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Abstract 

Mitochondria fulfill a number of essential cellular functions and play a key role in the 

aging process. Reactive oxygen species (ROS) are predominantly generated in this 

organelle but next to inducing oxidative damage they act as signaling molecules. 

Autophagy is regulated by signaling ROS and is known to affect aging as well as 

neurodegenerative diseases. Many cellular components that influence autophagy are 

linked to longevity such as members of the sirtuin protein family. Recent studies 

further link mitochondrial dynamics to the removal of dysfunctional mitochondria by 

mitophagy, thereby representing a novel mechanism for the quality control of 

mitochondria. Here we summarize the current views on how mitochondrial function is 

linked to aging and we propose that quality control of mitochondria has a crucial role 

in counteracting the aging process.  

 

Keywords: aging, mitochondrial dysfunction, fusion, fission, autophagy, mitophagy, 

sirtuins, longevity, ROS 
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Biological aging is commonly defined as the successive accumulation of adverse 

effects in an organism with increasing age which leads to functional impairment of 

individual cells, tissues, as well as the whole organism, finally resulting in the death of 

the organism. Several theories aiming to explain the rather complex process of aging 

have been put forward in the last decades (Fleming et al., 1992; Masoro, 2000). Here 

we will discuss the prominent role of mitochondria in the aging process. In particular, 

recent findings on the roles of mitochondrial dynamics and selective autophagy of 

mitochondria (mitophagy) in maintaining mitochondrial functionality will be 

highlighted. Mitochondria play central roles in numerous diseases and biological 

processes and their functions go beyond being merely the power plants of cells 

(Schatz, 2007). With increasing lifetime mitochondrial function has been reported to 

be impaired in humans (Rooyackers et al., 1996; Short et al., 2005). Whether 

dysfunctional mitochondria are the cause of cellular impairment or a consequence 

thereof is a matter of intense discussions. Resolving this issue certainly is of great 

importance and some advances in this direction are discussed here.  

 

Reactive oxygen species and their possible implications on aging 

A good example in this regard is the proposed causative role of reactive oxygen 

species (ROS) for inducing mitochondrial dysfunction and at the same time of 

mitochondrial dysfunction leading to increased ROS formation. This vicious cycle is 

the basis of the „free radical theory of aging‟ proposed by Harman (Harman, 1956, 

1972). ROS are often considered to be the major source of cellular damage (Davies, 

1995; Raha and Robinson, 2000; Sohal and Weindruch, 1996). They are 

predominantly generated in mitochondria, lead to oxidative damage (Sesti et al., 

2009), and are proposed to have gross implications on aging (Fleming et al., 1992). 
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ROS can be neutralized by the addition of antioxidants or by the expression of ROS 

scavenging enzymes. In fact, overexpression of catalase, which converts H2O2 to 

H2O and O2, leads to an increased lifespan in mice (Schriner et al., 2005). It is 

unclear which effect is responsible for this observation as higher ROS production is 

not strictly correlated to accelerated aging. Despite their destructive potential ROS 

are essential for cellular functions since they also act as signaling molecules (Veal et 

al., 2007) and by that are involved in a number of pro-survival pathways (Brigelius-

Flohe, 2009); e.g. ROS are important in autophagy (Scherz-Shouval et al., 2007). 

ROS are subdivided into two groups: “signaling ROS” (sROS) and “excessive ROS” 

(eROS). Increased ROS production due to an increased metabolic rate does not 

necessarily lead to increased cellular damage, e.g. rat muscle cells adapt to ROS in 

response to exercise by upregulating ROS scavenging pathways (Gomez-Cabrera et 

al., 2008). Also an increased rate of mitochondrial biogenesis in chronically 

contracting muscle was observed leading to an expansion of the mitochondrial 

reticulum in muscle (Hood, 2001). The benefits of physical activity on health and 

longevity were reported earlier (Warburton et al., 2006) but are not restricted to 

normal levels of physical activity as even individuals with an exceptionally high 

physical activity such as elite endurance and elite mixed-sports athletes with a highly 

aerobic metabolism show increased longevity and lower mortality compared to 

normally active individuals (Teramoto and Bungum, 2009). During aerobic 

metabolism the majority of chemical energy in form of adenosine triphosphate (ATP) 

is obtained via the citric acid cycle and oxidative phosphorylation. In contrast, 

anaerobic metabolism mediates ATP production mainly via glycolysis and lactic acid 

fermentation. Interestingly, during calorie restriction (CR) in yeast the relative 

proportion of ATP generated via the respiratory pathway is increased at the expense 

of fermentation (Lin et al., 2002). As sports associated with aerobic metabolism are 
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beneficial for health and longevity it is tempting to speculate that performing aerobic 

sports, besides other positive effects, results in an overall increased resistance to 

ROS and/or to a net reduction of potentially damaging eROS. Thus, increased 

generation of ROS would not necessarily promote aging as long as compensatory 

mechanisms are present. Possibly, a surplus of natural resistance against ROS, or 

against cellular damage in general, is build up in response to physical exercise. In 

particular, under normal, non-exercising conditions ROS levels would be minimized 

more efficiently compared to cells which have not undergone an adaption by physical 

training. However, the exact contribution of ROS and ROS scavenging pathways on 

longevity after physical training are difficult to assess since also other factors come 

into play; e.g. calorie intake/restriction and increased insulin sensitivity (Fontana et 

al., 2009; Lanza et al., 2008). 

 

Role of insulin sensitivity and calorie restriction in aging 

Insulin sensitivity describes the level of insulin that is necessary to keep a constant 

blood glucose level maintained by insulin-susceptible cells. Lower insulin sensitivity 

has been associated with accelerated aging (DeFronzo, 1981). In contrast, higher 

insulin sensitivity has been reported after calorie restriction (CR) and extensive 

endurance training (Barzilai et al., 1998; Dhahbi et al., 2001) which are both 

associated with extended longevity (Barger et al., 2003; Teramoto and Bungum, 

2009). However, as insulin and insulin-like peptides show contrary effects on 

longevity (Cohen and Dillin, 2008) it is unclear how longevity and a high insulin-

sensitivity are mechanistically linked.  
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Calorie restriction (CR) is clearly associated with delayed aging in a number of 

organisms from yeast to mice (Barger et al., 2003). Some physiological parameters 

commonly associated with CR in mammals are reduced fat mass, reduced blood 

glucose levels, reduced insulin levels, improved glucose tolerance, decreased blood 

pressure, and reduced fat and cholesterol levels. In general, CR increases the 

amount of ATP generated via respiration, stimulates mitochondrial biogenesis, and 

leads to reduced levels of ROS (Nisoli et al. 2005; Guarente 2008). Still, the 

underlying mechanisms of CR on aging are controversially debated (Morley et al., 

2009). CR does not promote longevity in all species and is not proven so far to do so 

in humans (Shanley and Kirkwood, 2006). Studies with monkeys often lacked 

sufficient number of individuals and the amount of food intake might have been 

inappropriate as the amount of calories fed to the CR group were comparable to the 

amount available in the wild; thus, not representing a true CR (Banks et al., 2003; 

Morley et al., 2009). Several studies confirmed the crucial role of sirtuins, NAD+-

dependent deacetylases, in the CR-dependent deceleration of aging. Also the extent 

or way of CR appears to be crucial as e.g. when using a moderate protocol of CR the 

yeast sirtuin Sir2 was reported to be required for the CR-dependent increase of the 

number of cell divisions a mother cell can undergo (termed replicative lifespan) in 

yeast (Kaeberlein et al., 1999). However, this dependency on Sir2 was not observed 

using a more strict protocol applying a higher degree of CR (Kaeberlein et al., 2005).  

 

The sirtuins – a protein family linked to longevity 

The sirtuin protein family in mammals consists of seven members, SIRT1 to SIRT7. 

Sirtuins are linked to histone deacetylation and chromatin remodeling (Imai et al., 

2000; Denu, 2003). Human longevity has been associated with mutations in the 
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enhancer-regions of the SIRT3 gene (Bellizzi et al., 2005). Upon cellular stress 

SIRT3 was reported to be processed in the nucleus and subsequently translocated 

into mitochondria (Scher et al., 2007). It was shown to deacetylate acetyl-CoA 

synthetase 2 within the mitochondrial matrix (Hallows et al., 2006; Schwer et al., 

2006) thereby activating this metabolic enzyme. SIRT1 suppresses stress-induced 

apoptosis which was proposed to explain the observed link to longevity (Brunet et al., 

2004; Langley et al., 2002; Luo et al., 2001; Vaziri et al., 2001). SIRT1 was 

suggested to be involved in the lifespan-extending mechanism exerted by CR (Cohen 

et al., 2004) as well as by extensive endurance training (Lanza et al., 2008). While 

the amount of ROS production in both cases is apparently unequal, in both situations 

a high level of mitochondrial NAD+ is present. In the case of CR high mitochondrial 

NAD+ levels and the presence of mitochondrial SIRT3 and SIRT4 have been 

suggested to lead to improved cell survival (Yang et al., 2007; Guarente 2008). This 

points to a putative role of sirtuins as regulatory proteins that are, being NAD+-

dependent deacetylases, regulated by altered NAD+/NADH ratios and thus respond 

to an altered metabolic state of the cell. However, the molecular mechanisms that 

would explain the role of sirtuins, in particular of mitochondrial sirtuins, in the aging 

process are still open. One future challenge will be the identification and 

characterization of other relevant substrates and how they are regulated by sirtuins. 

One interesting aspect of SIRT1 is its role in autophagy. Lack of SIRT1 inhibits 

autophagy in vivo and this protein physically interacts with several components of the 

autophagy machinery (Lee et al., 2008). Recently SIRT1 induced autophagy was 

suggested to be required for the lifespan-prolonging effect of CR (Morselli et al., 

2010). This prompted us to discuss in more detail what is known about the role of 

autophagy in determining longevity?  
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Autophagy and aging 

Autophagy is a process where intracellular components such as damaged or 

superfluous organelles or aggregated proteins are engulfed by autophagosomes and 

degraded within lysosomes (Xie and Klionsky, 2007). A recent study linked 

autophagy to longevity as age-related impairment of autophagy in skeletal muscle of 

rats that lived under mild CR was slowed down (Wohlgemuth et al., 2009). Another 

study reported that autophagy induced by spermidine increases lifespan in various 

organisms (Eisenberg et al., 2009). Autophagy therefore seems to have positive 

effects on longevity. Conversely, decreased autophagy shows an opposite effect as 

drosophila mutants with a decreased capacity to perform autophagy have been 

shown to be short-lived and hyper-sensitive to metabolic stress exhibiting a 

neurodegenerative phenotype (Juhasz et al., 2007). Mice tend to develop 

neurodegenerative diseases when autophagy is suppressed or lost (Hara et al., 

2006; Komatsu et al., 2006). Furthermore mice treated with rapamycin, a known 

inductor of  autophagy (Diaz-Troya et al., 2008), have an increased lifespan (Harrison 

et al., 2009). Moreover, autophagy was shown to decrease with increasing life time 

(Cuervo et al., 2005). In summary, several lines of evidence place autophagy as a 

central regulatory mechanism in the aging process (Vellai et al., 2009). 

As discussed above, SIRT1 affects autophagy as well as aging. Interestingly, the 

tumor-suppressor protein p53, also known as the “guardian of the genome” (Efeyan 

and Serrano, 2007) appears to be regulated by SIRT1 (Langley et al., 2002). The 

main biological role of p53 is tumor-suppression by cell cycle arrest and apoptosis, 

approximately 70% of all human cancers are linked to malfunction of p53 (Finlan and 

Hupp, 2007). Mice lacking p53 develop normally, but have a highly increased rate of 

tumorigenesis (Donehower et al., 1992). Besides its function as a tumor suppressor 
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protein p53 has been reported to be involved in the regulation of autophagy (Crighton 

et al., 2006; Tasdemir et al., 2008). Tasdemir et al. (2008) showed that cytoplasmic 

p53 inhibits autophagy in a transcription-independent manner. Thus, depletion of p53 

might lead to an increased autophagy resulting in a lifespan extension. Indeed, in C. 

elegans loss of the p53 orthologue cep-1 leads to an increased lifespan 

(Tavernarakis et al., 2008). But even when the loss of p53 in humans would have 

similar effects on the lifespan by increasing autophagy, the positive effects on 

lifespan would presumably be overwhelmed by the negative effects in humans. Due 

to a significantly increased tumorigenesis rather a dramatically shortened lifespan 

would be observed. However increased autophagy could represent an anti-aging, or 

survival, mechanism for tumor cells as they often lack functional p53.  

 

Novel implications of P63 on aging  

The p53-protein family consists of three members: p53, p63 and p73, which share 

structural and to some extent functional similarity (Levrero et al., 2000; Yang et al., 

2002). P73 was reported to be involved in autophagy (Crighton et al., 2007; 

Rosenbluth and Pietenpol, 2009) whereas for p63 such a link was not clearly 

established so far. However, p63 was shown to play a role in aging as a conditional 

knockout of all p63 isoforms induced cellular senescence (Keyes et al., 2005). 

Furthermore, a p63-isoform lacking of the N-terminal transactivation domain, 

Np63, was linked to aging (Sommer et al., 2006). Overexpression of Np63 in 

basal skin cells led to a premature aging phenotype together with a significantly 

shortened lifespan in mice. Interestingly, senescence in lung epithelial cells caused 

by overexpression of Np63 was rescued by SIRT1 demonstrating that SIRT1 is 

involved in Np63-mediated premature aging. The molecular function of p63 has 



ACCEPTED MANUSCRIPT 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

not been clarified yet but it will certainly be interesting to reveal its role in autophagy 

and the aging process.  

 

Mitophagy and its role in mitochondrial quality control 

The selective removal of cellular components including organelles and misfolded 

protein aggregates occurs via selective, i.e. cargo-specific, autophagy (Xie and 

Klionsky, 2007). In the case of mitochondria this process is termed mitophagy but the 

molecular mechanisms for cargo recognition and transport into autophagolysosomes 

are only known to a limited extent. In particular, how dysfunctional mitochondria are 

distinguished from functional ones on a molecular level is not understood. Mitophagy 

was reported to be increased in mammalian and yeast cells harbouring dysfunctional 

mitochondria (Kim et al., 2007; Lemasters, 2005; Nowikovsky et al., 2007; Priault et 

al., 2005). It is also induced by nutrient starvation and depends on the general 

autophagy machinery. In yeast, Uth1, a mitochondrial outer membrane protein, as 

well as Aup1, a mitochondrial phosphatase, were reported to be essential for 

mitophagy (Kanki and Klionsky, 2008; Kissova et al., 2004; Tal et al., 2007). 

Recently, systematic screens for components involved in this process revealed 

several additional components required for this organelle-specific type of autophagy 

including Atg11, Atg20, Atg24, Atg32, Atg33 (Kanki and Klionsky, 2008, 2009; Kanki 

et al., 2009; Okamoto et al., 2009). Atg32 is of particular interest as it was reported to 

act as a mitophagy receptor. It is anchored to the outer membrane of mitochondria 

and is involved in the local recruitment of ATG8, a component essential for 

autophagosome formation. In mammalian cells, the following components have been 

reported to be involved in the degradation of mitochondria: NIX (Sandoval et al., 

2008; Schweers et al., 2007), BNIP3 (Zhang et al., 2008), PARKIN (Narendra et al., 



ACCEPTED MANUSCRIPT 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

2008) and PINK1 (Dagda et al., 2009; Geisler et al., 2010; Narendra et al., 2010). 

NIX and BNIP3 are BH3 proteins required for mitochondrial clearance during 

erythrocyte formation and under hypoxia, respectively. PARKIN, an E3-like ubiquitin-

ligase, and PINK1, a mitochondrial kinase, are associated with Parkinson‟s disease. 

NIX was recently identified as mitophagy receptor in mammalian cells (Novak et al. 

2010). The roles of PINK1, PARKIN, and mitochondrial dynamics in mitophagy are 

discussed below. In summary, the first components involved in this fundamental 

process have been identified but the molecular mechanisms of how either of these 

proteins mediates mitochondrial degradation and how these processes are linked to 

aging is still open.  

A recent study linked the mitochondrial protein Cisd2 to autophagy and aging. Cisd2 

is a member of the gene family containing the CDGSH iron sulfur domain; its cellular 

function is unclear. Cisd2 knockout mice show phenotypes of premature aging which 

appears to be a consequence of mitochondrial dysfunction accompanied by 

increased mitophagy and „autophagic cell death‟ (Chen et al., 2009). It is still under 

debate whether so called „autophagic cell death‟ is merely accompanied or actually 

executed by autophagy (Kroemer and Levine, 2008). Here, the authors at least 

showed that cell death in Cisd2-/- cells is not caused by activation of apoptosis or 

starvation and that there was no significant difference in ROS production compared 

to Cisd2+/+ cells. Furthermore, murine cells lacking the essential autophagy 

component Atg5 show accumulation of damaged mitochondria and altered 

mitochondrial morphology (Twig et al., 2008). Thus, on the one hand mitochondria 

have to remain functional as otherwise cell death, possibly by autophagic pathways, 

is induced. But on the other hand, autophagy has to remain functional in order to 

prevent accumulation of cellular debris and dysfunctional mitochondria which also 

impairs cell survival. Accumulation of dysfunctional mitochondria and an impaired 
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removal thereof is very likely to result in decreased cell viability and in the long run 

senescence. Thus, quality control of mitochondria is of majorimportance occuring at 

different levels. Mitophagy acts at an intracellular level as entire organelles are 

degraded. In addition, mitochondrial chaperones and proteases prevent the 

accumulation of misfolded and aggregated proteins within mitochondria. In particular, 

three classes of ATP-dependent proteases located in mitochondria are important for 

the quality control of mitochondrial proteins: the AAA-proteases (ATPase associated 

with a number of cellular activities), the Lon and the Clp proteases (Koppen and 

Langer, 2007). For example, overexpression of the Lon protease in Podospora 

anserina, an established fungal aging model, led to an extended lifespan while not 

impairing respiration, growth or fertility (Luce and Osiewacz, 2009). Impairment of 

mitochondrial proteases leads to neurodegenerative diseases and is linked to aging 

as well (for review see Germain, 2008; Tatsuta and Langer, 2008). In summary, 

several lines of evidence suggest that quality of mitochondria is a crucial process in 

maintaining cellular homeostasis, ensuring longevity, and preventing the occurrence 

of neurodegenerative disorders.  

 

 

Mitochondrial dynamics allows distinguishing functional from dysfunctional 

mitochondria 

How are dysfunctional mitochondria recognized and distinguished from functional 

mitochondria? A hint to answer this question came from recent studies deciphering 

the molecular mechanisms that link mitochondrial dynamics to the functionality of 

mitochondria in yeast and mammalian cells. Mitochondrial morphology is highly 
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variable and is known to be altered in many pathological situations. Normally 

mitochondria form a large network of interconnected tubules which is maintained by a 

balance of fission and fusion events of mitochondria (Bereiter-Hahn and Voth, 1994; 

Nunnari et al., 1997). Initially, mitochondrial fission was reported to be a prerequisite 

for mitochondrially mediated apoptosis (Frank et al., 2001; Karbowski et al., 2002; 

Lee et al., 2004). Moreover, Bax and Bak, two proapoptotic proteins of the Bcl-2 

family, were reported to promote mitochondrial fission (Autret and Martin, 2009). In 

contrast, apoptosis was apparently not blocked in a tissue-specific knock-out mouse 

lacking the fission factor DRP1, dynamin-related GTPase 1 (Ishihara et al., 2009). 

Also another study reported that apoptosis was not efficiently inhibited upon 

downregulation of the mitochondrial fission machinery (Parone et al., 2006). Thus, 

the strict requirement for mitochondrial fission in apoptosis is a matter of debate and 

awaits further clarification (Suen et al., 2008). 

Very little is known on the effect of mitochondrial dynamics on aging. However, a 

considerable lifespan prolonging effect was reported upon deletion of the homolog of 

DRP1, Dnm1, in Saccharomyces cerevisiae and in Podospora anserina, an 

established aging model organism (Scheckhuber et al., 2007). It is important to note 

that in the reported study longevity was not accompanied by impaired fitness of P. 

anserina and thus can be regarded as an example of healthy aging. In addition, 

fragmentation of mitochondria was observed to occur progressively with age in 

Podospora anserina which was inhibited by deletion of Dnm1 (Scheckhuber et al., 

2007). The lifespan extension (244 days for the Dnm1 deletion mutant versus 22 

days for wild type strain of Podospora anserina) was proposed to be caused by an 

increased resistance to apoptosis which could be linked to the impairment of 

mitochondrial fission. Even though the connection between fission and apoptosis 

needs to be elucidated further this study strongly points to a link between 
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mitochondrial dynamics, apoptosis, and aging. A comparable positive effect of 

impaired fission on lifespan does not appear to occur in mammals as deletion of 

DRP1 has been shown to abolish embryonic development and synapse formation in 

mice (Ishihara et al., 2009; Wakabayashi et al., 2009). In general, alterations in 

mitochondrial dynamics were so far rather linked to various disorders in humans; e.g. 

three human neuropathies have been associated with mutations in genes encoding 

proteins that are required for fission or fusion of mitochondria. The corresponding 

genes encoding GDAP1, Mitofusin2, and OPA1 are affected in Charcot-Marie-Tooth 

neuropathy type 4a, type 2a, and autosomal dominant optic atrophy type I, 

respectively (Alexander et al., 2000; Delettre et al., 2000; Niemann et al., 2005; 

Zuchner et al., 2004). LETM1 is deleted in patients suffering from Wolf-Hirschhorn 

syndrome, and its yeast orthologue, Mdm38, was shown to be essential for wild type 

mitochondrial morphology (Dimmer et al., 2002), mitochondrial ion homeostasis 

(Jiang et al., 2009; Nowikovsky et al., 2004), and import/assembly of OXPHOS 

complexes (Frazier et al., 2006). Moreover, deletion of Mdm38 was accompanied 

with increased mitophagy (Nowikovsky et al., 2007). Interestingly, the Cisd2 gene 

discussed above is mutated in a second type of Wolf-Hirschhorn syndrome, namely 

WHS2 (Amr et al., 2007). We recently showed that after dissipation of the 

mitochondrial membrane potential as well as in several in vivo model systems of 

mitochondrial dysfunction proteolytic processing of the fusion factor OPA1 is induced 

and that this is a key step in inducing fragmentation of dysfunctional mitochondria 

(Duvezin-Caubet et al., 2006). This is in line with other studies showing that 

dissipation of the mitochondrial membrane potential and inducing apoptosis also led 

to proteolytic processing of OPA1 (Ishihara et al., 2006; Olichon et al., 2007). OPA1 

processing and mitochondrial fragmentation was observed in mouse embryonic 

fibroblasts derived from a knock-in mouse expressing an error-prone mitochondrial 
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DNA Polymerase  (Trifunovic et al., 2004), the so-called „mutator mouse‟ (Duvezin-

Caubet et al., 2006). Several proteases responsible for OPA1 processing were 

proposed: the mitochondrial rhomboid protease PARL (Cipolat et al., 2006; Pellegrini 

and Scorrano, 2007), the i-AAA protease Yme1L (Griparic et al., 2007; Song et al., 

2007), and the m-AAA protease (Duvezin-Caubet et al., 2007; Ishihara et al., 2006). 

Depletion of prohibitin, a mitochondrial protein complex known to regulate protein 

degradation by m-AAA proteases (Steglich et al., 1999), leads to a severe growth 

defect and altered mitochondrial cristae morphology (Merkwirth et al., 2008). 

Interestingly, these phenotypes are rescued by a non-cleaved large OPA1 isoform 

further supporting a role of the m-AAA protease in OPA1 processing. Until recently it 

was unclear which protease is responsible for the stress-induced processing of OPA1 

as opposed to OPA1 processing during biogenesis. Two recent studies provide 

evidence that the ATP-independent protease OMA1 is involved in stress-induced 

processing of OPA1 (Ehses et al., 2009; Head et al., 2009). This is of particular 

importance since OPA1 cleavage is a key process linking mitochondrial morphology 

to the functionality of mitochondria (Duvezin-Caubet et al., 2006) which explains how 

distinguishing functional from dysfunctional mitochondria occurs mechanistically. We 

hypothesized earlier that a spatial separation of dysfunctional mitochondria could act 

as a mechanism to prevent further damage, exerted e.g. by continued production of 

ROS, and could represent a prerequisite for removal of damaged mitochondria from 

the cell (Duvezin-Caubet et al., 2006; Herlan et al., 2004). The role of mitochondrial 

degradation in ensuring functional mitochondria was discussed also by others 

(Kirkwood, 2000; Skulachev et al., 2004) but the molecular mechanisms linking the 

functionality of mitochondria with their morphology were only determined recently 

(Duvezin-Caubet et al., 2006; Herlan et al., 2004; Ishihara et al., 2006). For further 

details we refer to another review of our group (Schäfer and Reichert, 2009).  
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A recent report showed that fission of mitochondria under normal growth conditions 

results in the generation of depolarized mitochondria promoting the engulfment of 

mitochondria by autophagosomes (Twig et al., 2008). Further, expression of a 

dominant-negative variant of the fission factor DRP1 as well as overexpression of the 

fusion factor OPA1 led to an impairment of mitophagy. This shows that mitochondrial 

fission is required for efficient mitophagy in mammalian cells. Moreover, mitochondria 

with a low membrane potential are more readily degraded than mitochondria with a 

high membrane potential. It is still open whether removal of dysfunctional 

mitochondria as observed under several pathological conditions or after oxidative 

stress is mechanistically equivalent to mitophagy under normal growth conditions or 

after starvation. 

 

Neurodegenerative diseases and their connection to mitochondrial dynamics 

A number of studies confirm the pivotal role of mitochondrial dynamics in 

neurodegenerative diseases such as Parkinson‟s and Alzheimer‟s disease. This may 

not be surprising as the factors determining neurodegenerative diseases strongly 

overlap with those implicated in aging and both processes often correlate with each 

other. Two genes associated with Parkinson‟s disease, PINK1 and PARKIN, play a 

not yet fully understood role in mitochondrial fusion/fission processes (Deng et al., 

2008; Exner et al., 2007; Poole et al., 2008; Yang et al., 2008; Gispert et al., 2009; 

Lutz et al., 2009). Interestingly, cumulating evidence show that PARKIN and PINK1 

promote the removal of mitochondria by autophagy further supporting the idea that 

mitochondrial dynamics and mitophagy are linked processes and that this link may be 

crucial in Parkinson‟s disease (Cherra et al., 2009; Michiorri et al., 2010; Narendra et 

al., 2008, 2010). It is interesting to note that overexpression of PARKIN does promote 
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mitophagy only when in addition the membrane potential is dissipated suggesting 

that additional events triggered by mitochondrial dysfunction are required for 

mitophagy. Loss of PINK1 or PARKIN induces DRP1-dependent mitochondrial 

fragmentation (Exner et al., 2007; Lutz et al., 2009). It could well be that in this 

situation mitochondrial morphology is indirectly affected as presumably damaged 

mitochondria accumulate in the absence of PINK1 and PARKIN.  

The fission factor DRP1 is required for embryonic development in mice (Ishihara et 

al., 2009; Wakabayashi et al., 2009) and also appears to be involved in Alzheimer‟s 

disease (Wang et al., 2009). Increased levels of Aβ, a neurotoxic fragment derived 

from the amyloid precursor protein APP found in Alzheimer disease patients, led to 

S-nitrosylation of DRP1 which in turn promoted mitochondrial fragmentation (Cho et 

al., 2009). In addition, S-nitrosylated DRP1 was increased in brains from Alzheimer 

disease patients compared to control patients. Downregulation of DRP1 has various 

effects on mitochondria such as disturbed lipid composition, a lowered respiration 

(Benard et al., 2007), and decreased mitochondrial DNA (mtDNA) levels (Parone et 

al., 2008). Also downregulation of OPA1 was reported to impair oxidative 

phosphorylation (Chen et al., 2005) and mutations in OPA1 have been associated 

with increased occurrence of mtDNA deletions in humans (Stewart et al., 2008). In 

summary, from all these reports it becomes clear that mitochondrial dynamics and 

mitophagy are linked and that these processes play an important role also in the 

pathogenesis of neurodegenerative disorders.  

 

The mitochondrial genome and aging 
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In the 1950s a successive accumulation of mutational hits in the genome was 

proposed to explain aging (Szilard, 1959). Later this theory was modified and 

mutations in mtDNA were added to the somatic mutation theory (Ames, 1989; 

Harman, 1972; Linnane et al., 1989). In mtDNA the mutation rate is considerably 

higher than in nuclear DNA. Several reasons for this have been put forward including 

higher ROS levels, reduced DNA repair mechanisms, altered chromatin packaging 

due to the lack of histones, and a high degree and asymmetry of mtDNA replication 

(Neiman and Taylor, 2009; Richter et al., 1988). Therefore, mutational damage 

accumulates more rapidly in mtDNA compared to nuclear DNA leading to 

dysfunctional proteins and defects in the respiratory chain (Cottrell et al., 2001; Fayet 

et al., 2002; Muller-Hocker, 1989). The reorganization of mtDNA during aging was 

first described in Podospora anserina (for detailed review see Osiewacz, 2002; 

Osiewacz & Scheckhuber, 2006) which suggested early that accumulation of mtDNA 

alterations could be a good marker for cellular senescence. Indeed, certain 

pathogenic mtDNA deletions were found in adult but not in fetal human tissue 

(Cortopassi and Arnheim, 1990). Another study also reported the accumulation of 

mtDNA mutations in the brain of older individuals versus younger individuals (Corral-

Debrinski et al., 1992). Similar results were found for monkeys and mice (Khaidakov 

et al., 2003; Schwarze et al., 1995). More recently premature aging phenotypes were 

reported in mice expressing a mitochondrial DNA polymerase  lacking a proof-

reading activity (Kujoth et al., 2005; Trifunovic et al., 2004). In both reports the 

reported lifespan of the „mutator‟ mice was significantly lower compared to the wild 

type. Kujoth et al. (2005) reported that the observed mtDNA mutations do not 

contribute to increased ROS production in mitochondria and suggest that tissue 

dysfunction is rather associated with increased apoptosis. Since these reports have 

been published a debate has been and is still going on about the interpretation of 
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these findings (Khrapko et al., 2006; Khrapko and Vijg, 2007, 2009). One major issue 

debated is the magnitude of mtDNA mutations and deletions and their relative 

contribution to aging in mice; e.g. the level of mtDNA alterations in the mutator mice 

was reported to be several orders of magnitude higher when compared to aged wild 

type mice (Vermulst et al., 2007). The authors of the latter study suggested that 

neither mutations nor deletions in mtDNA do limit the lifespan of mice. However, high 

enough mutation levels seem to be sufficient to induce a premature aging phenotype. 

This certainly does not exclude that other mechanisms are eventually equally 

important. One other important mechanism may indeed be reduction of mitophagy 

with age. Such a scenario is well possible as autophagic flux was shown to be 

reduced with age in mice (Morimoto et al., 2007). 

 

Conclusions on the link between aging and mitochondrial quality control 

Several possible causes of aging associated with mitochondria have been 

addressed. Due to the fact that many processes are interconnected, it is crucial to 

distinguish cause and effect under these circumstances. ROS might lead to damaged 

DNA or proteins and this might lead to accumulation of dysfunctional mitochondria 

thus increasing autophagy. Each described process seems to have its essential 

components but those are often also involved in other important biological processes 

like in the case of p53 or SIRT1. One feature connecting the different pathways is 

energy. And as energy is one of the things mitochondria are clearly connected to, it is 

not really surprising that mitochondria are important for aging. Also the Sir2-family 

members are linked to the energy metabolism of the cell as they depend on the 

cellular NAD+/NADH ratio. Recent studies allow us now to propose an extended view 

on the role of mitochondria and aging. When mitochondria are functional, fusion and 



ACCEPTED MANUSCRIPT 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

fission of mitochondria occur in a constant and balanced manner. As soon as 

individual parts of the mitochondrial network become dysfunctional (e.g. by oxidative 

damage), damaged mitochondria become spatially isolated and re-fusion with the 

intact network is blocked (Fig. 1). Thus, dysfunctional mitochondria are distinguished 

on a morphological basis from the rest. Spatial separation as well as possibly 

selective degradation of dysfunctional mitochondria helps to minimize accumulation 

of cellular debris and subsequent damage. This type of intracellular quality control 

mechanism is of particular importance for post-mitotic tissues such as neurons and 

muscle cells. Still future studies will have to investigate whether impaired quality 

control of mitochondria indeed limits lifespan in eukaryotes. 
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Figure legends 

Figure 1 A: Mitochondrial dynamics and removal of dysfunctional mitochondria in 

non-aged cells. Functional mitochondria can undergo fusion and fission cycles (green 

pathway) while dysfunctional mitochondria, i.e. damaged by excessive ROS (eROS), 

are not able to fuse anymore (red crossed arrow). This leads to a spacial separation 

and degradation of damaged mitochondria by mitophagy (red pathway). A selection 

of important factors for individual steps are indicated: OPA1, Mitofusin1/2, DRP1, 

signalling ROS (sROS), SIRT1, PINK1, PARKIN, NIX and BNIP3. 

B: Impaired quality control of mitochondria as hypothesized to occur in an aged cell. 

Inhibition or block of the pathway depicted in panel A can occur at different steps; 

e.g. by impaired fission, impaired autophagosome formation surrounding damaged 

mitochondria, or by impaired degradation in lysosomes. Block of any of these steps 

(black crossed arrows) would lead to the progressive accumulation of dysfunctional 

mitochondrial and finally in senescence.  
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