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Despite more and more observational data, stellar acoustic oscillation modes are not well understood as

soon as rotation cannot be treated perturbatively. In a way similar to semiclassical theory in quantum

physics, we use acoustic ray dynamics to build an asymptotic theory for the subset of regular modes which

are the easiest to observe and identify. Comparisons with 2D numerical simulations of oscillations in

polytropic stars show that both the frequency and amplitude distributions of these modes can accurately be

described by an asymptotic theory for almost all rotation rates. The spectra are mainly characterized by

two quantum numbers; their extraction from observed spectra should enable one to obtain information

about stellar interiors.
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Stars being far-away objects, the types of information
that can be obtained from them are necessarily limited.
One of the most important corresponds to luminosity var-
iations, which can reflect the passing of a planet or intrinsic
modulations in the light emitted by the star. In particular,
the domain of asteroseismology studies stellar oscillation
modes, which create periodic variations of the luminosity
which can be detected [1]. For the Sun, these modes have
been theoretically constructed and successfully compared
with observations, leading to detailed information on the
Sun’s internal structure. However, this theory requires the
star to be nearly spherically symmetric, an assumption
clearly violated for rapidly rotating stars [2]. With the
launch of the recent space missions COROT and Kepler
[1], oscillation spectra of rapidly rotating stars are ob-
served with great accuracy. This concerns mainly the stars
more massive than the Sun that belong to the main se-
quence of the Hertzsprung-Russel diagram. In order to
access their internal structure through a seismic diagnostic,
it is thus essential to understand the oscillation spectra of
rapidly rotating stars

Accurate computations of acoustic modes fully taking
into account the effects of rotation on stellar oscillations
have only recently been performed for rotating stars [3] (an
example is shown in Fig. 1). Such stationary patterns of
acoustic waves can be described asymptotically through
their short-wavelength limit, in the same way as classical
trajectories can describe quantum or electromagnetic
waves in this limit [4]. These acoustic rays obey
Hamiltonian equations of motion. In [5], their dynamics
was investigated for a polytropic stellar model, showing
that the tools from the fields of classical and quantum
chaos enable us to understand the behavior of modes in
rapidly rotating stars. Indeed, for increasing rotation rates,

the dynamics undergoes a transition from an integrable to a
mixed system, where chaotic and stable zones coexist in
phase space. The asymptotic theory built for slowly rotat-
ing stars, which does not take these effects into account,
cannot thus be applied at high rotation rates. In the latter
regime, it was shown that the spectrum of acoustic oscil-
lations can be divided into several subspectra correspond-
ing to regular and chaotic zones in phase space in a way
similar to what happens in quantum chaos systems [6].

FIG. 1 (color online). Pressure amplitude P
ffiffiffiffiffiffiffiffiffiffiffi
d=�0

p
on a meri-

dian plane for a polytropic model of stars, with d the distance to
the rotation axis and �0 the equilibrium density. The mode
shown corresponds to n ¼ 46, ‘ ¼ 1 and m ¼ 0 at a rotation
rate of �

�K
¼ 0:783, with �K ¼ ðGM=R3

eqÞ1=2 being the limiting

rotation rate for which the centrifugal acceleration equals the
gravity at the equator, M the stellar mass and Req the equatorial

radius. Colors/grayness denote pressure amplitude, from red/
gray (maximum positive value) to blue/black (minimum negative
value) through white (zero value). The thick black line on the
right is the central periodic orbit � of the island.
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As already demonstrated for the Sun and solar-type
stars, a quantitative asymptotic theory is crucial to extract
information from the observed spectra as it links the be-
havior of oscillation modes to physical properties of the
star [7]. Furthermore, the complexity of the observed
spectra usually requires prior knowledge of an asymptotic
theory in order to correctly identify the frequency peaks in
the data with specific oscillation modes. In this paper, we
present for the first time such a quantitative theory at
almost all rotation rates for a specific subset of modes,
which should be among the easiest to obtain from obser-
vations. Indeed, we focus on a series of modes centered
around the largest stable island of the system, and system-
atically build them using the parabolic equation method
[8]. This method was successfully applied to light in
dielectric cavities [9], electronic resonators in a magnetic
field [10] and quantum chaos systems [11]. The results of
the asymptotic theory are then compared with numerical
computation of oscillations in a polytropic star, showing
that the theory correctly describes the modes even in the
bounded frequency range of stellar oscillations.

The study of ray dynamics in [5] showed that for a wide
range of rotation rates, three main types of phase space
zones with different dynamics can be defined (see Fig. 2):
(1) regular structures built around stable periodic orbits
(stable islands); (2) whispering gallery rays close to the
surface; (3) chaotic zones with ergodic rays in the remain-
ing parts of phase space. Figure 2 shows that for m ¼ 0
(axisymmetric modes) the main island undergoes a bifur-
cation from one island centered on the rotation axis to two
islands which move away from the rotation axis as the
rotation rate increases. Each phase space region gives rise
to a well-defined subspectrum of modes localized inside
the region. The whispering gallery modes are essentially
unobservable in real stars since the disk-average leads to a
very small contribution in observed spectra [5]. Chaotic
modes can have visible contributions, but the associated
spectra, although they can display well-defined statistical
properties, cannot be described by a few quantum numbers.
In contrast, the stable island modes give rise to very regular
sequences of frequencies described by a few parameters
which can be potentially extracted from observed spectra.
These modes (an example is shown on Fig. 1) can be
characterized on a meridian plane by the number n of
nodes along the central periodic orbit � and the number
‘ of nodes transverse to �.

To describe asymptotically these island modes, we start
from the equation of acoustic waves in stars. We neglect
the Coriolis force, which is known to be negligible in the
high-frequency regime since the Coriolis force time scale
(1=ð2�Þ) is much longer than the mode period [3]. We also
neglect the perturbations of the gravitational potential,
since they are produced by the density fluctuations and
tend to cancel out as the number of nodes of the density
distribution increases for high-frequency modes, as has

been numerically checked for nonrotating stars [12].
Finally, we use the adiabatic approximation which is
known to be a very good approximation to compute fre-
quency modes in nonrotating stars. Indeed, it is accurate
enough to interpret the solar acoustic modes despite the
fact that these frequencies are determined to high accuracy
[7]. In the linear approximation, this gives rise to a
Helmholtz-type equation. Using the cylindrical symmetry
of the system with respect to the rotation axis, one can
rewrite this equation as a two-dimensional problem

� c2s��m þ
�
!2

c þ
c2sðm2 � 1

4Þ
d2

�
�m ¼ !2�m: (1)

Here �m is the mode amplitude scaled by the square root
of the distance d to the rotation axis, cs is the sound
velocity (which depends on the location inside the star),
! is the frequency of the mode, and !c is the cutoff
frequency whose sharp increase in the outermost layers
of the star leads to the reflection of acoustic waves and thus
the formation of modes in a bounded frequency range

FIG. 2 (color online). Surfaces of section at rotations
�
�K

¼ 0:224 (top) and �
�K

¼ 0:589 (bottom) for m ¼ 0. Each

dot represents the crossing of an acoustic ray with the equatorial
half-plane, r being the radial coordinate and kr the associated
momentum. Orange/light gray denote a chaotic ray, green/dark
gray a whispering gallery ray, blue/black a stable island ray (see
text). Upper insets are close-ups of the main stable island. Lower
inset in the top figure shows a close-up of the main island at
�
�K

¼ 0:262, just after the bifurcation.
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! � ð!cÞmax. The integer m is the quantum number cor-
responding to the quantization of angular momentum along
the rotation axis. To construct the island modes centered on
the stable periodic orbit � of length L�, we rewrite Eq. (1)

in the coordinates (s, �) centered on �, with s the coor-
dinate along � and � the transverse coordinate. The para-
bolic equation method [8] assumes that the solutions have a
longitudinal scaling in 1=! and a transverse scaling in
1=

ffiffiffiffi
!

p
. We introduce the WKB ansatz:

�mðs; �Þ ¼ expði!�ÞUmðs; �;!Þ; (2)

with d� ¼ ds=~cs, using the renormalized sound velocity

defined by ~c2s ¼ c2s!
2=ð!2 �!2

c � c2s ðm2�1
4Þ

d2
Þ.

An expansion in powers of ! yields a series of equa-
tions; keeping terms of order ! and introducing the vari-

able � ¼ ffiffiffiffi
!

p
� and the function Vm ¼ Um=

ffiffiffiffiffiffiffiffiffiffi
~csðsÞ

p
give the

parabolic equation:

@2Vm

@�2
þ 2i

1

~csðsÞ
@Vm

@s
� KðsÞ�2Vm ¼ 0; (3)

where KðsÞ ¼ 1
~csðsÞ3

@2~cs
@�2

j�¼0. The equation in the transverse

coordinate � is similar to the harmonic oscillator in quan-
tum mechanics, with an additional term depending on the
longitudinal coordinate. The ground state is of the form

V0
m ¼ AðsÞ exp½i �ðsÞ2 �2�, and obeys the two equations
1

~csðsÞ
d�ðsÞ
ds þ �ðsÞ2 þ KðsÞ ¼ 0 and 1

AðsÞ
dAðsÞ
ds ¼ � ~csðsÞ

2 �ðsÞ.
Defining zðsÞ through �ðsÞ ¼ 1

zðsÞ~csðsÞ
dzðsÞ
ds implies that

AðsÞ ¼ 1=
ffiffiffiffiffiffiffiffi
zðsÞp

and zðsÞ should satisfy the following sys-
tem of equations:

1

~csðsÞ
dz

ds
¼ p;

1

~csðsÞ
dp

ds
¼ �KðsÞz: (4)

Equations (4) are periodic in the variable s with period
L�, and according to Floquet theory there exists an opera-

tor describing the evolution over one period. To construct
it, one uses the fact that system (4) corresponds to the
Hamilton equations associated with the Hamiltonian

H ¼ p2

2 þ KðsÞz2
2 . It can be shown that the same equations

(with z and p real) describe the acoustic ray in the vicinity
of the central periodic orbit (via a normal form approxi-
mation), z being the transverse deviation from � and p the
associated momentum. We linearize the motion around the
periodic orbit and construct the monodromy matrix which
describes this linearized motion from one point to its image
after one period:

zðsþ L�Þ
pðsþ L�Þ

" #
¼ M

zðsÞ
pðsÞ

� �
: (5)

For the mode to be univalued, V0
m should be the same after

one period up to a global phase and thus z and p should
correspond to an eigenvector of M. As � is stable, the
matrix M is conjugate to a rotation matrix and has two

eigenvalues e�i�, with � in ½0; 2�½. The corresponding
eigenvectors are complex conjugate, only one of them
giving the physical solution exponentially decreasing at
large �.
The modes of higher frequency can be constructed as

for the harmonic oscillator from V0
m using standard

methods from quantum mechanics; the result, up to a
normalization constant, is equivalent to multiplying

V0
mðs; �Þ ¼ z�ð1=2Þ exp½i �2 �2� by a function containing the

Hermite polynomials of order ‘ noted H‘:

V‘
mðs; �Þ ¼

�
�z

z

�
‘=2

H‘ð
ffiffiffiffiffiffiffiffiffi
Im�

p
�Þz�ð1=2Þ exp

�
i
�

2
�2

�
: (6)

Again, for the mode to be univalued, the global phase
accumulated after one period should be a multiple
of 2�. This phase is expð�i�Þ expð� ið2�Nr þ �Þ=2Þ
expð� ið2�Nr þ �Þ‘Þ expði!H

�
ds
~cs
Þ. The first two phases

correspond to the so-called Maslov indices [4,13] and
count the number of caustics encountered in the longitudi-
nal and transverse motions. The number Nr keeps track of
the number of times the trajectory solution of Eq. (4)
makes a complete rotation around � in phase space, and
can be evaluated from ray simulations. This implies

!n;‘;m ¼ 1H
�
ds
~cs

�
2�

�
nþ 1

2

�
þ

�
‘þ 1

2

�
ð2�Nr þ �Þ

�
:

(7)

The regular subspectrum is thus essentially described by

two quantities, �n ¼ 2�H
�
ds
~cs

and �‘ ¼ 2�Nrþ�H
�
ds
~cs

(which depend

on m). This corresponds to the empirical formula found in
[3] for m ¼ 0 from numerical simulations. The quantities
�n and �‘ probe the sound velocity along the path of the
periodic orbit and its transverse derivatives. Indeed, an
explicit expression of � in terms of such transverse deriva-
tives can be derived [13]. Equation (7) is valid asymptoti-
cally for n large and ‘ � n. As observable modes in real
stars cannot be too high in frequency, we have checked
numerically the validity of this formula for moderately
high values of n.
In Fig. 3 we plot the numerically computed �n and �‘

values vs the theoretical ones for a large range of rotation
rates. We restrict ourselves to the case jmj � 1which is the
most common in observational data. Numerical modes
were obtained using a code that computes adiabatic modes
of rotating polytropic stars as in [3], and selecting the
island modes through their phase space locations.
Theoretical values were obtained from the theory ex-
plained above, estimating the monodromy matrix entries
by following classical trajectories in the vicinity of the
periodic orbit, using the fact previously noted that Eq. (4)
describes the deviation of a nearby classical trajectory
from the central orbit �. We checked that the results
were not sensitive to the choice of the trajectory inside
the island. The results of Fig. 3 show that a good agreement
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exists between numerical and theoretical regularities, ex-
cept close to � ¼ 0 where Tassoul’s asymptotic theory
applies [7]. For �n, the agreement is good over the whole
range of rotation. For �‘, the agreement is good at large
and low rotation, but degrades in the range [0.25, 0.35] for
m ¼ 0. We attribute this discrepancy to the fact that, as
seen in Fig. 2, the periodic orbit of the main stability island
undergoes a bifurcation in this range, from one stable
central orbit to two stable orbits on each side and a central
unstable one. It is known that in such a case, the normal
form approximation for the classical motion which is used
in the parabolic equation method should be modified by
different uniform formulas [14]. Thus in the vicinity of the
bifurcation the method is expected not to give accurate
results. This picture is confirmed by the inset of Fig. 3,
which shows that in the casem ¼ 1, where there is no such
bifurcation, agreement is good for �‘ over the whole range
of � values. We note that other bifurcations are present in
the system which create additional stable and unstable
orbits in the vicinity of the central one, but they do not
seem to affect the results for the relatively low-frequency
modes we consider. We note also that Eq. (7) predicts
degeneracies at rational values of�=�. These degeneracies
can be avoided crossings or true degeneracies if the modes
belong to different symmetry classes. We have checked
that it actually enables us to predict such occurrences. We
note that while the theory neglects the Coriolis force and
perturbations of the gravitational potential, the numerical
modes were computed taking into account both effects.

The good agreement seen in Fig. 3 confirms that these
processes can safely be neglected in this regime. We also
remark that recent analysis of numerically computed
modes in realistic, nonpolytropic, differentially rotating
stellar models show the emergence of formulas similar to
Eq. (7) for specific subsets of modes [15].
Not only does the parabolic equation method give the

frequencies of the modes, but it also yields their amplitude
distribution. Indeed, the eigenvector of the monodromy
matrix gives �ðsÞ, which enables us to construct an ap-
proximation of the mode itself using Eq. (6). Comparisons
between theoretical and numerical modes show that the
modes are well approximated by the theory (see an ex-
ample in Fig. 4), although sometimes small oscillations
due to interference between different modes are not well
reproduced by the theory.
In conclusion, we have shown that the parabolic equa-

tion method enables us to build an asymptotic theory for
the most visible of the regular acoustic modes of a star
rotating at arbitrary rotation rates except for very slow
rotation, where Tassoul’s theory [7] already applies.
Comparisons with numerical computations of oscillations
in a stellar model show that the asymptotic theory gives a
good description of the frequency differences and ampli-
tude distributions, except for m ¼ 0 at a specific rotation
rate where a bifurcation takes place and a more refined
theory is needed. The spacings �n and �‘ which describe
the frequency distribution of this type of modes can be
expressed in terms of internal characteristics of the star.
Our results should enable one to use data from recent space
missions such as COROTand Kepler to extract information
about the observed stars and use this information to build
more accurate stellar models.
We thank J. Ballot for his help at various stages of this

work, the ANR project SIROCO for funding and CALMIP
and CINES for the use of their supercomputers. D. R. R.
acknowledges support from the CNES.

FIG. 3 (color online). Comparison between actual regularities
of regular modes and theoretical predictions for m ¼ 0 and

different values of �=�K (!p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p

q
with Rp the polar

radius). Circles: �n, triangles: �‘, orange/light gray: theory,
blue/dark gray: numerical results. Numerical results correspond
to different sets of values of �n and �‘, with n between 42 and
51 and ‘ ¼ 0, 1. As m ¼ 0, only modes symmetric with respect
to the rotation axis should be retained, and thus the theoretical
value of �‘ is multiplied by two below the bifurcation point.
Close to � ¼ 0, the separation of numerical values in two
groups corresponds to the small separation in Tassoul’s theory
[7]. Inset: Same for m ¼ 1.

FIG. 4 (color online). Amplitude distributions (real part of
�m) on the equator for a theoretical and a numerical mode.
Blue dashed line: numerical mode (same as in Fig. 1); orange
continuous line: theoretical mode, from Eq. (6).
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