Ana Paula Estrada-Vargas

Ernesto López-Mellado

Members IEEE Jean-Jacques Lesage
email: jacques.lesage@lurpa.ens-cachan.fr

J-J Lesage

An Identification Method for PLC-based Automated Discrete Event Systems

Keywords: Automated DES, Identification, Interpreted Petri Nets, Programmable Logic Controllers I

This paper deals with identification of automated Discrete Event Systems (DES). A method for processing sequences of input/output signals from PLC-based controlled DES is proposed; it yields an interpreted Petri net model describing the closed-loop behavior of the automated DES. This new method extends a previously presented approach by taking into account the technological characteristics of industrial controllers and the data collection requirements. Based on polynomial-time algorithms, the method is implemented as an efficient software tool; its use is illustrated through a case study dealing with an automated manufacturing system.

In recent years, the scientific community has proposed identification approaches (based on Petri net or automata) for obtaining approximated models of DES whose behavior is unknown or ill-known. In the context of automated DES, identification methods can be complementary to established modeling techniques; identification builds a closed-loop controller-plant model, which is generally obtained by a synchronous composition operation. Three main approaches for identifying DES have been proposed in literature [START_REF] Estrada-Vargas | López-Comparative Analysis of Recent I Discrete-Event Systems[END_REF].

The incremental synthesis approach, proposed in [START_REF] Meda | A passive meth discrete event systems[END_REF][3] deals with unknown partially measurable concurrent DES exhibiting cyclic behavior. Several algorithms have been proposed allowing the on-line building of interpreted Petri net (PN) models from the DES outputs. Although the techniques are efficient, the obtained models may represent more sequences than those observed.

In [START_REF] Giua | Identification integer programming[END_REF] a method to build a free labeled PN from a finite set of transitions strings is presented. This method is based on the resolution of an Integer Linear Programming (ILP) problem; the obtained PN generates exactly the observed language. This approach has been extended to other IPN classes [START_REF] Cabasino | Petri nets from their coverability gra Conference on Decision & Control[END_REF], [START_REF] Dotoli | Mangi discrete event systems using Petri nets[END_REF], [START_REF] Fanti | Fault d discrete event systems using Petri nets Workshop on Discrete Event Systems 435[END_REF]; however, issues regarding applications to actual DES have not yet been addressed in these works.

Another recent off-line method [START_REF] Klein | Fau Systems using an identification ap Congress[END_REF] allows building a non deterministic finite automaton (FA) from a set of input/output sequences, experimentally measured from the DES to be identified. Under several hypotheses, the constructed FA generates exactly the same input/output (I/O) sequences of given length than observed ones. The method was conceived for fault detection in a model-based approach [START_REF] Roth | An F Systems Based on an Identified Mode on Information Control Problems in M Moscow[END_REF]. Extensions to this work propose an identification method performing optimal partitioning of concurrent subsystems for distributed fault detection purposes [START_REF] Roth | Black event systems with optimal partitioni[END_REF].

In a previous paper we proposed a method for synthesizing interpreted PN (IPN) for coping with concurrent partially observable DES [START_REF] Estrada-Vargas | López-Me Identification of Concurrent Discret Cyclic Behavior[END_REF]; it processes a set of cyclic sequences of binary output signals yielding models including silent transitions and non labeled places.

In this paper that method has been extended for dealing with sequences of I/O signals captured during the closedloop operation of PLC-based controlled DES. Several technological characteristics of industrial controllers are taken into account in data collection and processing. The obtained model is a safe (1-bounded) IPN describing the controller-plant concurrent behavior, including those that are not measurable directly from the PLC.

The paper is organized as follows. In section II the background on Petri nets and languages is outlined. Based on these definitions the problem of DES identification is stated in section III in terms of language associated to an IPN. Several constraints inherent of real controlled DES are analyzed in section IV. The identification algorithm is given in section V. Finally, a case study is included in section VI.

II. BASICS ON PETRI NETS AND LANGUAGES

This section presents the basic concepts and notation of PN and IPN used in this paper. The symbol • t j (t j

•

) denotes the set of all places p i such that I(p i ,t j) 0 (O(p i ,t j) 0). Such places are called input (output) places of t j . Analogously, • p i (p i

•

) denotes the set of input (output) transitions of p i .

The incidence matrix of G is ܥ ൌ ܥ ା െ ܥ ି , where

ܥ ି ൌ ൣܿ ି ൧; ܿ ି ൌ ‪ሺܫ ǡ ݐ ሻ; and ܥ ା ൌ ൣܿ ା ൧Ǣ ܿ ା ൌ ܱሺ ǡ ݐ ሻ are
the pre-incidence and post-incidence matrices respectively.

A marking function M : P→= represents the number of tokens residing inside each place; it is usually expressed as an |P|-entry vector. = + is the set of nonnegative integers. Definition 2: A Petri Net system or Petri Net (PN) is the pair N = (G,M 0), where G is a PN structure and M 0 is an initial marking.

In a PN system, a transition t j is enabled at marking M k if ∀p i ∈ P, M k (p i) I(p i ,t j); an enabled transition t j can be fired reaching a new marking M k+1 which can be computed as

M k+1 = M k + Cv k , where v k (i) = 0, ij, v k (j) =
(G,M 0). A PN is called safe if ܯ א ܴሺܩǡ ܯ ሻǡ א ܲǡ ܯ ሺ ሻ ͳ.
Now it is defined IPN, an extension to PN that allows associating input and output signals to PN models.

Definition 3 : An IPN (Q, M 0) is a net structure Q = (G,Σ,Φ,λ,ϕ) with an initial marking M 0 . • G is a PN structure, Σ = {α 1 , α 2 , .
.., α r } is the input alphabet, and Φ = {φ 1 , φ 2 ,..., φ q } is the output alphabet.

• λ : T→ Σ∪{ε} is a labeling function of transitions, where ε represents a system internal event externally uncontrollable; it is not allowed that the symbol ε is associated to more than one t j ∈ p i • .

• ϕ : R(Q,M 0)→(= +) q is an output function, that associates to each marking in R(Q,M 0) a q-entry output vector;

q=|Φ| is the number of outputs. ϕ is represented by a q×|P| matrix, such that if the output symbol φ i is present (turned on) every time that M(p j) 1, then ϕ (i,j) = 1, otherwise ϕ(i,j) = 0.

When an enabled transition t j is fired in a marking M k , then a new marking M k+1 is reached. This behavior is represented as

1 + ⎯→ ⎯ k j t k M M
; the state equation is completed with the marking projection y k = ϕ M k , where y k ∈ (= +) q is the k-th output vector of the IPN.

According to functions λ and ϕ, transitions and places of an IPN (Q,M 0) can be classified as follows.

Definition 4: If λ(t i) ε the transition t i is said to be controllable (t i can be fired when the associated input symbol is presented). Otherwise it is uncontrollable (t i is autonomously fired). A place p i ∈P is said to be measurable if the i-th column vector of ϕ is not null, i.e. ϕ(•,i) 0.

Otherwise it is non-measurable. P = P m ∪ P u where P m is the set of measurable places and P u is the set of non-measurable places.

Definition 5: The l-length I/O language of an IPN (Q,M 0) is defined as:

͉ ሺ ǡ ሻ ൌ ሼቂ ሺ௧ శభ ሻ ఝሺெ శభ ሻ ቃ ǡ ቂ ሺ௧ శమ ሻ ఝሺெ శమ ሻ ቃ ǡ ǥ ǡ ቂ ሺ௧ శ ሻ ఝሺெ శ ሻ ቃ ȁܯ ௧ శభ ሱۛሮ ܯ ାଵ ௧ శమ ሱۛሮ ܯ ାଶ ǥ ܯ ାିଵ ௧ శ ሱሮ ܯ ା Ǣ ܯ א ܴሺܳǡ ܯ ሻǢ ൌ Ͳǡͳǡ Ǥ Ǥ ሽ.

III. IDENTIFICATON PROBLEM STATEMENT

Consider the following language definitions used in the statement and solution of the identification problem.

Definition 6: The set of observed input/output (I/O) words of a DES S with m inputs and n outputs is

Ȟሺ ሻ ൌ ሼݓ ଵ ǡ ݓ ଶ ǡ ǥ ሽ , such that ݓ ൌ ሺቂ ூ ሺଵሻ ை ሺଵሻ ቃ ǡ ቂ ூ ሺଶሻ ை ሺଶሻ ቃ ǡ ǥ ቂ ூ ሺȁ௪ ȁሻ ை ሺȁ௪ ȁሻ ቃሻ , where ቂ ூ ሺሻ ை ሺሻ
ቃ is the j-th observed input/output vector of size m+n in sequence ݓ and ȁݓ ȁ is the length of the I/O word ݓ .

Definition 7:

The observed k-length I/O language of a DES S is defined as ࣦ ሺ ሻ ൌ ሼݓ ሺ݆ ͳሻݓ ሺ݆ ʹሻ ǥ ݓ ሺ݆ ݈ሻȁݓ א Ȟሺ ሻǡ ݆ ݈ ȁݓ ȁܽ݊݀ ݈ ݇ሽ.

Now the identification problem can be defined as follows: given a set of observed I/O words Ȟሺܵሻ generated by a real DES during its operation, the aim of the proposed method is to construct a safe IPN model (Q, M 0) such that ͉ ሺܳǡ ܯ ሻ ൌ ࣦ ሺܵሻ; such a language approximates the actual behavior of the DES.

In our approach, ࣦ ሺ ሻ is computed for inferring the states of the system according to the parameter ߢ, which is used to adjust the accuracy of the identified IPN, similarly as proposed in [START_REF] Klein | Fau Systems using an identification ap Congress[END_REF].

IV. IDENTIFYING REAL AUTOMATED DES

The systems considered in this work are closed loop controlled DES (Figure 1); they consist of a plant and its industrial controller (in many cases a Programmable Logic Controller: PLC). The behavior of such systems (i.e. the PLC-plant compound system behavior) can be observed by collecting the signals exchanged between controller and plant.

Figure 1. Closed loop controller-plant DES

Several phenomena, due to the interaction between plant and controller, increase the complexity of the identification process; however they must be taken into account when real controlled DES have to be identified: • An input evolution (signal emitted by the plant through a sensor) does not always provoke an output evolution (signal emitted by the PLC to an actuator). In practice, few of input changes provoke output evolutions; • Non simultaneous I/O events are often simultaneously observed; • When output changes are provoked by input changes, this causal relationship is not necessarily captured simultaneously; Now, we are going to explain these phenomena.

A. PLC treatment cycle

A PLC cyclically performs three main steps: "input reading" (I) where it reads the signals from the sensors, "program execution" (PEX) to determine the new outputs values for the actuators, and "output writing" (O) where the newly determined commands are sent to the plant actuators.

B. Experimental constraints

In this section, we use SFC only for precisely describe diverse behaviors. Recall that in the identification problem, the PLC program is assumed to be unknown.

Due to the PLC cycle, some situations between inputs and outputs could arise. Consider a situation described in These two signals will be simultaneously read during the next I phase and observed as simultaneous events in the identification data base. In DES theory events cannot occur simultaneously; so an observed event vector will therefore be defined as a change of value in an entry of an I/O vector. changes its value from 0 to 1, the correspondent change in "B" is not provoked immediately, since it is necessary first a change in output "A". In this case cause and effect cannot be captured simultaneously but will be detected only if we observe a sequence of 4 consecutive events. These three scenarios show that the implementation of a controller and its interaction with the plant introduces phenomena that must be taken into account by the identification algorithm.

Some approximations of the causality between inputs and outputs, allowing a more compact representation of the system's behavior can now be introduced. Consider the following I/O vector sequence σ involving one input x and two outputs A, B:

ݔ ܣ ܤ V ൌ Ͳ ͳ Ͳ ǡ ͳ ͳ Ͳ ǡ ͳ Ͳ ͳ
This sequence can be represented as: ܣ

V. IDENTIFICATION METHOD

A. General strategy

The identification procedure consists of several stages (Algorithm 1) that build systematically a safe IPN representing exactly the sampled output language of length ț+1 of the DES. The stages of this procedure are described below.

B. Sample processing B.1 Event sequences

As stated before, the data obtained from the system to be identified is a set of sequences of I/O vectors ݓ ଵ ǡ ݓ ଶ ǡ ǥ, such that ݓ ൌ ሺݓ ሺͳሻǡ ݓ ሺʹሻǡ ǥ ሻ, where ݓ ሺ݆ሻ refers to the j-th Definition 8: An observed event vector ɒ ୧ ሺሻ is the variation between two consecutive I/O vectors ୧ ሺሻ , ୧ ሺ ͳሻ; it is computed as ɒ ୧ ሺሻ ൌ ୧ ሺ ͳሻ െ ୧ ሺሻ. An input event vector Ⱦሺɒ ୧ ሺሻሻ is the variation between two consecutive input vectors ୧ ሺሻ, ୧ ሺ ͳሻ; it is computed as Ⱦሺɒ ୧ ሺሻሻ ൌ ୧ ሺ ͳሻ െ ୧ ሺሻ. A symbolic input event ɉԢሺɒ ୧ ሺሻሻ is a string representation of the input event vector Ⱦሺɒ ୧ ሺሻሻ; it is computed as:

ߣԢሺ߬ ሺ݆ሻሻ ൌ ෑ ቐ ܫ ̴ͳ ݂݅ ܫ ሺ݆ ͳሻ െ ܫ ሺ݆ሻ ൌ ͳ ܫ ̴Ͳ ݂݅ ܫ ሺ݆ ͳሻ െ ܫ ሺ݆ሻ ൌ െͳ ߝ ݂݅ ܫ ሺ݆ ͳሻ െ ܫ ሺ݆ሻ ൌ Ͳ ୀଵ
Then for every sequence ݓ , a sequence of observed event vectors ߬ ൌ ߬ ሺͳሻ߬ ሺʹሻ ǥ ߬ ሺȁ߬ ȁሻ is obtained. The maximum number of possible event vectors is ͵ ሺାሻ െ ͳ. However, in practice, only a small subset of them is observed.

ݓ ଵ ൌ ۉ ۈ ۈ ۈ ۈ ۇ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ی ۋ ۋ ۋ ۋ ۊ ǡ ݓ ଶ ൌ ۉ ۈ ۈ ۈ ۈ ۇ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ ͳ ͳ Ͳ Ͳ ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ ͳ Ͳ Ͳ ͳ ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ی ۋ ۋ ۋ ۋ ۊ ǡ ݓ ଷ ൌ ۉ ۈ ۈ ۈ ۈ ۇ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ ͳ ͳ Ͳ Ͳ ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ǡ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ی ۋ ۋ ۋ ۋ

ۊ

According to definition 8, for every sequence ݓ , a sequence of observed event vectors ߬ ൌ ߬ ሺͳሻ߬ ሺʹሻ ǥ ߬ ሺȁ߬ ȁሻ is computed. During the process, if the difference has not been observed before, a new event vector ݁ is created and stored (߬ ሺ݆ሻ ൌ ݁). Now, for the example 1, the sequences τ i of the detected event vectors e j associated to I/O changes are obtained:

ݓ ଵ ൌ ۉ ۈ ۈ ۈ ۈ ۈ ۇ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې భ ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ െͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې మ ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ی ۋ ۋ ۋ ۋ ۋ ۊ ǡ ߬ ଵ ൌ ݁ ଵ ݁ ଶ ߣ ᇱ ሺ݁ ଵ ሻ ൌ ̴ܽͳǡ ߣ ᇱ ሺ݁ ଶ ሻ ൌ ߝ ݓ ଶ ൌ ۉ ۈ ۈ ۈ ۈ ۈ ۇ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې భ ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ െͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې య ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ ͳ ͳ Ͳ Ͳ ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ ͳ ͳ Ͳ Ͳ ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ర ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ െͳ Ͳ Ͳ Ͳ Ͳ ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ ͳ Ͳ Ͳ ͳ ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ఱ ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ െͳ Ͳ Ͳ െͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ల ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ െͳ Ͳ Ͳ ͳ Ͳ Ͳ െͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ی ۋ ۋ ۋ ۋ ۋ ۊ ǡ ߬ ଶ ൌ ݁ ଵ ݁ ଷ ݁ ସ ݁ ହ ݁ ߣ ᇱ ሺ݁ ଷ ሻ ൌ ̴ܾͳ ̴ܿͳǡ ߣ ᇱ ሺ݁ ସ ሻ ൌ ̴ܾͲǡ ߣ ᇱ ሺ݁ ହ ሻ ൌ ̴ܿͲǡ ߣ ᇱ ሺ݁ ሻ ൌ ̴ܽͲ ݓ ଷ ൌ ۉ ۈ ۈ ۈ ۈ ۈ ۇ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې భ ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ െͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې య ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ ͳ ͳ Ͳ Ͳ ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ ͳ ͳ Ͳ Ͳ ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ఱ ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ െͳ Ͳ Ͳ െͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ర ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ െͳ Ͳ Ͳ Ͳ Ͳ ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ల ՜ ۏ ێ ێ ێ ێ ێ ێ ۍ െͳ Ͳ Ͳ ͳ Ͳ Ͳ െͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ۏ ێ ێ ێ ێ ێ ێ ۍ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ ے ۑ ۑ ۑ ۑ ۑ ۑ ې ی ۋ ۋ ۋ ۋ ۋ ۊ ǡ ߬ ଷ ൌ ݁ ଵ ݁ ଷ ݁ ହ ݁ ସ ݁

B.2 Sequences of ț-length event vector traces

From every sequence ߬ ൌ ߬ ሺͳሻ߬ ሺʹሻ ǥ ߬ ሺȁ߬ ȁሻ we compute sequences of event vector traces

߬ ൌ ߬ ሺͳሻǡ ߬ ሺʹሻǡ ǥ ߬
ሺȁ߬ ȁሻ such that every ߬ ሺ݆ሻ is the ߢlength substring of ߬ that finishes with ߬ ሺ݆ሻ. For the first ߢ െ ͳ elements of the trace sequence the event vector ߝ (zero vector) is used. Such traces are used to determine equivalent states, according to the following equivalence notion. Definition 9: Two states of the identified system are κequivalent if their I/O vectors are the same and if the ߢ last observed event vectors that lead to these states are the same. Following with the previous example, the sequences of traces using ߢ ൌ ʹ are:

߬ ଵ ଶ ൌ ߝ݁ ଵ ǡ ݁ ଵ ݁ ଶ for ߬ ଵ ߬ ଶ ଶ ൌ ߝ݁ ଵ ǡ ݁ ଵ ݁ ଷ ǡ ݁ ଷ ݁ ସ ǡ ݁ ସ ݁ ହ ǡ ݁ ହ ݁ for ߬ ଶ ߬ ଷ ଶ ൌ ߝ݁ ଵ ǡ ݁ ଵ ݁ ଷ ǡ ݁ ଷ ݁ ହ ǡ ݁ ହ ݁ ସ ǡ ݁ ସ ݁ for ߬ ଷ

C. Building the basic structure C.1 Representing event traces

Once the sequences of event vector traces have been obtained, every trace ߬ ሺ݆ሻ is related to a transition in the IPN through a function γ:T→ሼ߬ ሺ݆ሻሽ; the firing of a transition implies that ߢ consecutive event vectors related to such a transition have been observed. In order to preserve firing order between transitions, dependencies are created between them and associated with an observed marking through the function ߤǣ ܲ ௨ ՜ ሼMܯ ȁܯ א ܴሺܰǡ ܯ ሻሽ, which relates every non-measurable place with an observed marking, such that every transition has only one input place and one output place (ݐ א ܶǡ ȁ ݐ x ȁ ൌ ȁݐ

x ȁ ൌ ͳ). Notice that the number of nonmeasurable places is not predefined. When an event vector trace ߬ ሺ݆ሻ is found again in a ߬ the associated dependency must be used if it leads to the same observed marking.

Let e j be the last event vector in the trace ߬ ሺ݆ሻ ; the associated transition will be denoted as ݐ ೕ (more than one transition may have associated the same e j). This strategy can be systematically performed following the next procedure which is an adaptation from that included in [START_REF] Estrada-Vargas | López-Me Identification of Concurrent Discret Cyclic Behavior[END_REF].

Algorithm 2. Building the basic IPN structure

Input: The set Ȟ ൌ ሼ߬ ሽ

Output: A PN structure G composed by p∈P u 1. ܶ ՚ Ǣ ܶܧ ՚ Ǣ ܲ ՚ ሼ ሽǢ ܯ ሺ ሻ ՚ ͳǢ ߤሺ ሻ ՚ ߬ ሺͳሻ; 2 ߬ א Ȟ 2.1 ݐ݊݁ݎݎݑܿ ՚ Ǣ 2.2 ߬ ሺ݆ሻ א ߬ ǡ ͳ ݆ ȁ߬ ȁ 2.2.1 If ߬ ሺ݆ሻ ב ܶܧ then ܶܧ ՚ ܶܧ ሼ߬ ሺ݆ሻሽǢ ܶ ՚ ܶ ൛ݐ ೕ ൟǢ J൫ݐ ೕ ൯ ՚ ߬ ሺ݆ሻǢ א ܲ ‪൫ܫ ǡ ݐ ೕ ൯ ՚ ͲǢ ܱ൫ ǡ ݐ ೕ ൯ ՚ ͲǢ ‪ǡݐ݊݁ݎݎݑܿ‪൫ܫ ݐ ೕ ൯ ՚ ͳ Ǣ If ݆ ൌ ȁ߬ ȁ and ‪ሻݐ݊݁ݎݎݑܿ‪ߤሺ ൌ ߤሺ ሻ then ܱ൫ ǡ ݐ ೕ ൯ ՚ ͳǢ else ܲ ՚ ܲ ሼ ௨௧ ሽǢ ݐ א ܶ ‪ሺܫ ௨௧ ǡ ݐ ሻ ՚ ͲǢ ሺ ௨௧ ǡ ݐ ሻ ՚ ͲǢ ߤሺ ௨௧ ሻ ՚ ‪ሻݐ݊݁ݎݎݑܿ‪ߤሺ ݁ Ǣ ܱ൫ ௨௧ ǡ ݐ ೕ ൯ ՚ ͳǢ ݐ݊݁ݎݎݑܿ ՚ ௨௧ Ǣ 2.2.2 If ߬ ሺ݆ሻ א ܶܧ then If ȁ ൌ xݐ ೕ ǡ ݐ ೕ א ܶǡ J൫ݐ ೕ ൯ ൌ ߬ ሺ݆ሻ ܽ݊݀ ߤሺ ሻ ൌ ‪ሻݐ݊݁ݎݎݑܿ‪ߤሺ then ‪ǡݐ݊݁ݎݎݑܿ‪݃݁ሺݎ݁݉ ሻǢ ݐ݊݁ݎݎݑܿ ՚ ሺݐ ೕ ሻ x Ǣ
else go to step 2.2.1, and take ߬ ሺ݆ሻ ב .ܶܧ If ݆ ൌ ȁ߬ ȁ and ‪ሻݐ݊݁ݎݎݑܿ‪ߤሺ ൌ ߤሺ ሻ then ‪ǡݐ݊݁ݎݎݑܿ‪݃݁ሺݎ݁݉ ሻǢ Since search operation has linear complexity and the algorithm implies the addition of a transition for every computed trace that has not been yet observed, then Algorithm 2 is executed in polynomial time on the number of observed output sequences and their maximum length .

Proposition 1.

The IPN G built through algorithm 2 represents all and only all the trace sequences (subsequences) in Ȟ .

The proof is similar to that included in [START_REF] Estrada-Vargas | López-Me Identification of Concurrent Discret Cyclic Behavior[END_REF].

Using the previous algorithm, the obtained PN corresponding to the three sequences of event vector traces of the example 1 is shown in Figure 6. Notice that one of the sequences is not cyclic.

ݐ ೕ ǡ ݐ ೕ א x ȁܽ ് ܾ ݐ‪݃݁൫ݎ݁݉ ೕ ݐ ೕ ൯݉݁݁݃ݎሺݐ ೕ x ǡ ݐ ೕ x ሻ Rule 2: ݐ ೕ ǡ ݐ ೕ א x ȁܽ ് ܾ ݐ‪݃݁൫ݎ݁݉ ೕ ݐ ೕ ൯݉݁݁݃ݎሺ ݐ ೕ x ǡ ݐ ೕ x ሻ Proposition 2. G' preserves the trace sequences in G.
The proof for is similar to that included in [START_REF] Estrada-Vargas | López-Me Identification of Concurrent Discret Cyclic Behavior[END_REF].

In the example, the application of the rules leads to the model of Figure 7(a). Since the initial place has two input transitions associated to e 6 , they can merge and also their input places.

C.3 Concurrent transitions

Other transformations may be performed when there are transitions that appear in the sequences in different order describing their interleaved firing; this behavior is exhibited by concurrent transitions. The analysis can be performed on a model component comprised between two transitions relied by several paths containing the concurrent transitions. If there are m! paths, we can explore if there exists m different transitions in the paths and every sequence is a permutation from each other. When it is verified, the subnet can be transformed into a concurrent component of G' preserving the same behavior.

In Figure 7(a), notice that between the transition associated to e 3 and the new transition associated to e 6 there are paths with all possible permutations of e 4 and e 5 ; then, we can transform this into a concurrent component and we obtain the net showed in Figure 7 Notice that this model preserves the same event vector sequences of the previous one.

The simplification by analysis of concurrency is not strictly necessary for representing the event vector sequences; however the equivalent model with concurrent transitions may be simpler. Although the analysis could be inefficient when the number of paths in the subnet is large, usually this number is reduced.

The aim of the simplification strategies given above is obtaining fairly reduced models useful for analyzing the DES behavior, rather than minimizing the number of nodes in the obtained models.

D. Adding interpretation to the PN model D.1Representing outputs changes

Once the event vector sequences are represented in the basic model, it must be completed by adding the output and input changes. Recall that event vectors are computed from the difference of consecutive I/O vectors; thus an e j relates measurable places representing the outputs changes. This procedure is detailed in [START_REF] Estrada-Vargas | López-Me Identification of Concurrent Discret Cyclic Behavior[END_REF]. The number of observable places is then equal to the number of outputs. The net with measurable places for the example is showed in Figure 7(c).

D.2 Model simplifying

Implicit non-measurable places can be removed; if there is a non-measurable place p k whose input and output transitions are exactly the same than any measurable place, then delete p k and its input and output arcs.

D.3 Representing input changes

Once the output adding and implicit places deleting has been performed, it only remains to add input information to complete the IPN model. Input information is associated with labels for transitions in a natural way given by the symbolic event input function. Algorithm 4 describes a systematic way to do it. The final model for the illustrative example is showed in Figure 8. The associated inputs for transitions are given by: λ'(e 1)=a_1, λ'(e 2)= ε, λ'(e 3)=b_1 c_1, λ'(e 4)=b_0, λ'(e 5)=c_0, λ'(e 6)=a_0.

Figure 8. Simplified IPN model

Since every one of the transitions in the net actually represents a sequence of event vectors of length κ, the I/O language of length κ + 1 of the net is equal to the observed I/O language. Even, for the above example, the I/O language of the IPN is equal to the observed I/O language, i.e. only the observed cyclic I/O sequences are represented by the evolution of the net.

Proposition 3. For a DES S and an identification parameter κ, Algorithm 1 yields an IPN model (Q,M 0) which represents exactly ࣦ ାଵ ሺܵሻ.

Proof. Since the deletion of implicit places does not change ͉ ሺܳǡ ܯ ሻ , the proof is made with the model obtained before this procedure. The firing of a transition ݐ in the system is not affected by the addition of arcs to and from ,ݐ since these arcs have been computed from differences of vectors in Ȟሺܵሻ. Then, also in this model, every event vector sequence ߪ of length less or equal than ߢ belongs to the language of the net iff it was observed.

The sequences of transitions of length less or equal than ߢ that can be fired, lead to markings in the measurable places that also belong to Ȟሺܵሻ (since the marking change provoked in the measurable places was obtained from the difference of observed vectors). Then, we have that sequences of observed output vectors of length less or equal than ߢ ͳ correspond to sequences of marking vectors in the net and ͉ ାଵ ሺܳሻ ൌ ࣦ ାଵ ሺܵሻ.ז

VI. CASE STUDY

Based on the algorithms presented in this paper, a software tool has been developed to automate the IPN model synthesis. Many examples on diverse size and complexity have been tested. Below we present a small size case study from [START_REF] Roth | An F Systems Based on an Identified Mode on Information Control Problems in M Moscow[END_REF] whose layout is showed in Figure 9. The function of this system is to sort parcels according to their size. It has 9 inputs (signal sensors from the system): a 0 ,a 1 , a 2 ,b 0 ,b 1 ,c 0 ,c 1 ,k 1 ,k 2 , and 4 outputs (signals to the actuators): A+,A-,B,C. After the identification process and before concurrence transformations, the model shown in Figure 10(b) is obtained. After some transformations considering phenomena described in section IV, the net in Figure 11 is obtained. These models have been automatically obtained using the developed software tool.

From the obtained figure, we can infer the following behavior:

-When a large parcel arrives (k1 and k2 rise), cylinder A is extended (A+ rise). After cylinder A pushes the parcel to the conveyor 3 (a0 falls, k1 falls, k2 falls, a1 rises, a1 falls and a2 rises), cylinder C extends (C rises) and cylinder A retracts to its initial position (A-falls). When parcel is completely pushed, cylinders retract to their initial position.

-When a short parcel arrives (only k1 rise), cylinder A is extended (A+ rise) until conveyor 2 is reached (a0 falls, k1 falls and a1 rises). Then, cylinder B extends (B rises) and cylinder A retracts (A-falls). When parcel is completely pushed, cylinder B retracts until its initial position.

This interpretation is valid only for the part of the behavior we have observed. If we consider that data collection has been made for a long time, we can state that the model is almost exact.

Definition 1 :

 1 An ordinary Petri Net structure G is a bipartite digraph represented by the 4-tuple G = (P,T,I,O) where: P = {p 1 ,p 2 ,...,p |P| } and T = {t 1 ,t 2 ,...,t |T| } are finite sets of vertices named places and transitions respectively; I(O) : P × T → {0, 1} is a function representing the arcs going from places to transitions (from transitions to places).

Figure 2 .

 2 Figure 2. PLC cycle and data collection At the end of the PEX phase the current values of inputs and outputs (I/O) are sent from the PLC to a computer and stored for a later treatment by the identification algorithm.

Figure 3 (

 3 current active step is #10; a and b are two input signals to the PLC; A and B are two output signals).

Figure 3 .

 3 Figure 3. A single input is the condition for state evolution Changes in the state and outputs will occur when signal b is active; however other input signals may evolve without consequence in the outputs. This must be considered in the identification algorithm. Consider now the time diagram in Figure 4. Two signals are asynchronously emitted by sensors of the plant between two successive "input reading" phases (I) of the PLC cycle.These two signals will be simultaneously read during the next I phase and observed as simultaneous events in the identification data base. In DES theory events cannot occur simultaneously; so an observed event vector will therefore be defined as a change of value in an entry of an I/O vector.

Figure 4 .

 4 Figure 4. Apparent simultaneous evolution of several inputs

Figure 5 .

 5 Figure 5. I/O causality and sequences of events

 ܤ Since such a behavior can be a consequence of the PLC cycle, it can be compacted as: ܣ ௫̴ଵ ሱሮ ܤ . Analogously, we can generalize:

Algorithm 1 .

 1 Global identification procedure Inputs: A DES and an accuracy parameter κ Output: (Q,M 0): an IPN model 1. Obtain the cyclic sequences w i of observed I/O vectors. 2. Compute event vector sequences τ i and symbolic input events λ' from the observed vectors. 3. For every sequence of event vectors τ i , create event vector traces τ i κ of length κ. 4. Create the non-observable behavior of the IPN and simplify it. 5. Complete the IPN adding the observed behavior and deleting implicit places.

 sequence ݓ . Such sequences may have different length. From these sequences, strings of observed event vectors are first computed.

Example 1 .

 1 Consider a DES with n = 4 output signals, Φ = {A, B, C, D}, and m = 3 input signals Σ = {a, b, c}. Three I/O sequences have been observed; vector entries correspond to distribution [a, b, c | A, B, C, D] T

Figure 6 .Algorithm 3 .

 63 Figure 6. Basic model with sequences of event vector traces C.2 Simplifying the basic structure Additional node merging operations can be performed on the basic structure in order to obtain an equivalent trace model. Now we can take into account the event vector e j associated to transitions. Consider the following transformation rules. Algorithm 3. Simplifying the basic structure. Input: G Output: G': an equivalent IPN Apply the following rule on the initial place and iteratively on the merged places Rule 1: ݐ

 (b).

Figure 7 .

 7 Figure 7. (a) Model after merging (b) Simplified basic model (c) IPN model including measurable places

Algorithm 4 .

 4 Representing input changes Input: G', ߣԢሺ݁ ሻ Output; Q : the final model of the identification process Step 1. ݐ ೕ א ܶǡ ߣሺݐ ೕ ሻ ՚ ߣԢሺ݁ ሻ //Associate to each ݐ ೕ the symbolic input event registered at the detection of e j .

Figure 9 .

 9 Figure 9. Manufacturing system layout Due to the lack of room, we only consider nine observed cycles of production (a cycle consist in the arrival of a parcel and its sorting) given below by the nine I/O observed sequences of different length. The vector entries correspond to the following distribution: [A+ A-B C k1 k2 a0 a1 a2 b0 b1 c0 c1].After the identification process and before concurrence transformations, the model shown in Figure10(b) is obtained. After some transformations considering phenomena described in section IV, the net in Figure11is obtained. These models have been automatically obtained using the developed software tool.From the obtained figure, we can infer the following behavior:-When a large parcel arrives (k1 and k2 rise), cylinder A is extended (A+ rise). After cylinder A pushes the parcel to the conveyor 3 (a0 falls, k1 falls, k2 falls, a1 rises, a1 falls and a2 rises), cylinder C extends (C rises) and cylinder A retracts to its initial position (A-falls). When parcel is completely pushed, cylinders retract to their initial position.-When a short parcel arrives (only k1 rise), cylinder A is extended (A+ rise) until conveyor 2 is reached (a0 falls, k1 falls and a1 rises). Then, cylinder B extends (B rises) and cylinder A retracts (A-falls). When parcel is completely pushed, cylinder B retracts until its initial position.This interpretation is valid only for the part of the behavior we have observed. If we consider that data collection has been made for a long time, we can state that the model is almost exact.

Figure 10 .Figure 11 .

 1011 Figure 10. (a) Cyclic sequences (b) identified study VII. CONCLUSIONS Identification of automated concurrent Systems (DES) has been addressed. A pr method has been extended and adapte identification of closed-loop PLC-based co from vector sequences including both input order to cope with technological issue automation based on PLC, simplifying trans obtained model have been proposed, a compact representation of the system behavi Current research deals with the infe sequences from a single sequence and co priori known relations among DES identification.

 1, this equation is called the PN state equation. The reachability set of a PN is the set of all possible reachable marking from M 0 firing only enabled transitions; this set is denoted by R