N
N

N

HAL

open science

An Identification Method for PLC-based Automated
Discrete Event Systems

Ana Paula Estrada-Vargas, E. Lopez-Mellado, Jean-Jacques Lesage

» To cite this version:

Ana Paula Estrada-Vargas, E. Lopez-Mellado, Jean-Jacques Lesage. An Identification Method for

PLC-based Automated Discrete Event Systems. 49th IEEE Conference on Decision and Control

(CDC’10), Dec 2010, Atlanta, Georgia, United States. pp. 6740-6746. hal-00596551

HAL Id: hal-00596551
https://hal.science/hal-00596551

Submitted on 27 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00596551
https://hal.archives-ouvertes.fr

An Identification Method for PLC-based Automated Discrete Event
Systems

Ana Paula Estrada-Vargas, Ernesto Lépez-Mellado, Jean-Jacques Lesage, Members IEEE

Abstract— This paper deals with identification of automated
Discrete Event Systems (DES). A method for processing
sequences of input/output signals from PLC-based controlled
DES is proposed; it yields an interpreted Petri net model
describing the closed-loop behavior of the automated DES. This
new method extends a previously presented approach by taking
into account the technological characteristics of industrial
controllers and the data collection requirements. Based on
polynomial-time algorithms, the method is implemented as an
efficient software tool; its use is illustrated through a case study
dealing with an automated manufacturing system.

Keywords— Automated DES, Identification, Interpreted Petri
Nets, Programmable Logic Controllers

L INTRODUCTION

In recent years, the scientific community has proposed
identification approaches (based on Petri net or automata)
for obtaining approximated models of DES whose behavior
is unknown or ill-known. In the context of automated DES,
identification methods can be complementary to established
modeling techniques; identification builds a closed-loop
controller-plant model, which is generally obtained by a
synchronous composition operation. Three main approaches
for identifying DES have been proposed in literature [1].

The incremental synthesis approach, proposed in [2][3]
deals with unknown partially measurable concurrent DES
exhibiting cyclic behavior. Several algorithms have been
proposed allowing the on-line building of interpreted Petri
net (PN) models from the DES outputs. Although the
techniques are efficient, the obtained models may represent
more sequences than those observed.

In [4] a method to build a free labeled PN from a finite
set of transitions strings is presented. This method is based
on the resolution of an Integer Linear Programming (ILP)
problem; the obtained PN generates exactly the observed
language. This approach has been extended to other IPN
classes [5], [6], [7]; however, issues regarding applications
to actual DES have not yet been addressed in these works.

Another recent off-line method [8] allows building a
non deterministic finite automaton (FA) from a set of
input/output sequences, experimentally measured from the
DES to be identified. Under several hypotheses, the
constructed FA generates exactly the same input/output (I/0)

E. Lépez-Mellado is with CINVESTAV Unidad Guadalajara. Av.
Cientifica 1145, Col. El Bajio 45015 Zapopan, Mexico. Email:
elopez@gdl.cinvestav.mx. J-J. Lesage is with LURPA Ecole Normale
Supérieure de Cachan. 61, av du Président Wilson, 94235 Cachan Cedex,
France. Email: Jean-Jacques.lesage @lurpa.ens-cachan.fr A.P. Estrada-
Vargas is with both Institutes. Email: aestrada @ gdl.cinvestav.mx

sequences of given length than observed ones. The method
was conceived for fault detection in a model-based approach
[9]. Extensions to this work propose an identification
method performing optimal partitioning of concurrent
subsystems for distributed fault detection purposes [10].

In a previous paper we proposed a method for
synthesizing interpreted PN (IPN) for coping with
concurrent partially observable DES [11]; it processes a set
of cyclic sequences of binary output signals yielding models
including silent transitions and non labeled places.

In this paper that method has been extended for dealing
with sequences of I/O signals captured during the closed-
loop operation of PLC-based controlled DES. Several
technological characteristics of industrial controllers are
taken into account in data collection and processing. The
obtained model is a safe (1-bounded) IPN describing the
controller-plant concurrent behavior, including those that are
not measurable directly from the PLC.

The paper is organized as follows. In section II the
background on Petri nets and languages is outlined. Based
on these definitions the problem of DES identification is
stated in section III in terms of language associated to an
IPN. Several constraints inherent of real controlled DES are
analyzed in section IV. The identification algorithm is given
in section V. Finally, a case study is included in section VI.

II. BASICS ON PETRINETS AND LANGUAGES

This section presents the basic concepts and notation of
PN and IPN used in this paper.

Definition 1: An ordinary Petri Net structure G is a
bipartite digraph represented by the 4-tuple G = (P,T,I,O0)
where: P = {p;,ps...pip} and T = {t,1,,...,ti} are finite sets
of vertices named places and transitions respectively;
I(0): PxT —{0, 1} is a function representing the arcs
going from places to transitions (from transitions to places).

The symbol % (") denotes the set of all places p; such
that I(p;t) #0 (O(p,t)# 0). Such places are called input
(output) places of #. Analogously, p; (p;") denotes the set of
input (output) transitions of p;.

The incidence matrix of G is € = C* —C~, where
€™ =cijlscij =1 t); and C* = [cf]; ¢ff = O(py, ;) are
the pre-incidence and post-incidence matrices respectively.

A marking function M : P—Z* represents the number of

tokens residing inside each place; it is usually expressed as
an |Pl-entry vector. Z*is the set of nonnegative integers.

Definition 2: A Petri Net system or Petri Net (PN) is the
pair N=(G,M,), where G is a PN structure and M, is an
initial marking.

In a PN system, a transition f; is enabled at marking M, if
Vp; € P, M(p;) = I(p;1); an enabled transition #; can be fired
reaching a new marking M,,,; which can be computed as
M, = M + Cv, where v (i) =0, i#, v(j) = 1, this equation
is called the PN state equation. The reachability set of a PN is
the set of all possible reachable marking from M, firing only
enabled transitions; this set is denoted by R(G,M,). A PN is
called safe if VM, € R(G, M,),Vp; € P,M(p;) < 1.

Now it is defined IPN, an extension to PN that allows
associating input and output signals to PN models.

Definition 3 : An IPN (Q, M,) is a net structure
0 = (G,L,®,\, @) with an initial marking M,.

e G is a PN structure, ¥ ={ay, 0Oy ..., O} is the input
alphabet, and ® = { ¢, @,,..., ¢,} is the output alphabet.

e)A:T—Xuf{e} is a labeling function of transitions, where
€ represents a system internal event externally
uncontrollable; it is not allowed that the symbol € is
associated to more than one 7, € p;".

* @:R(QMp—(z*")" is an output function, that associates
to each marking in R(Q,M,) a g-entry output vector;
q=I®l is the number of outputs. @ is represented by a
qx Pl matrix, such that if the output symbol ¢, is present
(turned on) every time that M(p;)>1, then ¢ (ij)=1,
otherwise ¢(i,j) = 0.

When an enabled transition ¢ is fired in a marking M,
then a new marking M,,; is reached. This behavior is

represented as M, U M, > the state equation is

completed with the marking projection y, = ¢ M;, where y, €
(2")"is the k-th output vector of the IPN.

According to functions A and ¢, transitions and places of
an IPN (Q,M,) can be classified as follows.

Definition 4: 1f M(t;) # € the transition #; is said to be
controllable (#; can be fired when the associated input
symbol is presented). Otherwise it is uncontrollable (# is
autonomously fired). A place p,e P is said to be measurable
if the i-th column vector of ¢ is not null, i.e. ¢(e,i) #0.
Otherwise it is non-measurable. P = P" U P" where P" is the
set of measurable places and P is the set of non-measurable
places.

Definition 5: The [-length I/0 language of an IPN (Q,M)
is defined as:
Altiv1) Ativ2) Altiv1) tiva
EN(Q Mo) = {[(p(MH,l)] ' Lp(Mm) e [w(Mm)] M = Miss

Livo tigl

— Miyp . Miyyog — My ; My € R(Q,M);1=0,1,.. 3.

III. IDENTIFICATON PROBLEM STATEMENT

Consider the following language definitions used in the
statement and solution of the identification problem.

Definition 6: The set of observed input/output (1/0)
words of a DES S with m inputs and n outputs is I'(S) =

_ L] [LE2) Li(wil)
{fw;,w,, ...}, such that w; = ([Oi(l)]'[Oi(Z) e [Oi(lwiD]) ,

where [% is the j-th observed input/output vector of size
m+n in sequence w; and |w;| is the length of the I/O word
w;.

Definition 7: The observed k-length 1/0 language of a
DES § is defined as £¥(S) = {(w;G + Dw; (G + 2) .w;(j +
Dlw; €T(S),j +1 < |wiland | < k}.

Now the identification problem can be defined as
follows: given a set of observed I/O words I'(S) generated by
a real DES during its operation, the aim of the proposed
method is to construct a safe IPN model (Q, M) such that
£7(Q, My) = L*(S); such a language approximates the actual
behavior of the DES.

In our approach, L*(S) is computed for inferring the
states of the system according to the parameter x, which is
used to adjust the accuracy of the identified IPN, similarly as
proposed in [8].

IV. IDENTIFYING REAL AUTOMATED DES

The systems considered in this work are closed loop
controlled DES (Figure 1); they consist of a plant and its
industrial controller (in many cases a Programmable Logic
Controller: PLC). The behavior of such systems (i.e. the
PLC-plant compound system behavior) can be observed by
collecting the signals exchanged between controller and
plant.

i Controller —> Plant L
O0) 10(j)
S) —

Figure 1. Closed loop controller-plant DES

Several phenomena, due to the interaction between plant
and controller, increase the complexity of the identification
process; however they must be taken into account when real
controlled DES have to be identified:
¢ An input evolution (signal emitted by the plant through a

sensor) does not always provoke an output evolution

(signal emitted by the PLC to an actuator). In practice,

few of input changes provoke output evolutions;

e Non simultaneous I/O events are often simultaneously
observed;

e When output changes are provoked by input changes, this
causal relationship is not necessarily captured
simultaneously;

Now, we are going to explain these phenomena.

A. PLC treatment cycle

A PLC cyclically performs three main steps: “input
reading” (I) where it reads the signals from the sensors,
“program execution” (PEX) to determine the new outputs
values for the actuators, and “output writing” (O) where the
newly determined commands are sent to the plant actuators.

Input Reading

i

Program execution

data

link

Output Writing (UDP)

Figure 2. PLC cycle and data collection

Identification data base /

End of I/0 calculus Identification algorithm

At the end of the PEX phase the current values of inputs
and outputs (I/O) are sent from the PLC to a computer and
stored for a later treatment by the identification algorithm.

B. Experimental constraints

In this section, we use SFC only for precisely describe
diverse behaviors. Recall that in the identification problem,
the PLC program is assumed to be unknown.

Due to the PLC cycle, some situations between inputs and
outputs could arise. Consider a situation described in Figure 3
(current active step is #10; a and b are two input signals to
the PLC; A and B are two output signals).

Figure 3. A single input is the condition for state evolution

Changes in the state and outputs will occur when signal b
is active; however other input signals may evolve without
consequence in the outputs. This must be considered in the
identification algorithm.

Consider now the time diagram in Figure 4. Two signals
are asynchronously emitted by sensors of the plant between
two successive “input reading” phases (I) of the PLC cycle.
These two signals will be simultaneously read during the next
I phase and observed as simultaneous events in the
identification data base. In DES theory events cannot occur
simultaneously; so an observed event vector will therefore be
defined as a change of value in an entry of an I/O vector.

1
Input 1 0 [
1
O |

Plant

Input 2

t

[TIfPEX]SIO[1] PEX [SIOI[PEX]SIO[T]]

1
Input 1 0

Sampled

1
Input 2 0

I : Inputs reading
S : I/0 vector sending
O: Outputs writing

PEX: Program execution

Figure 4. Apparent simultaneous evolution of several inputs

Now, let us consider the situation described in Figure 5(a).
As shown in the time diagram in Figure 5(b), if input “b”
changes its value from O to 1, the correspondent change in
“B” is not provoked immediately, since it is necessary first a

change in output “A”. In this case cause and effect cannot be
captured simultaneously but will be detected only if we
observe a sequence of 4 consecutive events.

(®) t

Figure 5. I/O causality and sequences of events

These three scenarios show that the implementation of a
controller and its interaction with the plant introduces
phenomena that must be taken into account by the
identification algorithm.

Some approximations of the causality between inputs and
outputs, allowing a more compact representation of the
system’s behavior can now be introduced. Consider the
following I/O vector sequence G involving one input x and
two outputs A, B:

0] [1

|

. x_1 £ .
This sequence can be represented as: A — A — B. Since
such a behavior can be a consequence of the PLC cycle, it

o=

)

= ol -

X
A 1|’ |1
B ol Lo

1
can be compacted as: A58 . Analogously, we can

LYy L,z

. x1 y1 z0 ¢
generalize: A > A—>A—>A->B=A——B.

V. IDENTIFICATION METHOD

A. General strategy

The identification procedure consists of several stages
(Algorithm 1) that build systematically a safe IPN
representing exactly the sampled output language of length
k+1 of the DES.

Algorithm 1. Global identification procedure

Inputs: A DES and an accuracy parameter K
Output: (Q,My): an IPN model

1. Obtain the cyclic sequences w; of observed I/O vectors.
Compute event vector sequences T; and symbolic input
events A’ from the observed vectors.

3. For every sequence of event vectors T;, create event vector
traces T, of length k.

4. Create the non-observable behavior of the IPN and
simplify it.

5. Complete the IPN adding the observed behavior and
deleting implicit places.

The stages of this procedure are described below.
B. Sample processing

B.1 Event sequences

As stated before, the data obtained from the system to be
identified is a set of sequences of I/O vectors wy, W, ..., such
that w; = (w;(1),w;(2), ...), where w;(j) refers to the j-th

observed vector in sequence w;. Such sequences may have
different length. From these sequences, strings of observed
event vectors are first computed.

Definition 8: An observed event vector T;(j) is the
variation between two consecutive /O vectors w;(j) ,
w;(j + 1); it is computed as t;(j) = w;(j + 1) — w;(j). An
input event vector B(ti(j)) is the variation between two
consecutive input vectors I;(j), ;(j + 1); it is computed as
B(ti(D) = ;G + 1) — L;(§). A symbolic input event X' (t;(j))
is a string representation of the input event vector B(t;(j)); it
is computed as:

m (LG - LG =1
Y@ = [{ 10 if LG +Di= 10 = -
=1 e fLG+D -5 =0

Then for every sequence w;, a sequence of observed
event vectors 7; = 7;(1)7;(2) ... 7;(|t;]) is obtained. The
maximum number of possible event vectors is 3(™*™ — 1,
However, in practice, only a small subset of them is
observed.

Example 1. Consider a DES with n = 4 output signals, ®
= {A, B, C, D}, and m = 3 input signals £ = {a, b, c}. Three
I/0 sequences have been observed; vector entries correspond
to distribution [a, b, c | A, B, C, D]T

BEEN (R (R
O A A e e
001 ol 1ol 1o} io!tol 1o oltottolttoltotto
kgj' |ng| '3/ U13J| |ng| |l(1)J| 1119 '13 U U13J| |ng| |l$J| |ng|] 'lgj'/

According to definition 8, for every sequence w;, a
sequence of observed event vectors
7; = 7;(D)7;(2) ... 7;(|7;]) is computed. During the process,
if the difference has not been observed before, a new event
vector e; is created and stored (z;(j) = e;).

Now, for the example 1, the sequences T; of the detected
event vectors e; associated to I/O changes are obtained:

RIREARIE
(|3u;n;ngn;|]
wo= 11200 120112} 17 = eres
'Iél|§||8||§||§’|'
ung g Jlgllgjlgu

e
=
1

1Ty = €1€3€,€5€¢

.
—_—
4

cC oo RO oo
Sk OOk ==
|
»—-oooloHo
————————
B RO Ok O M
———————
= O O oo o M
———
Iy
AT
—
c oo RO oo
. —_—
~—__ -

,_____,
e
———
[
——

O R OOk RO
i N |
HOO o o

0
0,1'(es) =¢_0,2'(eg) = a0

€6

&
&

e
—
1

,_____,
SN
—

o oo RO oo

[
~——

—_—
—_—

T3 = €1€3€65€,€¢

[r————

RS

[SN
———
——

SR

R
co |
—
—_———
le
———

- |
ooolob_‘o

cC oo RO oo
e e
| | |
Looroo

S OOk = o

B.2 Sequences of k-length event vector traces

From every sequence t;=7;(1)7;(2)..7;(I7]) we
compute sequences of event vector traces
7 = 1(1), 7 (2), ... 7{(I7;]) such that every tf(j) is the Kk -
length substring of 7; that finishes with 7;(j). For the first
k — 1 elements of the trace sequence the event vector ¢ (zero
vector) is used. Such traces are used to determine equivalent
states, according to the following equivalence notion.

Definition 9: Two states of the identified system are K-
equivalent if their I/O vectors are the same and if the x last
observed event vectors that lead to these states are the same.

Following with the previous example, the sequences of
traces using k = 2 are:

1?2 = geq, e e, for 1y

12 = cey, e,e3, e384, €465, eseq for T,

12 = gey, e e3, €365, €5y, €48, for T;
C. Building the basic structure

C.1 Representing event traces

Once the sequences of event vector traces have been
obtained, every trace 7;°(j) is related to a transition in the IPN
through a function v:T—{t/(j)}; the firing of a transition
implies that x consecutive event vectors related to such a
transition have been observed.

In order to preserve firing order between transitions,
dependencies are created between them and associated with
an observed marking through the function u:P% —
{oM;|M; € R(N, M,)}, which relates every non-measurable
place with an observed marking, such that every transition
has only one input place and one output place (Vt, €
T,| ‘t,| =|t)] =1). Notice that the number of non-
measurable places is not predefined. When an event vector
trace T/ (j) is found again in a T/ the associated dependency
must be used if it leads to the same observed marking.

Let e; be the last event vector in the trace t{(j); the
associated transition will be denoted as t:j (more than one
transition may have associated the same e;). This strategy can
be systematically performed following the next procedure
which is an adaptation from that included in [11].

Algorithm 2. Building the basic IPN structure

Input: The set I'* = {r{}
Output: A PN structure G composed by pe P"

1.T « G ET « &
P« {pini}h Moini) < 1 u@ini) < 7:(1);
2vif er®
2.1 current < pini;
22vtiE(j) e, 1 <j < |tf
22.1 I 15(j) ¢ ET
then
ET « ET U{z{(D};
T Tu{t/}iv(t)) < 7 ();
Vp, €EP
1(Party’) < 0;0(past,’) < 0;
I(current,t ’) - 1;
If j = |z{'| and p(current) = u(Pin;)

then O(pim-, trej) «1;

else P < P U {pouc}h

Vt, €T
I(Pouts tr) < 0; Poue, tp) < 0;

1(Pour) < pulcurrent) + ej; 0(Pousst,’) « 1;

current < poys;

2221fTE(j) € ET

then

If Apin| Pin = ot:j, t:i € T,y(t:j) = r]?‘(j) and
#(Pin) = u(current)
then merge(current, p;,); current « (tfj)%
else go to step 2.2.1, and take 7{°(j) € ET.

If j = |7{| and p(current) = u(Pin:)

then merge(current, pini);

Since search operation has linear complexity and the
algorithm implies the addition of a transition for every
computed trace that has not been yet observed, then
Algorithm 2 is executed in polynomial time on the number of
observed output sequences and their maximum length .

Proposition 1. The IPN G built through algorithm 2
represents all and only all the trace sequences (sub-
sequences) in '*.

The proof is similar to that included in [11].
Using the previous algorithm, the obtained PN
corresponding to the three sequences of event vector traces

of the example 1 is shown in Figure 6. Notice that one of the
sequences is not cyclic.

Figure 6. Basic model with sequences of event vector traces

C.2 Simplifying the basic structure

Additional node merging operations can be performed on
the basic structure in order to obtain an equivalent trace
model. Now we can take into account the event vector e;
associated to transitions. Consider the following
transformation rules.

Algorithm 3. Simplifying the basic structure.

Input: G
Output: G’: an equivalent IPN

Apply the following rule on the initial place and
iteratively on the merged places
Rule 1: Vtei tej € Pini* |a #b

a’”p
merge(tzjtzj)merge(tzj .t:j)
Rule 2: Vt./,t,) € “pinila # b

merge(tzjtzj)merge('th, 't:j)

Proposition 2. G’ preserves the trace sequences in G.

The proof for is similar to that included in [11].

In the example, the application of the rules leads to the
model of Figure 7(a). Since the initial place has two input
transitions associated to eg, they can merge and also their
input places.

C.3 Concurrent transitions

Other transformations may be performed when there are
transitions that appear in the sequences in different order
describing their interleaved firing; this behavior is exhibited
by concurrent transitions. The analysis can be performed on
a model component comprised between two transitions
relied by several paths containing the concurrent transitions.
If there are m! paths, we can explore if there exists m
different transitions in the paths and every sequence is a
permutation from each other. When it is verified, the subnet
can be transformed into a concurrent component of G’
preserving the same behavior.

In Figure 7(a), notice that between the transition
associated to e; and the new transition associated to ¢4 there
are paths with all possible permutations of e, and es; then,
we can transform this into a concurrent component and we
obtain the net showed in Figure 7(b).

(b) ©
Figure 7. (a) Model after merging (b) Simplified basic model
(c) IPN model including measurable places

Notice that this model preserves the same event vector
sequences of the previous one.

The simplification by analysis of concurrency is not
strictly necessary for representing the event vector
sequences; however the equivalent model with concurrent
transitions may be simpler. Although the analysis could be
inefficient when the number of paths in the subnet is large,
usually this number is reduced.

The aim of the simplification strategies given above is
obtaining fairly reduced models useful for analyzing the
DES behavior, rather than minimizing the number of nodes
in the obtained models.

D. Adding interpretation to the PN model

D.IRepresenting outputs changes

Once the event vector sequences are represented in the basic
model, it must be completed by adding the output and input
changes. Recall that event vectors are computed from the
difference of consecutive I/O vectors; thus an e; relates
measurable places representing the outputs changes. This

procedure is detailed in [11]. The number of observable
places is then equal to the number of outputs. The net with
measurable places for the example is showed in Figure 7(c).

D.2 Model simplifying
Implicit non-measurable places can be removed; if there
is a non-measurable place p, whose input and output
transitions are exactly the same than any measurable place,
then delete p; and its input and output arcs.

D.3 Representing input changes

Once the output adding and implicit places deleting has
been performed, it only remains to add input information to
complete the IPN model. Input information is associated
with labels for transitions in a natural way given by the
symbolic event input function. Algorithm 4 describes a
systematic way to do it.

Algorithm 4. Representing input changes

Input: G, A'(e))
Output; Q : the final model of the identification process

Step 1. Vt:j €T, l(t:j) « A'(ej) /Associate to each t. the
symbolic input event registered at the detection of e;.

The final model for the illustrative example is showed in
Figure 8. The associated inputs for transitions are given by:
MepD=a_l, N(e))= €, AN(es)=b_1 c_1, A'(e)=b_0,
A (es)=c_0, X’ (eg)=a_0.

Figure 8. Simplified IPN model

Since every one of the transitions in the net actually
represents a sequence of event vectors of length k, the I/O
language of length ¥ + 7 of the net is equal to the observed
I/0 language. Even, for the above example, the I/O language
of the IPN is equal to the observed I/O language, i.e. only
the observed cyclic I/O sequences are represented by the
evolution of the net.

Proposition 3. For a DES S and an identification
parameter K, Algorithm 1 yields an IPN model (Q,M,) which
represents exactly LF¥+1(S).

Proof. Since the deletion of implicit places does not
change £°(Q,M,), the proof is made with the model
obtained before this procedure. The firing of a transition ¢ in
the system is not affected by the addition of arcs to and from
t, since these arcs have been computed from differences of
vectors in I'(S). Then, also in this model, every event vector
sequence o of length less or equal than k belongs to the
language of the net iff it was observed.

The sequences of transitions of length less or equal than k
that can be fired, lead to markings in the measurable places
that also belong to I'(S) (since the marking change provoked

in the measurable places was obtained from the difference of
observed vectors). Then, we have that sequences of observed
output vectors of length less or equal than x + 1 correspond
to sequences of marking vectors in the net and £**(Q) =
LEFL(S).m

VI. CASESTUDY

Based on the algorithms presented in this paper, a
software tool has been developed to automate the IPN model
synthesis. Many examples on diverse size and complexity
have been tested. Below we present a small size case study
from [9] whose layout is showed in Figure 9. The function of
this system is to sort parcels according to their size. It has 9
inputs (signal sensors from the system): aga,
a3,bo,by,Co,c1,k1,ky, and 4 outputs (signals to the actuators):
A+,A-,B,C.

‘ Conveyor 2 (small parcels)
9 c %‘ ‘

&
[o3

Controller

Conveyor 3 (large parcels)

>

Co
g, 31, @ by, by, Co, C1, Ky, ka |

Figure 9. Manufacturing system layout

Due to the lack of room, we only consider nine observed
cycles of production (a cycle consist in the arrival of a parcel
and its sorting) given below by the nine I/O observed
sequences of different length. The vector entries correspond
to the following distribution: [A+ A- B C k; k> aga; a2 by by ¢ ¢1].

After the identification process and before concurrence
transformations, the model shown in Figure 10(b) is obtained.
After some transformations considering phenomena
described in section IV, the net in Figure 11 is obtained.
These models have been automatically obtained using the
developed software tool.

From the obtained figure, we can infer the following
behavior:

- When a large parcel arrives (k1 and k2 rise), cylinder A
is extended (A+ rise). After cylinder A pushes the parcel to
the conveyor 3 (a0 falls, k1 falls, k2 falls, al rises, al falls
and a2 rises), cylinder C extends (C rises) and cylinder A
retracts to its initial position (A- falls). When parcel is
completely pushed, cylinders retract to their initial position.

- When a short parcel arrives (only k1 rise), cylinder A is
extended (A+ rise) until conveyor 2 is reached (a0 falls, k1
falls and al rises). Then, cylinder B extends (B rises) and
cylinder A retracts (A- falls). When parcel is completely
pushed, cylinder B retracts until its initial position.

This interpretation is valid only for the part of the
behavior we have observed. If we consider that data
collection has been made for a long time, we can state that
the model is almost exact.

CycleO1.txt:
0000 001001010
0000 101001010
1000 101001010
1000 100001010

Cycle06.txt
0000 001001010
0000 101001010
1000 111001010
1000 110001010

1000 000001010 1000 010001010
0110 000101010 1000 000001010
0110 000001010 1000 000101010
0110 000000010 1000 000001010
0010 001000010 0101 000011010
0000001000110 0101 000001010
0000 001000010 0101 000001000
0000 001001010 0100 000001001
0100 000101000
Qéggg%gfoo 1010 0100000001010
0000 001001010
0000 101001010
1000 101001010 CycleO7.txt
1000 100001010 0000 001001010
1000 000001010 0000 101001010
0110 000101010 1000 111001010
0110 000100010 1000 110001010
0110 000000010 1000 010001010
0100 000000110 1000 000001010
0000 001000110 1000 000101010
0000 001000010 1000 000001010
0000 001001010 0101 000011010
0101 000001000
Cycle03.txt 0100 000001001
0000 001001010 0100 000101000
0000 101001010 0100 000001010
1000 101001010 0000 001001010
1000 100001010 Cycle08.txt
1000 000001010 0000 001001010
0110000101010 0OOO 101001010
0110000100010 1000 111001010
0110 000000010 1000 110001010
0100 000000110 1000 100001010
0000 001000010 1000 000001010
0000001001010 1000 000101010
1000 000001010
CycleO4.txt 0101 000011010
0000001001010 0101 000001010
0000 101001010 0101 000001000
1000 111001010 0100 000001001
1000 110001010 0100 000101000
1000 010001010 0100 000001010
1000 000001010 0000 001001010
1000 000101010
1000 000001010~ Cycle09.txt
0101000011010 0000001001010
0101000011000 0000 101001010
0101000001000 1000 101001010
0100000001001 1000 100001010
0100000001000 1000 000001010
0100000101000 0110 000101010
0100000001000 0110 000100010
0100000001010 0110 000000010
0000 001001010 gg(l)g ggigggfﬁg
CycleO5.txt
0000 001001010 g%g ggiggggig
0000 101001010
1000 111001010
1000 110001010
1000 010001010 - pead
1000 000001010 1
1000 000101010
1000 000001010
0101 000011010 .
0101 000001010
0101 000001000
0100 000001001]]
0100 000001000 \
0100 000101000 .
0100 000001000 /
0100 000001010 Tt
0000 001001010 =
(@) (b)
Figure 10. (a) Cyclic sequences (b) identified IPN for the case
study
VII. CONCLUSIONS

Identification of automated concurrent Discrete Event
Systems (DES) has been addressed. A previous synthesis
method has been extended and adapted, allowing the
identification of closed-loop PLC-based controlled systems
from vector sequences including both inputs and outputs. In
order to cope with technological issues regarding the
automation based on PLC, simplifying transformations on the
obtained model have been proposed, allowing a more
compact representation of the system behavior.

Current research deals with the inference of cyclic
sequences from a single sequence and consideration of a-
priori known relations among DES components for
identification.

a1_0 ->b0_0->a0_1

KI_1>k2 1| |KI_1->§

a0_0->k1_0->k2_0 ->al_1 ->al_0 ->n271|)2070 >k1_0 ->n]71|

c0_0 ->a2_0 ->cl_1 al_0 ->b0_0 ->a0_1 m

la1_0->b0_0 ->a0_1 |kl_l >a0_0 ->k1_0 ->b0_0 ->al_0 ->a0_1 b1_0| m

Figure 11. Reduced model for the case study

ACKNOWLEDGEMENT

A.P. Estrada-Vargas was sponsored by CONACYT

(Mexico) Grant No. 50312, and by Région {le-de-France.

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(91

[10]

[11]

REFERENCES

Estrada-Vargas, A.P., E. Lopez-Mellado, J.J. Lesage. “A
Comparative Analysis of Recent Identification Approaches for
Discrete-Event Systems”, Mathematical Problems in Engineering
Volume 2010, Hindawi. doi:10.1155/2010/453254

M. Meda, E. Lépez, “A passive method for on-line identification of
discrete event systems”, Proc. of the IEEE Int. Conf. on Decision and
Control, Orlando, Florida, USA. pp. 4990-4995, Dec 2001

M. Meda, E. Lépez, “Required Transition Sequences for DES
identification”, Proc. of the IEEE Conference on Decision & Control
(CDC 2003), Maui, Hawaii USA. pp. 3778-3782, Dec 2003

A. Giua and C. Seatzu, “Identification of free-labeled Petri nets via
integer programming”, Proc. of the 44th IEEE Conference on
Decision and Control, and the European Control Conference 2005,
Seville, Spain, Dec 2005

M. P. Cabasino, A. Giua, C. Seatzu, “Identification of unbounded
Petri nets from their coverability graph”, Proc. of the 45th IEEE
Conference on Decision & Control, San Diego, CA, USA, Dec 2006

M. Dotoli, M. P. Fanti, A. M. Mangini, “Real time identification of
discrete event systems using Petri nets”, Automatica, Vol. 44, No. 5,
pp 1209-1219, May 2008

M. P. Fanti and C. Seatzu, “Fault diagnosis and identification of
discrete event systems using Petri nets”, Proc. of the 9th International
Workshop on Discrete Event Systems, Goteborg, Sweden, pp. 432-
435, May, 2008

S. Klein, L. Litz, J.-J. Lesage, “Fault detection of Discrete Event
Systems using an identification approach”, 16th IFAC World
Congress, CDROM paper n°02643, Praha (Czech Republic), July
2005

M. Roth, J.-J. Lesage, L. Litz, “An FDI Method for Manufacturing
Systems Based on an Identified Model”, Proc. of IFAC Symposium
on Information Control Problems in Manufacturing (INCOM 2009),
Moscow, Russia, pp. 1389-1394, June 2009

M. Roth, J.-J. Lesage, L. Litz, “Black-box identification of discrete
event systems with optimal partitioning of concurrent subsystems”,
Proc. of the American Control Conference (ACC 2010), Baltimore,
Maryland, USA, pp. 2601-2606, June 2010

A.P. Estrada-Vargas, E. Loépez-Mellado, J.J. Lesage. “Off-line
Identification of Concurrent Discrete Event Systems Exhibiting
Cyclic Behavior”. Proc. of IEEE Int. Conf. on Systems Man and
Cybernetics, San Antonio Tx, USA, pp.181-186, Oct 2009

