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I. INTRODUCTION 

Alteration of the spontaneous atomic emission rate by non-trivial boundary conditions 

on the radiation was pointed out in a classic paper by Purcell [1]. From Fermi’s golden rule it 

appears that this rate is proportional to the density of mode (DOM) of the radiation in the 

medium. Model of this effect valid in the Wigner-Weisskopf regime, has been done in a 

classical formalism [2,3]. The advent of Photonic Band-Gap (PGB) structures has permitted 

to manipulate the DOM and then to control the spontaneous emission (SE) of atoms. Both 

enhancement and inhibition have been performed in the long wavelength domains by means 

of a one-dimensional PGB (1D-PGB) structure equivalent to a distributed Bragg 

reflector (DBR): it was possible to enhance the emission provided that the emission frequency 

of the atomic transition coincides with the frequencies of the edges of the band-gap and to 

stop it if the emission frequency of the atomic transition is located inside the band-gap [4,5]. 

Indeed the DOM of a DBR may present important peaks at the band-edges that allow the high 

extraction efficiency of the emission. The ability to control the spontaneous emission has 

profound consequence on many optoelectronics devices [6]. 

On another side, the progresses in the techniques of thin film deposition have permitted 

to fabricate periodic multilayered stack on nanometric scale that work as efficient Bragg 

reflector in the short wavelength domain of the electromagnetic spectrum (uv and x-rays) 

[7,8]. Then it appeared that these structures can be implemented to monitor the atomic 

emission in this spectral region. Thus Kossel-like structures have been observed under 

electron excitation in several Bragg mirrors for the Mα emission of tungsten in W/C 

multilayers [9,10] or the Kα emission of silicon in Mo/Si multilayers [11]. These works were, 

to our knowledge, the first experimental evidence of the possibility to enhance atomic SE in 

the x-ray domain by means of a 1D-PBG. The implementation of 1D-PBG as Distributed 

Bragg Reflector in the x-ray domain should play an important role in the development of x-

ray laser [12] as emphasized by Yariv and Yeh. 

In this paper, the feasibility of controlling the SE in the x-ray domain by using Bragg 

multilayer structure is studied through the concept of DOM. First we give the formula 

deduced from Fermi’s golden rule to calculate the SE rate from the DOM and the normal 

modes (NM). Then we explain how to compute the DOM in the Wigner time approach 

(WTA) for absorbing media and the NMs for a Bragg reflector. We discuss the feasibility of 

controlling the SE through numerical examples. Finally the results of the theoretical model 

are compared to experimental data obtained for the Si-K emission line emitted from a Mo/Si 

Bragg reflector under electron excitation. 
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II. SPONTANEOUS EMISSION RATE IN A 1D-PBG STRUCTURE 

The spontaneous emission rate (SER) of an emitting atom is given by Fermi’s golden 

rule : 

 
! (R) = 2"

!2
f H i 2 # ($ i % $ f )      (1) 

in which 

 

i and f  are the initial and final states of energies  !! i / f . H is the interaction 

Hamiltonian of the whole system including emitting atoms, radiation and the optical « box » ; 

it is given by : 

 H = !
!
µ(R).

!
E(R)        (2) 

where 
!µ(R)  and  

!
E(R)  are the dipole moment operator of the atom positioned at R and the 

electric field operator respectively. In the Wigner-Weisskopf regime, the mode density is the 

same classically or quantum electrodynamically ; then the SER can be derived from the 

classical model of a point dipole inside a medium with an inhomogeneous dielectric constant 

ε(r). In this approach the emitting atom is modeled by an harmonically oscillating dipole with 

frequency ω0 and dipole moment   

 

! 
µ  located at R ; the corresponding current density 

 

J(r,t)  to 

is taken : 

 J(r,t) = !
!
µ(R)cos("0 t)#(t)$ (r % R)     (3) 

The steady-state rate of power emission after all transients have vanished is given by : 

 
P(t) = ! 2

2
"2 µ2 ak (R).

!
µ#
2
$ (%0 &%k ) d

3k    (4) 

For sake of consistency the calculation are summarized in the Appendix. By integrating this 

expression over all wave-numbers k, the DOM !(" ) = dk
d"

 appears as a result of changing 

variables k to ωk. It yields the power spectrum Pω of the emitted radiation as follows : 

P! = C "(! ) ak(! )
2

       (5) 

where C is some constant. Since The DOM is independent of position inside either structure, 

the averaging of the power spectrum is effected by replacing the values of 

 

ak(!)
2
by the 

corresponding averaged value : 

ak(! )(z)
2

=
1

Zmax " Zmin
ak(! )(z)

2
dz

Zmin

Zmax

#    (6) 
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The integration is performed along the z-axis in the region occupied by the emitting medium 

between z = Zmin and z = Zmax. 

 

III. DOM FOR ABSORBING MEDIA IN THE WIGNER-TIME APPROACH 

III.1 Matrix transfer formalism for absorbing media 

In the Wigner-time approach the DOM, 

 

! ("),  is considered to be the reciprocal of the 

group velocity v : 

!(" ) = 1
v
=
dk(" )
d"

       (7) 

Since the complex transmission coefficient t(ω) contains phase information from which the 

dispersion relation k(ω) can be extracted, one understands easily that the group velocity v, 

hence the DOM 

 

! (")  can be deduced from t(ω) as explained in a paper [13] by Bendickson et 

al. These authors show that : 

!(" ) = 1
D
y 'x # x 'y
x2 + y2

       (8) 

where D is the total length of the structure, and x and y the real and imaginary part of t, 

respectively; the prime denotes differentiation with respect to ω. It is common to present a 

dimensionless DOM ρ(ω) obtained by multiplying 

 

! (") by the group velocity in the bulk 

medium vbulk. 

Our purpose now is to calculate the transmission coefficient of a N-period Bragg 

reflector made up with absorbing materials. As usual when dealing with the theory of 

electromagnetic propagation in linear stratified structure, we apply the transfer matrix 

formalism. Let us recall that the transfer matrix describes the transfer properties of the 

stratified system : it relates the amplitude of the incoming and outgoing electric fields and its 

expression depends on the geometry under consideration. In the Left-To-Right propagation 

(LTR) case considered in this paper and described in Figure 1, one has : 

 

1
!r

!
"#

$
%&
=
!
M
!
t
0

!
"#

$
%&

        (9) 

with [14,15] : 

 

!
M =

1
!
t

#!r
#!t

!r
!
t

1
#!t

!

"

#
#
#
#

$

%

&
&
&
&

       (10) 
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where  
!
t  and  

!r  are the complex transmission and reflection coefficients of the whole system, 

respectively. The arrow → used as superscript expresses the LTR propagation. 

This expression of the matrix transfer is obtained from the linearity of the problem and 

from the time-reversal symmetry that is the fact that Maxwell’s equations are symmetric 

under time reversal. To describe the time reversal in our context of absorbing media, a special 

complex conjugation is required. We denote this operation by the superscript #. It means a 

standard complex conjugation plus the reversal of all the signs of the imaginary part of the 

complex optical indices. The requirement to this special conjugation can be justified as 

follows: in a time reversed process for propagation in absorbing media, the fields are actually 

amplified ; converting absorption to amplification requires the reversal of the sign of the 

imaginary part of the refractive index. This point is crucial in our calculation. Generally the 

time reversal for lossless systems is got by the mere complex conjugation [14]. 

1

0

Stratified
medium

Z

 
!
t

 
!r

 
Figure 1: Left-to-Right (LTR) propagation scheme. Z is the direction of stratification of the 
medium. 
 

The calculation of the DOM of absorbing composite quasi-periodic stratified structure 

requires the implementation of generalized Stokes reciprocity, where #-conjugation associated 

with the time reversal and parity reversal are involved. This generalization is presented in 

Ref. [15]. For convenience we recall that parity reversal is a process where a field of unit 

amplitude incident from the right gives rise to new Right-To-Left (RTL) complex 

transmission and reflection coefficients  
!
t  and  

!r , respectively. The RTL process is displayed 

in Figure 2. 
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Figure 2: Right-To-Left (RTL) propagation scheme. 
 

III.2 DOM of a N-period Bragg reflector 

The N-period Bragg reflector is made of a stack of N bilayers with two materials 

denoted by 1 and 2. The LTR transfer matrix of the N-period system can be expressed by 

means of the Chebychev polynomials of second kind UN(x) and of the coefficients Cij of the 

bilayer transfer matrix as follows [16] : 

 

!
M =

C11UN !1(Kd) !UN !2 (Kd) C12 UN !1(Kd)
C21UN !1(Kd) C22 UN !1(Kd) !UN !2 (Kd)

"
#$

%
&'

 (11a) 

where  

C11 =
1

1! r1,2
2 (exp(i") ! r1,2

2 exp(!i#))     (11b) 

C22 =
1

1! r1,2
2 (exp(!i") ! r1,2

2 exp(i#))     (11c) 

C12 =
r1,2

1! r1,2
2 (exp(!i") ! exp(i#))      (11d) 

C21 =
r1,2

1! r1,2
2 (exp(i") ! exp(!i#))      (11e) 

with 

! = k"1 d1 + k"2 d2  and ! = k"1 d1 # k"2 d2    (11f) 

The term 

 

k!j  is the perpendicular component of the wave-vector in the layer j = 1,2. It 

obeys the Snell’s law. The coefficient r1,2 is the Fresnel coefficient associated with the 

reflection at the interface between the layer 1 and the layer 2 ; its expression is given by the 

Fresnel formula [16,17]. K is the so-called Bloch-Floquet wave-number ; it corresponds to the 

wave-number associated with an infinite periodic system, i.e. where N → 

 

! . In fact the main 

problem in the determination of the transfer matrix comes from the calculation of K. Different 
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ways can be used to calculate it [16,18]. It can be obtained from the trace S of the bilayer 

transfer matrix as : 

K =
1
d
cos!1(S) = 1

d
cos!1(C11 + C22 )      (12) 

The transmission coefficient   

 

! 
t (!) and the reflection coefficient   

 

! r (!)  can be deduced by 

identification of Eqs. (10) and (11). Thus, 

 
!
t (! ) = (C11UN "1(Kd) "UN "2 (Kd))

"1     (13) 

and 

 
!r (! ) =

!
t (! )C21UN "1(Kd)       (14) 

 

III.3 Numerical for a Mo/Si Bragg reflector with N periods 

The thickness d of the bi-layer is obtained from the Bragg condition : 

d =
c p!

" r sin#r

        (15) 

where 

 

! r  is the Bragg frequency,

 

!r  the Bragg angle and p the order of diffraction. We shall 

see that the value of the Bragg frequency and of the Bragg angle depends on the problem that 

one has to solve. If one wishes to obtain an inhibition of the emission corresponding to the 

resonant frequency ω0,

 

! r  will be chosen to be equal to ω0 so that the resonant frequency lies 

in the forbidden gap. On the contrary if one wishes to obtain an exaltation of the emission at 

resonant frequency ω0, 

 

! r  will be chosen so that the frequencies ω+ and ω- of the band-edges 

coincide with ω0; the choice is not obvious and can be done from a a priori estimation of the 

bandwidth Δω; a strategy to reach this goal will be presented hereafter. 

As an example, we consider a molybdenum (Mo) and silicon (Si) Bragg reflector. This 

Mo/Si system is standard in the soft-x-ray domain as Bragg mirrors. We deal with the Silicon 

K (Si-K) emission, which means the Bragg reflector is designed to be able to diffract at the 

energy E0 = 1740 eV, corresponding to the resonant frequency ω0 = 2643 1015 s-1; as 

explained previously one obtains the period d by applying the condition (15) with 

 

! r  = ω0. 

One has d = 4.8 nm for a Bragg angle 

 

!r  = 4.26°. 

Figure 3 shows the DOM 

 

! (")  and the transmittance T versus the reduced frequency 

Ω = ω/ω0, calculated in the WTA for the Bragg angle 

 

!r  = 4.26°, a duty cycle γ (ratio of the 

Mo layer thickness d1 to the bilayer thickness d) of 0.33 and for different values of the 

number of bilayers N. The calculations are performed for the s-polarization case and we use 
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the following values for the complex optical index [16,19] : nMo = 1 - 0.01316 – i 0.00289 and 

nSi = 1 - 0.00252 – i 0.00055. 

 
Figure 3: Calculation taking into account the absorption of the DOM (a) and the 
transmittance (b) of a Mo/Si Bragg reflector versus the reduced frequency as a function of the 
number of bilayers: 40 (solid line), 100 (dotted line) and 300 (dashed line). 
 

As expected, one observes peaks at the band-edges (Ω− , Ω+ ) but the peak corresponding 

to the reduced frequency Ω- is more intense than the other one at the reduced frequency Ω+. 

This effect corresponds to an asymmetry in the transmittance and arises from the occurrence 

of absorption in the materials. Figure 4 shows that quasi-symmetry is obtained in the no-

absorption case in the case of a Bragg reflector made of 100 Mo/Si bilayers. It is observed 

that the curves with and without absorption are slightly shifted. This is probably due to the 

fact that the calculations are made without taking into account the variation of the indices as a 

function of the wavelength. When the number N increases, the peak at the band-edge Ω−  
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becomes narrower and more intense. This result is in agreement with the well-known fact that 

for an infinite periodic system, the limit of the Brillouin zones in the (k,ω) domain have a 

step-like shape and consequently, the DOM !(" ) = dk(" )
d"

 has the behavior of a Dirac delta 

function. The Ω-bandwidth ΔΩ is equal to 0.062 which means that the spectral width of the 

photonic band-gap ΔEPBG is close to 102 eV. Considering that the natural width of the Si-K 

line is close to 0.5 eV [20], that is much narrower than ΔEPBG, the control of the SE by 

matching the frequency ω0 of the SE to the DOM shape seems feasible. Practically the tuning 

can be obtained by varying the d-spacing or the Bragg angle. 

 
Figure 4: Calculation with (dotted line) and without (solid line) absorption of the DOM (a) 
and the transmittance (b) of a Mo/Si Bragg reflector with 100 bilayers versus the reduced 
frequency. 
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IV. CHOICE OF THE PERIOD FOR INHIBITION AND ENHANCEMENT OF 

THE SPONTANEOUS EMISSION 

IV.1 Inhibition 

The goal is to inhibit the SE of frequency ω0 (energy E0) by locating this frequency 

between the band-edge ω- (or ω+ if absorbing is very small) of the DOM. In this case, one 

may fix the Bragg frequency 

 

! r  that is located practically in the middle of the bandgap (i.e. at 

ω + Δ ω/2 = ω+ - Δ ω/2) just at the resonant frequency ω0; the choice of Bragg angle 

 

!r  is 

generally governed by practical considerations (geometry of the experiment, minimum 

practical value of the d-spacing, …). Once 

 

! r  and 

 

!r  are given, one obtains d from Eq. (15). 

Let us note that in the soft-x-ray domain where the effect of refraction can be important, it is 

valuable to implement of Bragg law that takes into account this effect; for further details, see 

for instance [16]. 

 
IV.2 Enhancement 

This case is more difficult to deal with than the previous one. Indeed to get 

enhancement it is necessary to locate the resonant frequency ω0 of the SE at one of the band-

edge frequencies ω+ or ω- ; the problem is that the value of these frequencies depends on the 

value of the d-spacing. Thus, it is useful to have an approximate value of the bandwidth 

Δω to deduce an approximate value of the band-edge frequencies from the relationship : 

!± = ! r ±
"!
2

       (16) 

The two possible values d+ and d- of the d-spacing are then obtained by combining Eqs. (15) 

and (16) : 

  

 

d± = cp!

("0 !
#"
2
) sin$r

      (17) 

In absence of absorption, analytical expressions are available to estimate Δω. From Eq. (A.8) 

of Ref. [16], one deduces that the following equation can be used to estimate the bandwidth : 

 !" # 4$ !r ("0 ) sinc(p$ % ) "0      (18) 

where sinc denotes the cardinal sine function, sin(x)/x. 
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V. CALCULATION OF THE NORMAL MODES 

V.1 Generalities 

Let us recall that the normal modes 

 

ak (r)  can be defined from the harmonic solution : 

Ak (r,t) = ak (r)exp(!i"k t)       (19) 

of the homogeneous form (i.e. in absence of current) of the wave equation for the vector 

potential A(r,t) : 

 
! "! " A(r,t) + 1

c2
#(r) !!A(r,t) = 0      (20) 

in the transverse jauge condition. In fact since our problem is one-dimensional (1D), the 1D 

NM ak(z) obeys the Helmholtz equation : 

ak "(z) +
!k

2

c2
"(z) ak (z) = 0       (21) 

and must obey a completeness relationship of the form : 

ak
*(z! ) ak (z0 ) dk = " t (z # z0 )      (22) 

where δt stands for the ε-transverse Dirac function. They must also fulfill the boundary 

conditions, that is, their continuity and the continuity of their derivative with respect to the 

space variable z at the boundary as a result of the continuity of the parallel components of the 

magnetic and electric fields. 

 

V.2 Case of the N-period Bragg reflector 

Let us now consider the two homogeneous regions denoted 1 and 2 of optical indices n1 

and n2 respectively, forming the unit cell of the stratified medium, that is the bilayer in a 

Bragg reflector. In each of the region, the NM consists of a superposition of Left- and Right- 

going waves of wave-vector normal component 

 

k!j , j = 1 or 2 as shown in figures 1 and 2. 

Hence, one writes in the first unit cell with index n = 0 : 

aj
(n=0)(z) = Aj exp(i k! j z) + Bj exp("i k! j z)     (23) 

By virtue of the Bloch-Floquet theorem, it follows that the form of the mode in the p-th unit 

cell (n = p) can be generated from the one in the first unit cell (n = 0) by : 

aj
(n= p)(z) = exp(i pK d) Aj exp(i k! j (z " pd)) + Bj exp("i k! j (z " pd))#$ %&,

pd < z < (p +1)d
 (24) 

where K is the Bloch wave-number corresponding to the overall solution 

 

aK(z) for a infinite 

structure (

 

N!"). This wave-number will be determined as shown hereafter. 



 12 

The continuity condition of the mode and its first derivative denoted by prime at z = pd 

and z = d (p + γ) leads to:  

a2
(n= p) (z = pd) = a1

(n= p+1)(z = pd)      (25) 

a '2
(n= p) (z = pd) = a '1

(n= p+1)(z = pd)      (26) 

a1
(n= p+1)(z = d(p + ! )) = a2

(n= p+1)(z = d(p + ! ))    (27) 

and 

a '1
(n= p+1)(z = d(p + ! )) = a '2

(n= p+1)(z = d(p + ! ))    (28) 

By inserting the solutions Eq. (24) in Eqs. (25-28), it follows that the four coefficients Aj  and 

Bj  (j = 1,2) obey the following 4 X 4 matrix equation : 

M̂(K ,k1,k2 ,d,! )

A1
B1
A2
B2

"

#

$
$
$
$

%

&

'
'
'
'

=

0
0
0
0

"

#

$
$
$
$

%

&

'
'
'
'

      (29) 

where the subscript 

 

! has been removed for convenience, with : 

M̂(K ,k1,k2 ,d,! ) =

exp(i"1
+d) exp(i"1

#d) #1 #1
i k1 exp(i"1

+d) #i k1 exp(i"1
#d) #i k2 i k2

# exp(ik1! d) # exp(#ik1! d) exp(ik2! d) exp(#ik2! d)
#ik1 exp(ik1! d) ik1 exp(#ik1! d) ik2 exp(ik2! d) #ik2 exp(#ik2! d)

$

%

&
&
&
&

'

(

)
)
)
)

 (30) 

where ! j
+ /" = K ± kj . 

The condition for obtaining a nontrivial solution of Eq. (30) is that : 

det[M̂(K ,k1,k2,d,! )] = 0       (31) 

that is, 

cos(Kd) = !
(k1 ! k2 )

2

4 k1k2
cos d(k1(" !1) + k2" )[ ] + (k1 + k2 )

2

4 k1k2
cos d(k1(1! " ) + k2" )[ ]  (32) 

Eq. (32) is the dispersion relationship whose solution gives the value of the Bloch wave-

number K. To obtain fully the expression of the mode in the n-th cell, one must determine the 

four coefficients: A1, B1, A2 and B2. This can be done by calculating the kernel of the 

submatrix M̂ (K ,k1,k2 ,d,! ) . One gets : 

A1 = 2 k2 ! exp id"1
!( ) k! exp id # k+( ) + k+ exp id # k!( )$% &'      (33) 

A2 = exp(!i d " k! ) [k! exp id#1
+( ) + k+ exp id (#1

+ + 2" k2 )$% &' ! 2 k2 exp(i d " k+ )]   (34) 
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B1 = exp(!i d " k2 ) { k+ exp id(#1
+ + 2" k2 )$% &' ! 2 k1 exp i d (2K + " k1)[ ]! k! exp id(#1

! + " (2 k1 + k2 ))$% &' }            (35) 

B2 = 2 k1 exp i d (2K +! k+ )[ ] + k" exp i d#1
+( ) " k+ exp i d (#1

" + 2! k1 )$% &'    (36) 

with  

k! = k2 ! k1  and k+ = k2 + k1      (37) 

These results are a generalization of the Kronig-Penney model [14]. 

 

V.3 Kronig-Penney model 

By vanishing the ratio γ (γ → 0), one obtains the results corresponding the Kronig-

Penney (KP) model; let us recall that in this model the thickness of the layer 1 tends to zero 

and the optical potential is given by a Dirac comb. 

From Eqs. (33-37) one obtains the coefficients AKP and BKP for the KP system : 

A1
KP = 2 k2 (1! exp(id"1

! ))       (38) 

B1
KP = 2 k2 (exp(id!1

+ ) "1)       (39) 

A2
KP = k+ exp(id!1

+ ) " k" exp(id!1
" ) " 2 k1 exp(2idK )   (40) 

B2
KP = 2 k1 exp 2 i d K( ) + k! exp i d"1

+( ) ! k+ exp i d"1
!( )   (41) 

in agreement with the results of Ref. [14]. The KP case for an infinite PBG , named “Dirac-

comb superlattice” has been studied in details for both TE and TM polarization in [21] and 

[22]. 

 

VI. POWER SPECTRUM IN THE INHIBITION AND ENHANCEMENT CASES 

We have calculated from Eq. (5) the power spectrum versus the reduced frequency Ω of 

the Si K emission coming from the Mo/Si multilayer system under study in §. III.3. The 

number of bilayers is 40. The power is normalized so that, far away from the band-gap, it 

corresponds to the free-space power, equal to unity. This normalized power is plotted in 

Figure 5. For inhibition, Ω = 1 have to be situated within the band-gap, which means that the 

propagation of the radiation at the frequency ω0 of the SE is forbidden. For enhancement, one 

obtains quite similar figures but with an offset of the abscissa scale : due to the absorption the 

enhancement cannot be achieved at the upper band-edge (Ω+) but only at the lower band-edge 

(Ω-). Assuming a Bragg angle equal to 4.26°, inhibition can be obtained for d = 4.8 nm, while 

for enhancement at Ω+ , d = d+ = 4.65 nm, and for enhancement at Ω− , d = d- = 4.95 nm. One 

notes that these different cases are achieved for values of d-spacing which are different 
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enough to be practically monitored ; indeed in the state-of-the-art d-spacing are monitored at 

better than 0.1 nm. 

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.96 1.00 1.04 1.08

P

!
 

Figure 5: Normalized power of the Si K emission from a Bragg reflector made of 40 Mo/Si 
bilayers. 
 

VII. EXPERIMENT 

The details of the experiment can be found in Ref. [11], so we briefly recall its main 

characteristics. The multilayer is made of 40 Mo/Si bi-layers, the thickness of the Mo and Si 

layers being 1.6 and 3.2 nm respectively. An electron gun is used to produce the Si 1s 

ionizations necessary for the generation of the Si Kα emission. The electron energy is 6 keV 

and in this case all the bi-layers contribute to the emission. The rotation axis of the sample is 

perpendicular to the plane defined by the directions of the electrons and photons. The sample 

is rotated around 4.26°, i.e. the Bragg angle of the multilayer at the Si Kα wavelength 

(0.713 nm), with a precision of 0.09°. This angle is between the sample surface and the 

detection direction and we call it detection angle. During an experiment, the spectrometer, 

whose acceptance angle is 0.23°, is fixed at the Si Kα wavelength whose intensity is 

monitored as a function of the detection angle. The scan is made about ±2° around the 4.26° 

detection angle. It has been verified [11] that a similar experiment performed on a silicon 

single crystal gives a monotonous behavior as a function of the detection angle and a lower 

intensity than in the case with the multilayer. 

We show in Figure 6 the intensity of the Si Kα emission as a function of the detection 

angle. The angular scale is shifted so that the angle of the maximum is zero. The curve 
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increases with the angle until its reaches a maximum. Then a dip occurs, about 0.6° wide, and 

afterwards the intensity increases again. This behavior is well reproduced by the calculation 

of the DOM and the emitted power but on a narrower angular scale : in this case the width of 

the dip a slightly less than 0.2° for the DOM and about 0.3° for the power. The experimental 

and calculated curves are scaled vertically in order that the intensities of their maximum and 

minimum coincide. In the power calculation, the in-depth distribution of the Si K ionizations 

within the multilayer, calculated with a Monte-Carlo code, is used to weight the distribution 

of the NM in Eq. (6). To take into account the instrumental broadening introduced by the 

finite angular acceptance of the spectrometer, we apply a 0.23° moving average on the 

calculated power. The discrepancy between the width of the experimental and calculated 

curves is not well understood, but could be ascribed to a bad account of the effect of the 

acceptance angle of the spectrometer. 
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Figure 6: Intensity of the Si Kα emission coming from a Mo/Si mulilayer excited by 6 keV 
electrons (solid line) as a function of the detection angle and comparison with the calculation 
of the DOM (dotted line) and the emitted power broadened by the angular acceptance of the 
spectrometer (dashed line). 
 

VIII. DISCUSSION AND CONCLUSION 

The x-ray SER of a 1D-PBG-embedded emitter can be enhanced provided that the 

emission energy coincide with the band edge energies of the DOM. On the contrary the 

spontaneous emission will be partially extinguished if the emission energy is within the 

forbidden band of the DOM. To obtain enhancement of the SE, one has to center the 
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forbidden band on an appropriate energy chosen so that the emission energy coincide with 

band edge energies. To do it, it is necessary to choose the correct d-spacing or detection angle 

θ, as demonstrated by the presented θ-scan experiment on a Mo/Si multilayer. 

Nevertheless one has to keep in mind that the 1D-PBG is not a total omnidirectional 

band gap, which means that a complete suppression or enhancement of the total SE is not 

possible in all directions with this kind of device. It has been shown that in a high contrast 1-

D PGB, even in mid-gap emission, the SE can be enhanced parallel to the stack layers where 

the high-index layers act as resonant waveguides [23]. To achieve overall SE suppression, a 

full 3D-PBG is required. One has to emphasize that this task is not obvious and evidence of 

crystals exhibiting a full photonic band-gap has not been reported to date even in the visible 

light. A step towards an extension of the emission inhibition to further directions is the 

increase of the “dimensionality’” of the PBG. In the x-ray regime, recent development of the 

so-called lamellar multilayer gratings [24] could offer an opportunity to achieve this goal. 

We plan to extend the present study to these gratings both theoretically and experimentally. 

The control of the spontaneous emission can also be obtained in more sophisticated 

systems such as a Fabry-Pérot (FP) resonators with the emitters located within the FP spacer. 

In this case one can possibly draw advantages from the resonant defect states located within 

the forbidden band of the DOM [14,18]. 

It is important to be aware that the PBG does not act as a filter that would yield only a 

relative enhancement; the PBG gives rise to an absolute enhancement that could be profitably 

implemented for low-threshold lasing. The inhibition of the spontaneous emission could be 

used to favor the stimulated emission in an x-ray lasing system. 
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Appendix 

The power radiated by the current J(r,t) contained in the volume V and associated with 

the radiating dipole can be written [25] : 

P(t) = 1
c

J(r,t)
v! ."A(r,t)

"t
dV      (A.1) 

Since the potential A(r,t) can be expressed via the dyadic propagator  
!
D(r, t;R,! )  which obeys 

the homogeneous wave Eq. (22), as follows [26] : 

 
A(r,t) = 4!

c
d" dV

!
D(r,t;R," )

V#
$%

t

# .J(r,t)     (A.2) 

and since   

 

! 
D (r,t;R,!)  can be expanded in the NMs a(r) by : 

 

!
D(r,t;R,! ) = c2 (t " ! )sinc # k (t " ! )[ ] ak* (R)ak (r)dk$   (A.3) 

where sinc stands for the cardinal sine, the total energy W (T ) = P(t) dt
!"

T

#  is given by : 

W (T ) = ! dk" dt dV J(r,t).ak (r) exp(#i$kt)
V
"

#%

T

"
2

   (A.4) 

Assuming that the current density is given by Eq. (3), the total energy is in this case : 

 
W (t) = ! "2 µ2 ak (R).

!
µ#
2 t
2

$
%&

'
()
2

sinc2 ("*+k )
t
2

,
-.

/
01
d 3k  (A.5) 

Eq. (4) is deduced from Eq. (A.4) by considering the steady-state rate of emission power : 

P(t!") =
t!"
lim

dW (t)
dt       (A.6) 


