , λpd−1, λ0, . . . , λd−1, . . . , λpd−2d, . . . , λpd−d−1).

By [7, Proposition 2.5], we have a(m,pr)(λ) = a(m,pr)(σλ).

6.3. In this section, we will use extensively some results known as “Clifford theory”. For more
details, the reader may refer to [5, §2.3] and [14]. At the end, we will be able to deduce the existence
and the explicit parametrisation of a canonical basic set for Hm,pr

p,n . The proof below is inspired
from [14, Proof of Theorem 3.1]. From now on, we will write H for Hm,pr

n and H̄ for Hm,pr
p,n . Let

θ : Z[ηl][q
±1] → K(η) be a specialisation such that θ(q) = η ∈ C∗. As before, one may assume that

η is a primitive root of unity of order e > 1.
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Let E ∈ Irr(K(q)H̄). By Clifford theory, there exists V λ ∈ Irr(K(q)H) such that E is a compo-
sition factor of ResH

H̄
(V λ). We write Eλ for E. Moreover, there is an action of G on Irr(K(q)H̄)

such that, if we denote by Ω̄λ the orbit of Eλ under the action of G, we have

[ResHH̄(V
λ)] =

∑

E∈Ω̄λ

[E].

Let V ∈ Irr(K(q)H). The elements of Ω̄λ appear as composition factors in ResH
H̄
(V ) if and only if

V = gV λ for some g ∈ G. In particular, if σ is the map defined in §6.2, we have

[ResHH̄(
σV λ)] = [ResHH̄(V

λ)].

We deduce that
Irr(K(q)H̄) = {E |E ∈ Ω̄λ, λ ∈ Πl

n}.
Now, if we denote by Ωλ the orbit of V λ under the action of G, we have

|Ωλ||Ω̄λ| = |G| = p.

(see [14, Lemma 2.2]). Thus, |Ω̄λ| = |Gλ|, where Gλ := {g ∈ G | gλ = λ}. Furthermore, applying
the restriction functor ResH

H̄
does not affect the a-value of simple modules over K(q) (see [5,

Proposition 2.3.15]). Hence, we obtain:

(7) a(m,pr)(λ) = a(m,pr)(σλ) = a(m,pr)(E), for all E ∈ Ω̄λ.

Now, to each simple K(η)H-module M , one can attach an a-value as follows:

a(m,pr)(M) = min{a(m,pr)(λ) | [V λ : M ] 6= 0}.
Respectively, to each simple K(η)H̄-module N , one can attach an a-value as follows:

a(m,pr)(N) = min{a(m,pr)(E) | E ∈ Irr(K(q)H̄), [E : N ] 6= 0}.
Let N ∈ Irr(K(η)H̄). By Clifford theory, there exists M ∈ Irr(K(η)H) such that N is a

composition factor of ResHH̄(M). We write NM for N . There is an action of G on Irr(K(η)H̄) such
that, if we denote by ω̄M the orbit of NM under the action of G, we have

[ResHH̄(M)] =
∑

N∈ω̄M

[N ].

By Theorem 5.10, the algebra H admits a canonical basic set Bθ with respect to θ. Thus, there
exists λM ∈ Bθ such that the conditions of Theorem 5.10 are satisfied. By [7, Proposition 3.2], we
also have σλM ∈ Bθ. Therefore, there exists σM ∈ Irr(K(η)H) such that σλM = λσM ∈ Bθ. This
action of G on Irr(K(η)H) agrees with the action on Irr(K(η)H̄), that is

[ResHH̄(
σM)] = [ResHH̄(M)] =

∑

N∈ω̄M

[N ].

Let L ∈ Irr(K(η)H). The elements of ω̄M appear as composition factors in ResHH̄(L) if and only if
L = gM for some g ∈ G.

By definition of Bθ, we get

a(m,pr)(M) = a(m,pr)(λM ) = a(m,pr)(σλM ) = a(m,pr)(σM)

and
[V λM ] = [M ] +

∑

a(m,pr)(L)<a(m,pr)(M)

[V λM : L][L].

By definition of the a-function and Equation (7), we get

a(m,pr)(M) = a(m,pr)(N), for all N ∈ ω̄M .
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Moreover, if L is a simple K(η)H-module such that [V λM : L] 6= 0 and a(m,pr)(L) < a(m,pr)(M),
and N ′ ∈ Irr(K(η)H̄) is a composition factor of ResH

H̄
(L), then

a(m,pr)(M) > a(m,pr)(N ′).

We deduce that

[ResHH̄(V
λM )] = [ResHH̄(M)] +

(
sum of classes of simple modules with

a-value strictly less than a(m,pr)(M)

)

,

whence we obtain
∑

E∈Ω̄λM

[E] =
∑

N∈ω̄M

[N ] +

(
sum of classes of simple modules with

a-value strictly less than a(m,pr)(M)

)

.

Suppose that NM is a composition factor of EλM . Then σNM is a composition factor of σEλM ,
and, in general, gNM is a composition factor of gEλM , for all g ∈ G. This is possible only if
|ω̄M | = |Ω̄λM

| = |GλM
|. For g, h ∈ GλM

, we get

[gEλM : hNM ] =







1, if g = h

0, otherwise.

Hence, we have

[gEλM ] = [gNM ] +

(
sum of classes of simple modules with

a-value strictly less than a(m,pr)(gNM )

)

.

Thus, we have proved the following result:

Theorem 6.4. The algebra H̄ admits a canonical basic set B̄θ with respect to any specialisation
θ : Z[ηl][q

±1] → K(η) such that θ(q) = η ∈ C∗, i.e., there exists a set B̄θ ⊂ Irr(K(q)H̄) with

|B̄θ| = | Irr(K(η)H̄|
such that the following property is satisfied: For any N ∈ Irr(K(η)H̄), there exists a unique EN ∈ B̄θ

such that

• [EN : N ] = 1 and

• [E : N ] 6= 0 for E ∈ Irr(K(q)H̄) only if a(m,pr)(E) > a(m,pr)(EN ) or E = EN .

In addition, we have that E ∈ B̄θ if and only if there exists λ ∈ Bθ ⊂ Πl
n such that E ∈ Ω̄λ.

Remark 6.5. In this section, we have also shown that the assumptions of [14, Theorem 3.1], which
yields the existence of canonical basic sets for cyclotomic Hecke algebras of type G(l, p, n), are
satisfied for any choice of H̄.

6.6. Let us give an example where we will apply Theorem 6.4 in the case where G(l, p, n) =
G(3, 3, 2) ∼= S3.

1 Note that we have d = 1, thus we can take m = (0, 0, 0). Let r = 2 and consider

the cyclotomic Hecke algebra Hm,6
3,2 of type G(3, 3, 2), with generators t1, t2 and relations

t2t1t2 = t1t2t1, (t1 − q6)(t1 + 1) = (t2 − q6)(t2 + 1) = 0.

The algebra Hm,6
3,2 is a subalgebra of index 3 of the cyclotomic Hecke algebra Hm,6

2 of type G(3, 1, 2)
with generators T0, T1 and relations

T0T1T0T1 = T1T0T1T0, T 3
0 = 1, (T1 − q6)(T1 + 1) = 0.

1Of course, there is an easier way to deal with this case, but we simply want to illustrate the use of Theorem 6.4
in a small example.
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Let θ : Z[η3][q
±1] → Q(η12) be a specialisation such that θ(q) = η12. Then the specialised Hecke

algebra Q(η12)Hm,6
2 is generated by T0 and T1 with relations

T0T1T0T1 = T1T0T1T0, T 3
0 = 1, (T1 + 1)2 = 0.

By [8, Theorem 1.1], the specialised Hecke algebra Q(η12)Hm,6
2 is Morita equivalent to the algebra

⊕

n1+n2+n3=2

Q(η12)H
m1,6
n1

⊗Q(η12)H
m2,6
n2

⊗Q(η12)H
m3,6
n3

,

where m1 = m2 = m3 = (0). Let j ∈ {1, 2, 3}. The algebra Q(η12)H
mj ,6
1 is isomorphic to the

algebra of the trivial group, and the algebra Q(η12)H
mj ,6
2 is isomorphic to the cyclotomic Hecke

algebra of type G(1, 1, 2) ∼= S2 with quadratic relation (T1 +1)2 = 0. Keeping the notation of §5.4
and Proposition 5.6, we have Φ1

1(s
j) = {(1)} and Φ1

2(s
j) = {(2)}. Therefore, the canonical basic

set with respect to θ for Hm,6
2 is

Bθ = {((1), (1), ∅), (∅, (1), (1)), ((1), ∅, (1)), ((2), ∅, ∅), (∅, (2), ∅), (∅, ∅, (2))}.
Following Theorem 6.4, the canonical basic set with respect to θ for Hm,6

3,2 is

B̄θ = {E((1),(1),∅) , E((2),∅,∅)}.
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