
HAL Id: hal-00596536
https://hal.science/hal-00596536

Submitted on 5 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking of Vehicle Trajectory by Combining a Camera
and a Laser Rangefinder

Yann Goyat, Thierry Chateau, Laurent Trassoudaine

To cite this version:
Yann Goyat, Thierry Chateau, Laurent Trassoudaine. Tracking of Vehicle Trajectory by Combining
a Camera and a Laser Rangefinder. Machine Vision and Applications, 2008, 21 (3), pp.275-286.
�10.1007/s00138-008-0160-0�. �hal-00596536�

https://hal.science/hal-00596536
https://hal.archives-ouvertes.fr


Machine Vision and Applications manuscript No.
(will be inserted by the editor)

Y. Goyat · T. Chateau · L. Trassoudaine

Tracking of Vehicle Trajectory by Combining a Camera

and a Laser Rangefinder

Received: date / Accepted: date

Abstract This article presents a probabilistic method

for vehicle tracking using a sensor composed of both a

camera and a laser rangefinder. Two main contributions

will be set forth in this paper. The first involves the def-

inition of an original likelihood function based on the

projection of simplified 3D vehicle models. We will also

propose an efficient approach to computing this function

using a line-based integral image. The second contribu-

tion focuses on a sampling algorithm designed to handle

several sources. The resulting modified particle filter is

capable of naturally merging several observations func-

tions in a straightforward manner. Many trajectories of a

vehicle equipped with a kinematic GPS1 have been mea-

sured on actual field sites, with a video system specially

developed for the project. This field input has made it
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possible to experimentally validate the result obtained

from the algorithm. The ultimate goal of this research

is to derive a better understanding of driver behavior in

order to assist road managers in their effort to ensure

network safety
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1 Introduction

We will be presenting a vehicle trajectory tracking method

that relies upon a sensor composed of a color camera and

a one-dimensional scanning laser rangefinder. The objec-

tive of this system is to accurately estimate the trajec-

tory of a vehicle traveling through a curve. The research

reported herein lies within the scope of an French ANR-

PREDIT project 2

The sensor, installed in a curve, is composed of three

cameras placed on a tower approximately 5 m high to

cover the beginning, middle and end of the curve, in ad-

dition to a scanning laser rangefinder laid out parallel

to the ground. Since the cameras offer only limited cov-

erage, their observations do not overlap and we will be

2 See acknowledgments section
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considering in the following discussion that the system

can be divided into three subsystems, each composed of a

camera-rangefinder pair, with the recalibration between

each pair performed by means of rigid transformations,

which will not be addressed in the present article. The

object-tracking procedure is intended to estimate the

state of an object at each moment within a given scene,

based on a scene observation sequence. Tracking meth-

ods can be broken down into two major categories: the

first concerns off-line or non-causal tracking, for which

the state estimation at a given point in time uses the

entire observation sequence [5]. The second category re-

lates to online or causal tracking, for which the state of

the object at a given point in time has been estimated

as a function of the record of past and current observa-

tions and the record of past states [9]. This second cat-

egory may also encompass the notion of realtime when

the period necessary to estimate a state is shorter than

the sensor acquisition frequency. The method described

herein would be classified as a causal method.

In this article, we are proposing a solution based on a

probabilistic formalization of the tracking problem with

a stochastic framework (particle filter). The literature,

which contains many references in the areas of vision

and data merging, proceeds with the recursive time es-

timation of a state through application of Monte-Carlo

methods [1].

The rest of the article has been divided into four

parts. The first will discuss the tracking principle, on the

basis of a probabilistic model. The next part will focus

on the likelihood functions proposed for estimating the

weights associated with the particle set. The third part

will provide a detailed description of our proposed sam-

pling method (called multi-source sampling). The last

section will then present the measurement campaign con-

ducted for the purpose of quantifying method accuracy

and robustness. A large number of trajectories could be

estimated and a kinematic GPS was used to determine

the actual field values associated with each trajectory.

2 Related Work

Recently, traffic video surveillance has become an impor-

tant topic in the Intelligent Transport Systems (ITS), so

vehicle detection, description, and/or recognition have

been an active research field. Most of the solutions as-

sume that the camera is at a high angle. Tracking vehi-

cles from a static camera is challenging for several rea-

sons:

– Outdoor vision tracking solutions must handle with

variation of illumination and with shadows.

– Generic model based approaches are complex solu-

tions due to the huge appearance variability of the

vehicle class.

– Tracking several vehicles simultaneously implies to be

able to handle with mutual occlusions.

Tracking objects from a static camera often uses a

background/foreground subtraction [17]. In outdoor en-

vironment such method must handle with variations of

illumination conditions and shadow. In [23], Stauffer and

al. propose a parametric model with a temporal update.

The resulting solution deals efficiently with small illu-

mination variations. Detecting shadow can be done by

color based analysis [10] and injecting temporal infor-

mation into the models [18].

Many object descriptions can be used in order to ob-

tain a model of a vehicle. Some approaches are based

on a generic model, uses to detect, then track the vehi-

cle, from a luminance [2] or Haar Wavelets based model
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[3,21]. 3D wireframes models have been also used but

they require to define many models associated to differ-

ent types of vehicles [26,14,15,24,8]. In [19] a non-rigid

3D model is used into a EM based contour tracking. Re-

cently, Kanhere and al. [12] have proposed an interest

point based method to segment and track vehicles.

The method presented here uses a 3D simplified model

of a vehicle, projected into the image, and then compared

to the background/foreground subtraction map to pro-

vide and efficient observation function.

In [11], Kamijo and al. propose a probabilistic model

to track multiple vehicles with spatio-temporal Markov

random fields. Recently, stochastic methods [13,22] have

been presented to handle with realtime multi object track-

ing. In [25] Yu and al. propose a Monte Carlo Markov

Chain method to estimate, from a video, global trajec-

tories of the vehicles.

In this paper, we propose a probabilistic framework

to solve the problem of online vehicle trajectory estima-

tion. The trajectory is modeled by a random state vector

and the distribution associated to this random vector is

approximated in a sequential scheme with a particle fil-

ter. Since the trajectory is highly driven by the kinematic

model of the vehicle, we propose to inject this model

within the dynamics associated to the filter. Moreover,

an original data fusion sampling algorithm is proposed

to handle with several observation functions.

3 Principle of the Method

This section will set forth the principle behind the tra-

jectory tracking method.

The core of this proposed method (see Fig. 1) consists

of a recursive filter that has been formalized stochasti-

cally (using a particle filter). The vehicle state is repre-

sented by its corresponding bicycle model. The predic-

tion function adopts the hypothesis of a constant driving

angle acceleration and speed. A 3D geometric model of

the vehicle, projected onto the image, is then compared

with image data described by a probabilistic shape as-

similation map. The observation function also comprises

a likelihood function that reflects the consistency of tele-

metric data with respect to the hypothesis. The filter is

able to produce, at each iteration, an estimation of the

vehicle state (position, heading direction, speed, steering

angle).

Fig. 1 Block diagram of the proposed method

3.1 Particle Filter

Vehicle trajectory is estimated recursively using a nonlin-

ear filter, whose resolution entails a widespread stochas-

tic method for vision applications: the particle filter. This

choice is dictated by the nonlinear nature of the system.

Particle filtering [1,16] is based on an estimation of the a

posteriori probability density p(Xt|Z0:t) of state Xt con-

ditioned by the historical record of measurements Z0:t,

at time t, by a set of N weighted particles {(Xn
t , πn

t )}N
n=1

with their associated weights. In the case of an observa-



4 Y. Goyat et al.

tion stemming from several sources, we are proposing to

merge observations intrinsically during the re-sampling

phase. The algorithm derived (see Algorithm 1) is a vari-

ant of the Condensation algorithm [16]. A weight vec-

tor (composed of weights generated from observations of

each source) is to be associated with each particle. This

multi-source re-sampling method (called MSS) will be

further developed in Section 5, page 10.

Algorithm 1 Condensation in the multi-source case

Init : particles {(X
′n
0 ,1/N)}N

n=1 according to the ini-
tial distribution X0

for t = 1, ..., Tend do

Prediction : generation of {(Xn
t ,1/N)}N

n=1 from

p(Xt|Xt−1 = X
′n
t−1)

Observation : estimation of the weight vector ac-
cording to the various sources {(Xn

t ,πn
t )}N

n=1 with
π

n
t ∝ p(Zt|Xt = Xn

t )

Sampling : build {(X
′n
t−1,1/N)}N

n=1 from

{(Xn
0 ,πn

0 )}N
n=1 using Multi Source Sampling (MSS)

Estimation : X̂t
.
= 1

N

∑N
n=1 Xn

t

end for

Output : The set of estimated states during the video
sequence {X̂t}t=1,...,Tend

Implementing a particle filter necessitates defining

three models: 1) a state model that serves to define the

kinematic characteristics of the object to be tracked;

2) an evolution model that defines the state of an ob-

ject at a given point in time depending on the state at

the previous point in time; and 3) an observation model

that defines a measurement between a state hypothesis

and the observations. The state and evolution model are

presented in the following sections and the observation

model is detailed in section 4.

3.2 Background Extraction

The majority of methods for tracking objects within a

static scene introduce a background extraction step, which

consists in a binary case of ascribing each image pixel

a ”Background/Foreground” class. Most of these assign-

ments are statistical, which forwards the hypothesis that

each pixel may be modeled by a random variable capable

of assuming either the ”Background” or ”Shape” state.

Stauffer and Grimson [23] proposed employing a para-

metric Gaussian Mixture Model (GMM) in order to de-

pict the probability density associated with each pixel. It

is also possible to use a nonparametric probability den-

sity model, such as the one in [9]. This will be the ap-

proach adopted herein.

Let It be an image acquired at time t, and yt(u)
.
=

{yt(i,u)}i=1,2,3 the function that provide information on

pixel u of the CCD sensor according to the three colori-

metric components: Red, Green and Blue. Each pixel

constitutes a discrete random variable capable of as-

suming either one of the two following states: 1) ”Back-

ground” (ω1), and 2) ”Foreground” (ω2).

3.2.1 Background Model

We are proposing to discretely model the likelihood p(yt(u))|ω1

by marginalizing the three color planes, given that: 1)

parametric methods in most cases use a Gaussian mod-

eling approach; and 2) the space discretization of param-

eters is very costly in terms of computation time should

the parameters be considered as dependent upon one

another. A discretization of p(yt(u)|ω1) actually corre-

sponds to N3 elements if each parameter of yt ∈ IR3 has

been sampled using N points. If parameters were inde-

pendent, p(yt(u)|ω1) could be discretized with just 3N

elements. The hypothesis of independent variables in this

instance is not treated rigorously since the three color

components are correlated among each other. Nonethe-

less, this hypothesis often gets adopted in order to reduce
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computation time and memory space requirements. Now,

let’s express bt(u)
.
= {bt(i;u)}i=1,..,3 as the histogram

associated with color vector yt(u) of position u in the

image at time t. It then becomes possible to approximate

the likelihood function p(yt(u)|ω1) by:

p(yt(u)|ω1) =
3

∏

i=1

p(yt(i;u)|ω1) (1)

with :

p(yt(i;u)|ω1) ≈ K

N
∑

j=1

qb
t (i, j;u)d(bt(i;u) − j), (2)

where d represents the Kronecker function and K a

constant assigned to standardize the term (dependent

on i and u).
∑N

j=1 qb
t (i, j,u) = 1. qb

t (i, j;u) is a weight

function associated with the discrete model of the like-

lihood function p(yt(u)|ω1). The model evolves in sync

with this weight function. qb
t+1(i, j;u) is updated with

each image by application of the following AR equation:

qb
t+1(i, j;u) =

1

1 + α
.[qb

t (i, j;u)+α.d(bt+1(i;u)−j)] (3)

3.2.2 Shape Model

The shape model is defined by the likelihood of assim-

ilation in the shape category p(yt(u)|ω2). Even though

statistically speaking, some pixels (e.g. those positioned

above the horizon line) display a smaller probability of

belonging to this shape, we are considering herein that

the likelihood of assimilation to the shape category does

not depend on the position of the observed pixel. It thus

becomes possible to approximate the likelihood function

p(yt(u)|ω2) by :

p(yt(i;u)|ω2) ≈ K

N
∑

j=1

qf
t (i, j)d(bt(i;u) − j), (4)

The weights qf
t (i, j) represent a distribution discretiza-

tion, which has been marginalized a priori from the color

of the shape object being sought. When no information

is available on the model of objects present in the fore-

ground, an equal probability hypothesis is to be consid-

ered. In this particular case, the terms qf
t (i, j) stem from

a color histogram of the tracked object, as extracted dur-

ing an initialization phase.

3.2.3 Probabilistic Shape Assimilation Map

A probabilistic shape assimilation map is generated from

the likelihood ratios p(yt(i;u)|ω2)/p(yt(i;u)|ω1). By ex-

pressing this ratio in log-likelihood form, it becomes pos-

sible to build a pseudo-image of the log-likelihood ratio

in which the value associated with the pixel located at

coordinates u is calculated using the following lm,t(u)

function :

lm,t(u)
.
= log (p(yt(i;u)|ω2))− log (p(yt(i;u)|ω1)) (5)

3.3 State Model

The state model, which identifies the trajectory char-

acteristics to be tracked, must integrate the constraints

related to vehicle kinematics. We are proposing to use a

bicycle type of model and then recognize and focus on

many behavioral and stability properties. The hypothe-

ses inherent in this model are as follows:

– no transfer of lateral load; the vehicle is thus com-

pressed onto a single path,
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– no longitudinal transfer,

– no roll or pitch motion,

– tires in a linear configuration,

– constant forward speed V,

– no aerodynamic effects,

– position control, and

– no effect from suspension and chassis flexibility.

These hypotheses all imply that: vehicle acceleration at

all times remains below 0.4 g (i.e. linear operating regime

for tires); the steering angle, drift angle, etc. are small;

and the ground surface is smooth (no suspension dis-

placement). As an initial approach, it has been consid-

ered that vehicles are negotiating the turn at low speed;

centrifugal forces are thus negligible and the tires must

not develop any lateral forces, i.e.:

– rolling without sliding or drift,

– in order for tires not to slide laterally, the instanta-

neous center of rotation (ICR) of each tire must lie

in the middle of the curve.

Let (x, y) be the selected coordinate system; the kine-

matic relations governing this model can then be written

as follows:

ẋ = v. cos β

ẏ = v. sin β

β̇ = v
L . tan δ

(6)

with β representing the vehicle direction and δ the

steering angle of the front wheel within the world coor-

dinate system (the extended Lambert II system 3) along

the vehicle axis.

According to Ackerman’s theory at low-speed behav-

ior, the ICR lies at the intersection of the extension to

3 The absolute reference frame used here is the NTF
geodesic system in extended Lambert II projection.

the rear wheel axis and the perpendicular to the front

wheel plane [6]. The ideal front wheel deviation can be

deduced from the construct illustrated in Figure 2 and

its angle then written: tan δ = L
R , with L denoting the

vehicle wheelbase and R the curve radius of the road. By

adopting the small angle hypothesis δ = L
R , the system

state vector is expressed as follows:

Xt=̇ (Pt, βt, δt, vt)
t

(7)

with Pt
.
= (xt, yt) representing the vehicle position

and vt the vehicle speed within the world coordinate sys-

tem.

Fig. 2 The bicycle model synthesizes the displacement of a
four-wheel vehicle, through the displacement of two wheels
whose centers are connected to a rigid axis of length L. Ack-
erman’s theory serves to estimate the steering angle of the
front axis of a vehicle traveling at low speed.
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3.4 Prediction Model

The bicycle-type kinematic model applied to each parti-

cle evolves according to the following nonlinear form:

xt+1 = xt + T.vt. cos (βt)

yt+1 = yt + T.vt. sin (βt)

βt+1 = βt + T. v
L . tan δt

δt+1 = δt + T.bδ̇

vt+1 = vt + T.ba

(8)

with bδ̇ ∼ N (0, σδ̇) and ba ∼ N (0, σa). The two terms

δ̇ and a are randomly distributed (according to a Gaus-

sian), while the terms σδ and σa represent respectively

the speed deviation range in the front wheel steering an-

gle and the acceleration range, as performed by a stan-

dard vehicle during sampling period T .

3.5 Initialization

The filter initialization process consists of ascribing a hy-

pothesis to each filter particle, such that the entire set of

particles offers a stochastic representation of the density

associated with the particular state, at the initial time.

The vehicle position on the road pavement is initialized

based on observations generated from the first image.

The steering angle is initialized from an a priori distri-

bution calculated as a function of characteristics describ-

ing the target curve. The heading direction is initialized

using an a priori distribution calculated with respect to

curve position and characteristics. The speed is calcu-

lated by the rangefinder at initial position of the vision

process, the two sensors being synchronized temporally.

Determining the a priori distribution on the vehicle

position relies upon a method for detecting cluster cen-

ters, which associates an assimilation probability at the

cluster center with each pixel labeled ”Shape”.

To proceed with this method we take the hypothe-

sis α << 1 and a pixel becomes ”Background” should

its value remains stable for an image number k >> α.

Then, equation 2 can be simplified and the set of shape

pixels Ft are built by means of thresholding the likeli-

hood function associated with the background assimila-

tion :

Ft
.
=

⋃

u∈It

{u|p(yt(u)|ω1) < k.α} (9)

Typically k = 25 and α = 0.01). This probability is

obtained from a non-parametric model based on Parzen

estimators [4]:

πn
t ∝ p(Zt|Xt = Xn

t ) ≈
1

|Ft|

∑

u∈Ft

ϕ(pn
t ,u) (10)

where ϕ(pn
t ,u) is a Gaussian kernel defined by:

ϕ(pn
t ,u) =

1

(2π).|Σ|1/2
exp






−

1

2
(pn

t − u)t
Σ
−1(pn

t − u)







(11)

The covariance matrix Σ of the kernel depends on the

estimated vehicle projection size in the image plane. This

dimension, in pixels, is a function of the vehicle position

in the image; as the vehicle approaches the camera, its

size grows in the image. Figure 3 shows the assimila-

tion probability distribution at the cluster center for the

background/shape extraction example.
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The complexity of this method lies in O(n2). In [7],

we have proposed a stochastic approach in order to re-

duce the cost of running this algorithm.

Fig. 3 Illustration of the method for searching the ”Shape”
point cluster center: Each pixel of the set of ”Shape” points
displays an assimilation probability at the cluster center. The
right-hand side figure is an image of the probability of belong-
ing to the cluster center; as the pixel color becomes redder,
the associated weight rises.

The position part (Pn
t ) of the filter is initialized as a

function of Equation (10). Figure 4 displays an example

of an initialized particle set. To improve this initializa-

tion, the filter is iterated on the first image, by noising

just the position and heading as well as by applying the

observation model described in the next section.

The shape model (marginalized color histogram q
f
t )

can then be built from the pixels belonging to the esti-

mated vehicle.

Fig. 4 Example of particle distribution during the initializa-
tion phase (shown in green).

4 Observation Function

The proposed observation function utilizes the measure-

ments provided by the two available sensors (i.e. color

camera and 1D scanning laser rangefinder). A likelihood

function must be defined for each sensor.

4.1 Vision Likelihood Function

The likelihood function proposed herein relies upon a

simplified three-dimensional geometric model of the ve-

hicle, as depicted in Figure 5. This model is composed of

two nested parallelepipeds. In a general case, the model

may be more complex and contain PM parallelepipeds.

Let M(R0) = {M
(R0)
i }i=1,..,NM

represent the model’s set

of cube vertices ( NM = 8 × PM ), expressed within a

coordinate system associated with model R0. This co-

ordinate system is selected such that the 3 axes all lie

in the same direction as that of the coordinate system

associated with scene Rw. For a given particle Xn
t , the

likelihood (weighting) calculation is determined as the

product of the shape/background likelihood ratios lo-

cated inside the vehicle model projection in the image.

R0

x0

y0

z0

Rw

xw

yw

zw

θt
n

xt
n

yt
n

(Rw)
T(R0)(X

n
t )

Fig. 5 Example of the simple three-dimensional geometric
model used for a vehicle: it is composed of two cubes. The
coordinate system associated with the cube and the other
system associated with the scene are related according to pure
translation. The plane (Oxy) of the world coordinate system
and component axes are merged with the GPS coordinate
system (Lambert II).
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This computation performed for each particle con-

sumes valuable processing time, and we are proposing

herein a fast likelihood calculation method based on an

approximation of the 3D model projection in the image

through its convex hull. Each model point is projected

onto the image via the following equation:

m̃i ∝ Cc.
(Rw)

T(R0)(X
n
t ).M̃

(R0)

i (12)

with M̃ homogeneous coordinates associated with point

M ; Cc is the camera projection matrix, and (Rw)
T(R0)(X

n
t )

the homogeneous transformation matrix between the world

coordinate system and the system associated with the 3D

model (cf. figure 5). This matrix, which depends on Xn
t ,

may be simply written as:

(Rw)
T(R0)(X

n
t ) =

















cos(θn
t ) − sin(θn

t ) 0 xn
t

sin(θn
t ) cos(θn

t ) 0 yn
t

0 0 1 0

0 0 0 1

















(13)

The set M(Ri) = {mi}i=1,..NM
is thus built based on

the projection of 3D model points within the image.

Let E(M(R0);Xn
t ) = {ei}i=1,..,N (ei = (xe

i , y
e
i ) as co-

ordinates of ei in the image plane) be the list of convex

hull points 4. We will now define En
t

.
= E(M(R0);Xn

t )

in order to streamline notations. The likelihood calcula-

tion may be performed efficiently by use of a line-by-line

integral image derived from the log-likelihood ratios cal-

culated in Equation (5) page 5. Since the concept of in-

tegral image is often used in computer vision to increase

performances, it can not be used directly here because

4 Calculation of the convex hull will not be developed in this
article; the calculation procedure is conducted using a classi-
cal algorithm with a complexity expressed in O(N. log N).

the shapes are not combination of rectangles. So, we pro-

pose to extend the concept of integral image to line-by-

line integral image. The resulting image is build using

integration along the current raw of the image (each raw

is independent) and the likelihood calculation is:

lI,t((x, y)T ) =

x
∑

i=1

lm,t((i, y)T ) (14)

Points ei are categorized by pairs featuring the same

y-coordinate values, such that:

En
t = { (xe

1, y
e), (xe

2, y
e),

(xe
3, y

e + 1), (xe
4, y

e + 1), ...

(xe
N−1, y

e + N/2), (xe
N , ye + N/2)}

(15)

Convex hull coding within the set En
t necessitates

a shape discretization along the image lines. Moreover,

special attention needs to be paid to coding the upper

and lower extremities. On the other hand, it is not at all

necessary to sort points positioned on the same line. A

compliance measurement relative to a convex envelope

is calculated in the integral image by application of the

following relation:

a(En
t ) =

∑N/2
j=1 [2.(li,t(e2j) − li,t(e2j−1))

−(xe
2j − xe

2j−1)]
(16)

Figure 6 describes the principle behind the likelihood

calculation method using the integral image. A line-by-

line scanning is performed as part of this method.

The vision weight associated with each particle is di-

rectly correlated with a(En
t , II) by means of the following

expression:
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Line-intregral image

Convex hull

log-likelihood 
ratio image

x

y

li,t((x1, yi)
T ) li,t((x2, yi)

T )

Fig. 6 Illustration of the vision likelihood computation. The
3D model of the vehicle (shown in green) is re-projected onto
the image generated from the background-shape extraction.
This projection is approximated by its convex hull (shown in
red on the lower image). The likelihood calculation proceeds
in a line-by-line integral image of the log-likelihood ratio.

πn
v,t ∝ p(Zt|Xt = Xn

t )
.
= max(0, a(En

t )) (17)

4.2 Telemetric Likelihood Function

The telemetric sensor provides, on a horizontal plane,

the distance from the first obstacle with a resolution of 1

degree. The intersection of the laser beam with a vehicle

yields a set of points; for each particle, a model is now

available for calculating the laser echoes generated from

the intersection of the beam with the simplified 3D model

of the projected vehicle in the world coordinate system.

The likelihood associated with the telemetric observa-

tion can then be calculated from a modified Hausdorff

distance (denoted dh) between the actual and simulated

echoes (cf figure 7) using the following expression:

πn
l,t ∝ p(Zt|Xt = Xn

t )
.
= exp (−λtdh) (18)

where λt is an adjustment parameter (typical value is

20).

Fig. 7 Illustration of the distance computation between sim-
ulated echoes on the 3D model of the cube (shown in green)
and the actual echoes (red).

5 Multi-Source Sampling

When the observation function is composed of terms

stemming from multiple sources, it becomes necessary

to lay out a strategy for combining these terms. A clas-

sical approach consists of assembling a weighting func-

tion composed of a combination of observations gener-

ated from each source. The choice of merge operator of-

ten takes place empirically. We propose an alternative to
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this approach, which calls for performing the combina-

tion step as part of the particle filter re-sampling step.

Upon observation, the filter may be represented by

a set of N particles with an associated weight vector:

{X
(i)
t ,πi

t}i=1,...,N . The weight vector π
i
t, of size M in cor-

respondence with the number of sources, is composed of

the individual particle weight estimated by each source.

To facilitate comprehension, the notations contained in

the remainder of this section will omit the time index t.

5.1 Principle

Multi-source sampling entails generating a new particle

set, by implementing a three-step approach:

1. M particles are sorted (one for each source) accord-

ing to an importance sampling strategy associated

with each source (importance sampling). The out-

put of this step consists of a set of M candidate

particles along with their respective weight vector

{X(i),π(i)}i=1,...,M :

2. A confidence vector, of dimension M , is built using

likelihood ratios estimated for each candidate parti-

cle (this calculation will be detailed in the following

discussion).

3. The chosen particle is derived from a selection per-

formed among candidate particles by applying an im-

portance sampling strategy on the confidence vector.

These three steps are then repeated a total of N times

in order to obtain the complete set.

5.2 Confidence Vector

In the following section, we will describe in detail the sec-

ond step of this multi-source sampling procedure, which

is aimed at building a confidence vector associated with

the set of candidate particles. The underlying principle

consists of calculating the product of likelihood ratios

between weights of the same source, for each pair of can-

didate particles.

As an example, in the three-sensor case, three candi-

date particles are drawn; for each particle, a likelihood

ratio product is calculated, which for the first candidate

particle yields:

r1
.
=

π1
1

π2
1

.
π1

1

π3
1

(19)

where πi
j represents the jth component of vector π

i. In

the case of a blind source (i.e. the values returned by

the observation function associated with this source are

constant), those likelihood ratios in which the source is

present equal one and do not exert any influence on the

calculation of terms ri. In a general case, it is preferable

to introduce log ratios, which makes it possible to com-

pute a vector lr, i.e. the log of r, featuring coefficients

ri, as indicated in the following expression:

lr
.
= M









































1(1×M)






lπ1

−
1

M

∑M
i=1 lπi







1(1×M)






lπ2

−
1

M

∑M
i=1 lπi







...

1(1×M)






lπM

−
1

M

∑M
i=1 lπi















































(20)

where lπi
is the log of vector πi and 1(1×M) is a matrix

composed of a single line and M columns all containing

one.
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By setting Cπ
.
=

1

M

∑M
i=1 lπi

, lr , the following may

be written:

lr = M

















1(1×M) (lπ1
− Cπ)

1(1×M) (lπ2
− Cπ)

...

1(1×M) (lπM
− Cπ)

















(21)

Confidence vector c is obtained by normalizing r through

a coefficient Cc that results in the sum of its elements

equaling one.

c
.
= Cc.exp (lr) (22)

Algorithm 2 Multi-source sampling

Input : Particle set and associated weight vector
{X(i),πi}i=1,...,N , M sources
for n = 1 to N do

- Choose M candidate particles on the basis of
{X(i),π(i)}i=1,...,N and build {X∗(j),π∗(j)}j=1,...,M

where X∗(j) is derived from an importance sampling
drawn on source j weights;
- Calculate vector lr based on Equation 21, and then
calculate confidence vector c

.
= Cc.exp (lr)

- Select the designated particle Xe(n) from among
the candidate particles by proceeding with an im-
portance sampling drawing.

end for

Output : Particle set {Xe(i)}i=1,...,N composed of
the selected particles.

Figure 8 demonstrates how the multi-source sampling

method works for two distinct scenarios, by compar-

ing method behavior with that displayed when sampling

from both a weight function composed of the weight

product from each source and another weight function

composed of the sum of weights from each source. In

the first scenario (left-hand column), source 1 is a blind

source (i.e. returns a constant measurement) and source

2 is unimodal. In this case, the blind source must not

intervene to disturb the sampling, and the new set must

fit the source 2 set. It should be noted that in the case of

sampling using the sum of weights from two sources, the

blind source actually deteriorates the resultant set. On

the other hand, the other two types of sampling behave

quite well. The second scenario illustrates the situation of

two dissonant sources (unimodal, yet centered on a differ-

ent point). The set of particles generated from these two

sources must serve to create two separate modes around

the two dissonant hypotheses. It can be stated that in

the case of product-type sampling, neither of the modes

actually gets conserved. In contrast, the other two types

of sampling yield results consistent with the desired dis-

tribution.
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Fig. 8 Illustration of multi-source sampling method opera-
tions for 2 different scenarios (one in each column). In the
left column, from top to bottom: the first two curves repre-
sent the source response (observation). The third shows the
result of a weight-based importance sampling, calculated as
the product of weights from the two sources. In the fourth
curve, this weight-based importance sampling result is gen-
erated by summing weights from the two sources. The last
curve then displays the result of our proposed multi-source
sampling method.
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6 Experimental Validation

This section will present the experimental campaigns

carried out in order to validate the trajectory tracking

method.

The video system developed as part of the SARI

project has made it possible to continuously record three

color 640 x 480 video streams (cf. Fig. 9), at a fre-

quency of 30 fps, over a several-day period along with

data recorded by a scanning telemetry sensor. The cali-

bration between sensors enables expressing all measure-

ments within a common absolute coordinate system tied

to the GPS sensor coordinate system, which provides the

actual situation in the field.

Fig. 9 The video system is composed of three color cameras,
capable of being easily deployed onsite.

In order to assess the level of measurement accuracy,

a Peugeot 406 type vehicle, equipped with a kinematic

GPS accurate to within a centimeter, has been used.

This vehicle traveled through the test section 20 times

along various trajectories at speeds ranging from 40 to

80 km/hr. The results listed here are aimed at examin-

ing system accuracy as a function of travel speed. Com-

Speed Vision Rangefinder Sensor merge
km/hr ave/std ave/std ave/std

40 0.25/0.18 0.65/0.54 0.17/0.10
60 0.19/0.16 0.72/0.67 0.09/0.06
80 0.18/0.15 0.33/0.22 0.14/0.10

Table 1 Precision for the right camera (error and standard
deviation of error between the estimation and actual field
value output by a kinematic GPS) of the proposed method,
for several travel speeds. It may be remarked that merging the
two sensors serves to considerably improve estimation preci-
sion. Actual field values have been furnished by a kinematic
GPS type of sensor.

puted trajectories were then compared with trajectories

estimated by a vision-only approach, a rangefinder-only

approach and an approach merging the two sources. The

error was quantified as the average distance between each

estimated vehicle position and the straight line passing

through the two closest GPS points. For each test, at

least five vehicle passes were carried out, which enabled

deriving a very rough statistic on the recorded measure-

ments. For the tests actually conducted, the vehicle has

been tracked in a curve over a distance of approximately

100 m. The vehicle model used for these purposes com-

prises a single cube. Finally, according to the empirical

results of the Table 2, for every tracking, we decide to

use 150 particules.

particules number 50 100 150 200 300
average 0.61 0.22 0.13 0.14 0.14

standard deviation 0.61 0.24 0.14 0.14 0.14

Table 2 Precision for the right camera (error and standard
deviation of error between the sensor merge estimation and
GPS) of the proposed method, for several particules number.

Figure 10 shows a tracking example from the test

campaign carried out as part of this research. The model

corresponding to vehicle localization has been re-projected

onto the current image. For the left-hand column, the

method makes exclusive use of data stemming from the

vision sensor. The middle column reflects results based

solely on telemetric data. The green crosses correspond
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with the simulated laser firings re-projected onto the im-

age, while red crosses indicate the actual re-projected

laser data. Lastly, for the right-hand column, the method

employs both sensors. It is observed that at the be-

ginning of the curve, the vision estimation tends to be

rather poor; this is due to the presence of another vehi-

cle crossing the tracked vehicle, thus producing noise in

the background/shape extraction. As the vehicle moves

away from the sensor, the telemetric approach reveals its

flaws, caused by a decrease in the number of laser echoes

returned by the vehicle. The approach merging these two

sensors allows taking advantage of the accurate informa-

tion provided by the laser sensor upon entering the curve

and then that provided by the vision sensor when exiting

the curve.

Table 1 presents the average error and related stan-

dard deviation vs. vehicle speed. It can be noticed that

the level of accuracy varies only slightly with respect to

the tested speed range. Moreover, the two-sensor merge

serves to significantly improve this accuracy, which lies

on the order of 15 cm with a standard deviation of ap-

proximately 10 cm.

Note that these results come from the right camera,

but are extensive to the others cameras. The calibration

phase is same for all the system and the reference frame

is absolute. Figure 11 shows the three sensors merging

with the ground truth.

7 Conclusion - Prospects

This article has set forth a method for estimating vehicle

trajectories by use of a sensor composed of a color cam-

era and a 1D scanning laser rangefinder. Based on a time

monitoring approach formalized by a particle filter, the

algorithm has output, at every point in time, an estima-

Fig. 11 representation of the three trajectories calculated
by each camera and the ground truth associated.

tion of vehicle state (position, direction, speed, driving

angle). We have proposed an original likelihood function

that can be evaluated efficiently through use of a line-

by-line integral image. We also introduced an alternative

to importance sampling, as classically employed in parti-

cle filters. This method has made it possible to implicitly

merge observations stemming from different sources. The

resulting behavior proves to be better than the classical

techniques that rely upon combining weights using alge-

braic operators.

The experiments conducted have enabled quantify-

ing the precision associated with the proposed approach,

thanks to generating actual field values (using a kine-

matic GPS accurate to within 1 cm). The accuracy ob-

tained lies on the order of 20 cm. These tests have also

served to demonstrate the contribution offered by merg-

ing vision with telemetry.

Upcoming research will primarily be focused on im-

proving the background subtraction method, which has

the potential to introduce bias due to the presence of a

vehicle shadow projected onto the pavement [20].

The method discussed in this article is currently oper-

ating within the scope of an ANR-PREDIT project. For

the purpose of covering the entire curve, the system is
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composed of three color cameras with very little overlap

plus a scanning laser rangefinder, which has successfully

analyzed the observations recorded under actual traffic

conditions over several-day periods.
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Fig. 10 Tracking example drawn from the testing campaign performed as part of this research (for the right camera). The
model corresponding to vehicle localization is re-projected onto the current image. For the left-hand column, the method is
confined solely to data stemming from the vision sensor. For the middle column, the method uses only the telemetric data,
with the green crosses corresponding to simulated laser firings re-projected onto the image and red crosses indicating actual
re-projected laser data. The right-hand column depicts method application by combining the two sensors.


