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Abstract Recent microscopic imaging systems such as whole slide scanners
provide very large (up to 18GB) high resolution images. Such amounts of
memory raise major issues that prevent usual image representation models
from being used. Moreover, using such high resolution images, global image
features, such as tissues, do not clearly appear at full resolution. Such images
contain thus different hierarchical information at different resolutions. This pa-
per presents the model of tiled top-down pyramids which provides a framework
to handle such images. This model encodes a hierarchy of partitions of large
images defined at different resolutions. We also propose a generic construction
scheme of such pyramids whose validity is evaluated on an histological image
application.
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1 Introduction

The increasing amount of high resolution images raises new and major issues in the
field of image analysis and processing. For instance, microscopic scanners have re-
cently been improved to the point where whole slide imaging techniques may offer a
x40 000 magnification. However, the segmentation of such images requires to han-
dle a hierarchy of large partitions defined on up to 18GB data volumes. A suitable
model to encode segmentation of such images should be compatible with memory
constraints induced by this large amount of data and should allow to design segmen-
tation algorithms based on the same top-down analysis scheme than pathologists.

In this regard, we identified two key steps during pathologists’ manual analysis of
pyramids of histological images. First, an identification of histological components
for each resolution is performed and regions of interest are determined according to
topological or geometric features. Second, these regions of interest are used within a
hierarchical scheme from the lowest to the highest resolution (top-down), each region
being analyzed in the context defined by its ancestors.

As a consequence, a model with geometrical, topological and hierarchical features
is required to provide a segmentation of large histological images. Usual non hier-
archical models are devoted to few partitions’ properties and do not provide a full



Tiled top-down pyramids and segmentation of large histological images

encoding of geometrical and topological properties of a partition. For example, RAG
data structures do not provide an efficient access to the geometry of regions’ bor-
ders. This drawback is addressed by more sophisticated models such as topological
maps [2, 3] which encode both geometric and topological properties of a partition.

Hierarchical models such as quadtrees or regular pyramids are commonly used
for multi-resolution images representation and segmentation. Yet, both frameworks
entail several drawbacks [1]. For example, they may not preserve adjacency of con-
nected regions through different levels of a pyramid. Those drawbacks lead to the
design of irregular pyramids [2, 3] in order to take advantage of the efficiency of
graphs and topological maps for geometric and topological operations while keeping
the advantages of their regular ancestors.

We have previously introduced the tiled maps model [4], defined as a topological
map decomposed into topological tiles to encode partitions of large images. In [5],
we have proposed an efficient construction scheme of tiled top-down pyramids. Using
such a construction scheme, each partition defined at a given resolution is initialised
by the projection of the partition defined at the previous (lower) resolution and
then further refined by split and merge operations. In this paper, we focus on three
main points. We first provide an improved formalism to define our model of tiled
top-down pyramid (Section 2). We propose in Section 3 a new projection step of
each partition which takes into account the additional information provided by the
current resolution. We finally show in Section 4 the efficiency of our model with the
segmentation of an histological image.

2 Top-down framework

2.1 Topological maps

A topological map model [2, 3] encodes both topological and geometrical properties
of a partition. It combines three distinct models: a 2-map that encodes topological
relationships, a matrix of interpixel elements [8] that encodes the geometry of the
partition and a tree of regions for inside relationships (Figure 1).

A combinatorial map is defined from a set of abstract basic elements called darts.
Two operators denoted by f;, i € {1,2} that apply on darts allow to represent
adjacency relationships between cells (Definition 1).

Definition 1 (Combinatorial map). In two dimensions, a combinatorial map M is
a triplet M = (D, 51, B2) where:

1. D is a finite set of darts;
2. 1 is a permutation' on D;

3. Bo is an involution® on D.

LA permutation is a one to one mapping from S onto S.
2An involution f is a one to one mapping from S onto S such that f = f*.
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Figure 1: Topological maps: a combination of three models for the representation
of a partition. (a) Combinatorial map for adjacency relationships. Dotted darts
belong to the infinite region. (b) Interpixel representation for geometrical borders:
bounding pointels and linels are drawn as circles and bold segments. (c) Tree of
regions for inside/contains relationships.

Intuitively, a combinatorial map may be considered as a planar graph whose edges
are decomposed into half edges called darts. Each dart is incident to a single vertex
and belongs to a single edge and a single face. Sets of darts defining high level entities
such as vertices, edges and faces are retrieved using cycles® of 8; permutations. In
practice, the 81 permutation connects a dart of a face to the next dart encountered
when turning clockwise around it. The involution £ separates two adjacent faces
and maps a dart of an edge to the only dart with an opposite orientation which
belongs to the same edge. For instance, in Figure 1(a), 51(1) = 3 and (a(1) = 2.
Vertices, edge and faces of a combinatorial map are respectively encoded by the
cycles of the permutations 1 o 82,82 and ;. All faces of a combinatorial map
but one encode finite faces (faces corresponding to regions with a finite area). The
face which does not satisfy this property encodes the background of the partition
encoded by the combinatorial map and is called an infinite face. A combinatorial
map is called minimal in number of cells if it does not contain any vertex with a
degree lower or equal to 2 and removing any dart would change the topology.

Matrix of interpixel elements Using interpixel elements [8], the geometry of an
an nxm image partition is encoded by an (n+1) x (m+1) array of marks. Each entry
of this array encodes the existence of a given linel (or crack) element within the set
of linels encoding image’s boundaries and called bounding linels (Figure 1(b)). Note
that both pointels incident to a same bounding linel are considered as bounding
elements. We call embedding the association of bounding cells with a topological
element (vertex, edge or face). In Figure 1(b), embedding of dart 1 is defined as
the sequence of bounding elements (l1, pi, l2, p2, l3). A region corresponds to the
embedding of a face and is a set of adjacent pixels.

Tree of regions The tree of regions describes inside/contains relationships: a
region is the father of the regions it contains. In Figure 1(c), r; contains {ra,r3,74}.

3A cycle of a permutation is defined as its restriction to the set of images of an element.
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Figure 2: Tiled maps: an extension to the topological map model designed for large
partitions. (a) Original image decomposed into four tiles. (b) Interpixel represen-
tation: arrows map equivalent bounding cells. (¢) Tiled map: each tile is encoded
by a topological map. Darts are connected between tiles through §; (arcs) and 09
(segments) operators.

The root of the tree encodes the background of the image and is called the infinite
region (denoted by 7).

2.2 Tiled topological maps

A tiled extension of the topological map model which decomposes a map into smaller
elements called tiles has been proposed to overtake memory issues induced by the
representation of large partitions [4]. Indeed, tiles may be swapped on disk when
they are not being processed. A topological tile is a geometric subdivision of a
topological map whose interpixel matrix only encodes a subdivision of the image.
Adjacency relationships between topological tiles are encoded by equivalent interpixel
cells on tiles’ shared borders: two pointels are equivalent if they have the same
coordinates in the image referential and two linels are equivalent if their incident
pointels are equivalent (Figure 2(b)). Darts’ embeddings are encoded within the
interpixel framework as sequences of pointels and linels. Consequently, two darts are
said to have an equivalent embedding if their embeddings correspond to equivalent
sequences of pointels and linels.

Let D! be the set of darts that belong to a tile ¢ and Dg’t/ be the subset of D!
composed of darts that are incident to the border of ¢ and whose embedding has
equivalent cells in #'. Connections between darts of two adjacent tiles ¢ and ¢’ are
represented through a bijection cpt’t/ : Dta’t, — Dg’t that maps each dart d of Dgt, to
a dart d’ of Dg’t such that d and d' have equivalent embeddings (Figure 2(c)). Note
that such a bijection can always be obtained if we consider a decomposition of the
tiles’ borders into basic darts whose embedding is a single couple (pointel, linel).

Besides, the decomposition in tiles entails that some darts of a tile’s border may
encode the tile’s decomposition of the image without encoding a real border between
regions. In this case, the border is considered as a fictive border. Otherwise, the
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Figure 3: Reduction windows of pointels within the interpixel representation of
a pyramid of images. (a) Non-overlapping holed pyramid. (b) Non-overlapping
pyramid without holes. (¢) Overlapping pyramid.

border is called a real border. Thus, two additional operators d; and 9 are introduced
in order to skip darts encoding fictive borders which leads to the definition of the
tiled map model (Definition 2).

Definition 2 (Tiled topological map). Let T be a set of topological tiles. Let D be
the subset of DT whose darts belong to a real border. A tiled topological map (or tiled
map) is a triplet M = (D, d1,02) where:

ott'(d) ifde Dy
B2(d)  otherwise

e &1 is a permutation on D such as: 61(d) = Py o (62 0 B1)F(d)
with k =min{p e N | 1o (d20p1)P(d) € D }

e 09 is an involution on D such as: d2(d) = {

Since 91 and d9 operators respectively define a permutation and an involution on
D [5], the triplet M = (D, d1,d3) is a combinatorial map.

2.3 Tiled top-down pyramids

Tiled maps allow to represent partitions from large images. However, such images
usually contain different information at different resolutions hence requiring the de-
sign of a multi-resolution hierarchical data structure, such as the tiled top-down
pyramidal model [5].

In this paper, we propose a novel approach for the definition of tiled top-down
pyramids based on the combination of three hierarchical data structures: a pyramid
of images encoding a multi-resolution image, a pyramid of tiles with a constant size
and a pyramid of tiled maps.

A regular pyramid of images [1] is a sequence (I,...,I") of images with expo-
nentially increasing resolutions such that the reduction factor r encoding the ratio
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between the size of two successive images remains constant along the pyramid. Each
pixel in an image I* is related to a connected set of pixels in I¥*! called its reduction
window and encoded as a M x N window. The value of a pixel in I* is deduced from
the values of pixels within its reduction window using a reduction function. Different
types of pyramids may be distinguished according to the ratio @ = M x N/r: holed
pyramids (@ < 1), non overlapping pyramids without holes (@ = 1) and overlapping
pyramids (@ > 1).

Such a pyramid may be implicitly associated to a stack of matrices of inter pixel
elements, also defining a regular pyramid with a same reduction factor. The notion
of reduction window on such a pyramid may be adapted as follows: the reduction
window of a pointel p (or RW(p)) at level k (0 < k < 1) is an M’ x N’ window
defined at level k + 1 and corresponding to the set of pointels encoded by p at level
k. A hierarchical relationship is thus induced between pointels, each pointel being
the father of the pointels within its reduction window. Different types of pyramids
of pointels may be distinguished according to the ratio M’ x N’/r (Fig. 3). In
the following, we use non overlapping pyramids without holes both for images and
pointels pyramids.

Let us now consider a given tile’s size and perform a tiling of each image of a
non overlapping image pyramid without holes Z = (I°,...,I"). Each tile defined
in an image I* is expanded into r x r tiles in I**1, where r denote the reduction
factor of Z. Hierarchical relationships established within an image pyramid induce
thus hierarchical relationships between tiles decomposing each image of the pyramid.
This last hierarchy is called a pyramid of tiles (Definition 3).

Definition 3 (Pyramid of tiles). Let I be an image. A pyramid of tiles associated
with I is a couple (Z,T = (T°,...,T")) where Vk, 0 < k < n:

e 7 =(I"...,I") is a non-overlapping pyramid of images without holes associ-
ated with I;

o TF = {t(i,7, k)}(ij)e[o 1 /[ x 0,05 /R is a rectangular tiling of the 1F x hF image
I¥ by a set of I x h tiles t(i, j, k);

o RW(t(i,j,k)) = {t(i', ', k+1) | |i'/r] =1i,|j'/r] = j} is the reduction window
of tile t(i,j,k), where |.| denotes the floor operator.

While both pyramids of images and tiles are regular hierarchical data structures,
our aim is to define an irregular pyramid of tiled maps. A tiled top-down pyra-
mid (Definition 4) is thus a stack of finer and finer partitions, defined at different
resolutions and encoded by tiled topological maps. The hierarchy is represented
by up/down relationships between darts and regions [4]. Moreover, since each map
G**1 of the pyramid is finer than G*, a border defined at a given level of the pyra-
mid cannot be removed at levels below. A tiled top-down pyramid is thus a causal
structure [6]. Consequently, we propose a new definition for tiled top-down pyramids
(Definition 4) where the tiled maps (levels) are based on the tiling of a given pyramid
of tiles.
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(a)

Figure 4: Tiled top-down pyramids: a combination of three hierarchical models for
the representation of large multi-resolution images. (a) Pyramid of images (r = 2).
(b) Pyramid of tiles. (c) Pyramid of tiled maps. Dotted arrows illustrate up/down
relationships between darts and regions. Darts that belong to ro, are not represented.

Definition 4 (Tiled top-down pyramid). Let I be an image. A tiled top-down
pyramid is a triplet (Z,7T,G = (G,...,G™)) where Vk, 0 < k < n:

e (Z,7) is a pyramid of tiles composed of n + 1 levels and associated with I ;
e G* is a tiled map corresponding to the tiling of T*;

o G*1 is defined on (I**1, T*Y) and is deduced from G* by decomposition op-
erations (e.g. splitting of faces of G¥) in order to be finer than G*.

The construction scheme of a tiled top-down pyramid may rely on the notion of
focus of attention which allows to refine only regions of interest identified in the upper
levels of the pyramid. The advantage of such a construction scheme is twofold since
it may reduce memory usage and processing time while imitating experts’ analysis
scheme. Finally, note that within a given application field, only some specified levels
of the pyramid may need to be explicitly encoded.

3 Segmentation scheme

We propose a generic segmentation scheme for large multi-resolution images based
on the tiled top-down pyramid framework. Our segmentation process relies on the
definition of an Oracle that may combine several criteria of different natures to take
advantage of geometrical, topological and hierarchical features. Since this segmen-
tation step is part of the global construction scheme of the tiled top-down pyramid,
it must neither impact the causality of the pyramid nor its refinement by focus of
attention. The process assumes an initial partition G which may be a single region
or which may result from an extraction algorithm [2, 3] at resolution I°. In both
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cases, a partition at level k£ + 1 is deduced from level k by applying the following two
steps procedure:

e a projection step of the regions’ borders of G* onto G**! which preserves the
topology of G¥ and expands the geometry of GF! borders according to the
reduction factor.

e an Oracle-based refinement step, restricted to regions whose father is a region
of interest in the previous level (focus of attention).

Figure 5 illustrates the main steps of our projection procedure. The main issue is
to project the former borders onto the current resolution while preserving the same
topology. Intuitively, the projection of a border b = (py,...,py) in G¥ is a border b’
in G**1 contained within the strip formed by the reduction windows of the pointels
(pi)i=1,m of b. This strip is a connected set since the pyramid of images contains no
holes. Moreover, the pyramid is not overlapping and therefore, two projected borders
cannot intersect, except on their extremities which correspond to the intersection
of several borders. Let us consider a pointel p; in G* which corresponds to an
intersection of borders and its projection P(p;) in GFt1. In order to keep the same
topology in G* and G**!, we define the projection of each linel in G* incident to
p1 as an horizontal or vertical straight line of length ~ in G**! incident to P(p1),
and with the same direction than the initial linel. These straight lines correspond
to a standard linel’s projection which guarantees that P(p;) is the only intersection
point of projected borders within p;’s reduction window. This standard projection
is also performed on p,, and the connection between the two straight lines incident
to P(p1) and P(p2) is achieved using a Dijkstra algorithm within the strip formed
by the reduction windows of pointels (p;)i=2,m—1. Dijkstra algorithm is applied with
an edge weight proportional to the inverse of the gradient computed in 7¥*!, hence
taking into account the additional information provided by I**1.

The refinement step relies on the definition of the Oracle proposed in Algorithm 1:
according to a segmentation criterion (1ine 3), our scheme refines a region if its father
in the previous level is a region of interest (1ine 2) while preserving the causality of
the model (line1).

Algorithm 1: Oracle

Data: Two adjacent pixels p and p’ of a tile t € GF*+1.
Result: true if p and p’ belong to the same region.

7 < region(up(p)); r’ « region(up(p'));

[ < incident linel to p and p/;

1 if [ is a bounding linel then
| return false;

2 if up(r) is not a region of interest in G* then
| return true;

3 return segmentation_criterion(region(p),region(p’));
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Figure 5: Projection of regions borders. (a) Strip composed by the reduction windows
of the pointels that belong to the border of the previous level. (b) Restrictions on
borders extremities. (c) Shortest path according to a given energy.

4 Application for large histological images segmentation

We propose a practical use case? of the top-down framework for the segmentation
of large histological images. Our objective is to demonstrate the generic aspect of
our model with the integration of an existing segmentation scheme. In this appli-
cation, histological images are produced as a stack of three images with increasing
resolutions. Their manual analysis by pathologists are performed using a focus of
attention over regions of interest up to the full resolution image where cells’ mitosis
are enumerated. This estimation is then used for breast cancer diagnosis grading.

Our top-down segmentation algorithm uses the same scheme than [9] with the
additional use of a tiled top-down pyramid (Figure 6). Successive k-means based
classifications [7] allow to label and refine regions of interest. At resolution 1, the
background is separated from tissue. Then, a classification in two classes of tissue at
resolution 2 allows to extract lesions and a last classification distinguishes the cancer
in situ from stroma at resolution 3.

Table 1 presents experimental results for the segmentation of a representative
histological image. Column 2,3 and4 respectively indicate the size of the images,
the number of tiles and the number of regions of their associated partitions. In
Column 5 and 6, we provide runtimes for both pyramid construction scheme (model)
and our segmentation algorithm (segmentation). These results demonstrate that our
model does not introduce an important additional cost while providing an efficient
access to hierarchical, topological and geometrical features. Note that runtimes for

40ur model is implemented in C++ and computations are carried out on an Intel E5300@2GHz
with 2GB RAM.
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(a) (b)

Figure 6: Classification scheme of histological images. (a) Original image. (b) Res-
olution 1: distinction between tissue and background. (c) Resolution 2: distinction
between lesions and tissue. (d) Resolution 3: distinction between cancer in situ and
stroma.

Table 1: Segmentation of an histological image within our top-down framework.

level size number  number runtime (s) ram
(pixels) of tiles  of regions model segmentation (MB)
1 2500 x 2500 16 57435 9.8 35.2 104
2 5000 x 5000 64 132402 43.6 186.6 101
3 10000 x 10000 256 225672 267.8 645.0 106

levels’ extraction are linear with the size of the image but slightly increase with the
number of tiles due to disc access delays. Finally, tiled maps allow to preserve a
constant memory usage around 100MB (Column 7) with a tile size of 625 x 625
pixels.

5 Conclusion

In this paper, we have proposed a new approach to the definition of tiled top-down
pyramids which emphasizes the combination of regular and irregular hierarchical
data structures. We have described a segmentation scheme with a new projection
step which takes into account the additional information provided by each image of
the pyramid. Finally, we have demonstrated the efficiency of our framework with an
application on histological images.

This work opens interesting perspectives such as the definition of topological
criteria that could be combined to the present segmentation process. Those criteria
may enhance results by taking further advantage of our top-down framework. Finally,
a medical evaluation should be performed to confirm the accuracy of the partitions
provided by our method.
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