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Approximate Bayesian computation (ABC) have become an essen-
tial tool for the analysis of complex stochastic models. Grelaud
et al. [(2009) Bayesian Anal 3:427–442] advocated the use of ABC
for model choice in the specific case of Gibbs random fields, relying
on an intermodel sufficiency property to show that the approxima-
tion was legitimate. We implemented ABC model choice in a wide
range of phylogenetic models in the Do It Yourself-ABC (DIY-ABC)
software [Cornuet et al. (2008) Bioinformatics 24:2713–2719]. We
now present arguments as to why the theoretical arguments for
ABC model choice are missing, because the algorithm involves
an unknown loss of information induced by the use of insufficient
summary statistics. The approximation error of the posterior prob-
abilities of the models under comparison may thus be unrelated
with the computational effort spent in running an ABC algorithm.
We then conclude that additional empirical verifications of the
performances of the ABC procedure as those available in DIY-ABC
are necessary to conduct model choice.

Bayes factor ∣ Bayesian model choice ∣ likelihood-free methods ∣
sufficient statistics ∣ consistent tests

Inference on population genetic models such as coalescent trees
is one representative example of cases when statistical analyses

such as Bayesian inference cannot easily operate because the like-
lihood function associated with the data cannot be computed in a
manageable time (1–3). The fundamental reason for this impos-
sibility is that the model associated with coalescent data has to
integrate over trees of high complexity.

In such settings, traditional approximation tools such as Monte
Carlo simulation (4) from the posterior distribution are unavail-
able for practical purposes. Indeed, due to the complexity of the
latent structures defining the likelihood (like the coalescent tree),
their simulation is too unstable to bring a reliable approximation
in a manageable time. Such complex models call for a practical
if cruder approximation method, the approximate Bayesian com-
putation (ABC) methodology (1, 5). This rejection technique
bypasses the computation of the likelihood via simulations from
the corresponding distribution (see refs. 6 and 7 for recent sur-
veys, and ref. 8 for the wide and successful array of applications
based on implementations of ABC in genomics and ecology).

We argue here that ABC is a generally valid approximation
method for doing Bayesian inference in complex models. How-
ever, without further justification, ABCmethods cannot be trusted
to discriminate between two competing models when based on in-
sufficient summary statistics. We exhibit simple examples in which
the information loss due to insufficiency leads to inconsistency, i.e.,
when the ABC model selection fails to recover the true model,
even with infinite amounts of observation and computation. On
the one hand, ABC using the entire data leads to a consistent mod-
el-choice decision, but it is clearly infeasible in most settings. On
the other hand, too much information loss due to insufficiency
leads to a statistically invalid decision procedure. The challenge
is in achieving a balance between information loss and consistency.

Theoretical results that mathematically validate model choice for
insufficient statistics are currently lacking on a general basis.

Our conclusion at this stage is to opt for a cautionary approach
in ABC model choice, handling it as an exploratory tool rather
than trusting the Bayes factor approximation. The corresponding
degree of approximation cannot be evaluated, except via Monte
Carlo evaluations of the model selection performances of ABC.
More empirical measures such as those proposed in the DIY-
ABC software (3) and in ref. 9 thus seem to be the only available
solution at the current time for conducting model comparison.

We stress that, although refs. 10 and 11 repeatedly expressed
reservations about the formal validity of the ABC approach in
statistical testing, those criticisms were rebutted in refs. 12–14
and are not relevant for the current paper.

Statistical Methods
The ABC Algorithm. The setting in which ABC operates is the
approximation of a simulation from the posterior distribution
πðθjyÞ ∝ πðθÞf ðyjθÞ when distributions associated with both the
prior π and the likelihood f can be simulated (the latter being
unavailable in closed form). The first ABC algorithm was intro-
duced by ref. 5 as follows: Given a sample y from a sample space
D, a sample ðθ1;…;θMÞ is produced by

Algorithm 1: ABC sampler
for i ¼ 1 to N do
repeat

Generate θ0 from the prior distribution πð·Þ
Generate z from the likelihood f ð· jθ0Þ

until ρfηðzÞ;ηðyÞg ≤ ϵ
set θi ¼ θ0,

end for

The parameters of the ABC algorithm are the so-called sum-
mary statistic ηð·Þ, the distance ρf· ; ·g, and the tolerance level
ϵ > 0. The approximation of the posterior distribution πðθjyÞ pro-
vided by the ABC sampler is to instead sample from the marginal
in θ of the joint distribution

πϵðθ;zjyÞ ¼
πðθÞf ðzjθÞIAϵ;y

ðzÞR
Aϵ;y×Θ πðθÞf ðzjθÞdzdθ ;

where IBð·Þ denotes the indicator function of B and
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Aϵ;y ¼ fz ∈ DjρfηðzÞ;ηðyÞg ≤ ϵg:

The basic justification of the ABC approximation is that, when
using a sufficient statistic η and a small (enough) tolerance ϵ,
we have

πϵðθjyÞ ¼
Z

πϵðθ;zjyÞdz ≈ πðθjyÞ:

In practice, the statistic η is necessarily insufficient (because
only exponential families enjoy sufficient statistics with fixed
dimension; see ref. 15) and the approximation then converges to
the less informative πðθjηðyÞÞ when ϵ goes to zero. This loss of
information is a necessary price to pay for the access to compu-
table quantities and πðθjηðyÞÞ provides a convergent inference
on θ when θ is identifiable in the distribution of ηðyÞ (16). While
acknowledging the gain brought by ABC in handling Bayesian
inference in complex models, and the existence of involved sum-
mary selection mechanisms (17, 18), we demonstrate here that
the loss due to the ABC approximation may be arbitrary in the
specific setting of Bayesian model choice via posterior model
probabilities.

ABC Model Choice. The standard Bayesian tool for model compar-
ison is the marginal likelihood (19)

wðyÞ ¼
Z
Θ
πðθÞf ðyjθÞdθ;

which leads to the Bayes factor for comparing the evidences of
models with likelihoods f 1ðyjθ1Þ and f 2ðyjθ2Þ,

B12ðyÞ ¼
w1ðyÞ
w2ðyÞ

¼
R
Θ1

π1ðθ1Þf 1ðyjθ1Þdθ1R
Θ2

π2ðθ2Þf 2ðyjθ2Þdθ2
:

As detailed in ref. 12, it provides a valid criterion for model com-
parison that is naturally penalized for model complexity.

Bayesian model choice proceeds by creating a probability
structure across M models (or likelihoods). It introduces the
model index M as an extra unknown parameter, associated with
its prior distribution, πðM ¼ mÞ (m ¼ 1;…;M), whereas the prior
distribution on the parameter is conditional on the value m of
the M index, denoted by πmðθmÞ and defined on the parameter
space Θm. The choice between those models is then driven by the
posterior distribution of M,

PðM ¼ mjyÞ ¼ πðM ¼ mÞwmðyÞ∕∑
k

πðM ¼ kÞwkðyÞ;

where wkðyÞ denotes the marginal likelihood for model k.
Although this posterior distribution is straightforward to inter-

pret, it offers a challenging computational conundrum in Bayesian
analysis. When the likelihood is not available, ABC represents the
almost unique solution. Ref. 5 describes the use of model choice
based on ABC for distinguishing between different mutation
models. The justification behind the method is that the average
ABC acceptance rate associated with a given model is propor-
tional to the posterior probability corresponding to this approx-
imative model, when identical summary statistics, distance, and
tolerance level are used over all models. In practice, an estimate
of the ratio of marginal likelihoods is given by the ratio of
observed acceptance rates. Using Bayes formula, estimates of the
posterior probabilities are straightforward to derive. This ap-
proach has been widely implemented in the literature (see, e.g.,
refs. 20–23).

A representative illustration of the use of an ABC model-
choice approach is given by ref. 21, which analyses the European
invasion of the Western corn rootworm, North America’s most
destructive corn pest. Because this pest was initially introduced

in Central Europe, it was believed that subsequent outbreaks
in Western Europe originated from this area. Based on an ABC
model-choice analysis of the genetic variability of the rootworm,
the authors conclude that this belief is false: There have been
at least three independent introductions from North America
during the past two decades.

The above estimate is improved by regression regularization
(24), where model indices are processed as categorical variables
in a polychotomous regression. When comparing two models,
this involves a standard logistic regression. Rejection-based ap-
proaches were lately introduced by refs. 3, 25, and 26, in a Monte
Carlo simulation of model indices as well as model parameters.
Those recent extensions are already widely used in population
genetics, as exemplified by refs. 27–36. Another illustration of
the popularity of this approach is given by the availability of four
softwares implementing ABC model-choice methodologies:

• ABC-SysBio, which relies on a sequential Monte Carlo (SMC)-
based ABC for inference in system biology, including model
choice (26).

• ABCToolbox, which proposes SMC and Markov chain Monte
Carlo implementations, as well as Bayes factor approxima-
tion (37).

• DIY-ABC, which relies on a regularized ABC model choice
(ABC-MC) algorithm on population history using molecular
markers (3).

• PopABC, which relies on a regular ABC-MC algorithm for
genealogical simulation (38).

As exposed in, e.g., refs. 25, 39, or 40, once M is incorporated
within the parameters, the ABC approximation to its posterior
follows from the same principles as in regular ABC. The corre-
sponding implementation is as follows, using for the summary
statistic a statistic ηðzÞ ¼ fη1ðzÞ;…;ηMðzÞg that is the concatena-
tion of the summary statistics used for all models (with an obvious
elimination of duplicates):

Algorithm 2: ABC-MC
for i ¼ 1 to N do
repeat
Generate m from the prior πðM ¼ mÞ
Generate θm from the prior πmðθmÞ
Generate z from the model fmðzjθmÞ

until ρfηðzÞ;ηðyÞg ≤ ϵ
Set mðiÞ ¼ m and θðiÞ ¼ θm

end for

The ABC estimate of the posterior probability πðM ¼ mjyÞ is
then the frequency of acceptances from model m in the above
simulation π̂ðM ¼ mjyÞ ¼ N−1 ∑N

i¼1 ImðiÞ¼m. This also corre-
sponds to the frequency of simulated pseudodatasets from model
m that are closer to the data y than the tolerance ϵ. In order to
improve the estimation by smoothing, ref. 3 follows the rationale
that motivated the use of a local linear regression in ref. 2 and
relies on a weighted polychotomous regression to estimate
πðM ¼ mjyÞ based on the ABC output. This modeling is imple-
mented in the DIY-ABC software.

The Difficulty with ABC-MC. There is a fundamental discrepancy
between the genuine Bayes factors/posterior probabilities and
the approximations resulting from ABC-MC.

The ABC approximation to a Bayes factor, B12 say, resulting
from Algorithm 2, is

cB12ðyÞ ¼ πðM ¼ 2Þ∑
N

i¼1

ImðiÞ¼1∕πðM ¼ 1Þ∑
N

i¼1

ImðiÞ¼2:

An alternative representation is given by
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cB12ðyÞ ¼
πðM ¼ 2Þ
πðM ¼ 1Þ

∑
T

t¼1
Imt¼1IρfηðztÞ;ηðyÞg≤ϵ

∑
T

t¼1
Imt¼2IρfηðztÞ;ηðyÞg≤ϵ

;

where the pairs ðmt;ztÞ are simulated from the joint prior and T is
the number of simulations necessary for N acceptances in Algo-
rithm 2. In order to study the limit of this approximation, we first
let T go to infinity. (For simplification purposes and without loss
of generality, we choose a uniform prior on the model index.) The
limit of cB12ðyÞ is then

Bϵ
12ðyÞ ¼

P½M ¼ 1;ρfηðzÞ;ηðyÞg ≤ ϵ�
P½M ¼ 2;ρfηðzÞ;ηðyÞg ≤ ϵ�

¼
RR
IρfηðzÞ;ηðyÞg≤ϵπ1ðθ1Þf 1ðzjθ1Þdzdθ1RR
IρfηðzÞ;ηðyÞg≤ϵπ2ðθ2Þf 2ðzjθ2Þdzdθ2

¼
RR
Iρfη;ηðyÞg≤ϵπ1ðθ1Þf η1ðηjθ1Þdηdθ1RR
Iρfη;ηðyÞg≤ϵπ2ðθ2Þf η2ðηjθ2Þdηdθ2

;

where f η1ðηjθ1Þ and f η2ðηjθ2Þ denote the densities of ηðzÞ when
z ∼ f 1ðzjθ1Þ and z ∼ f 2ðzjθ2Þ, respectively. By L’Hospital formula,
if ϵ goes to zero, the above converges to

Bη
12ðyÞ ¼

Z
π1ðθ1Þf η1ðηðyÞjθ1Þdθ1∕

Z
π2ðθ2Þf η2ðηðyÞjθ2Þdθ2;

namely the Bayes factor for testing model 1 versus model 2 based
on the sole observation of ηðyÞ. This result reflects the current
perspective on ABC: The inference derived from the ideal ABC
output when ϵ ¼ 0 uses only the information contained in ηðyÞ.
Thus, in the limiting case, i.e., when the algorithm uses an infinite
computational power, the ABC odds ratio does not account for
features of the data other than the value of ηðyÞ, which is why the
limiting Bayes factor depends only on the distribution of η under
both models.

When running ABC for point estimation, the use of an insuffi-
cient statistic does not usually jeopardize convergence of the
method. As shown, e.g., in ref. 16, Theorem 2, the noisy version
of ABC as an inference method is convergent under usual reg-
ularity conditions for model-based Bayesian inference (41), in-
cluding identifiability of the parameter for the insufficient
statistic η. In contrast, the loss of information induced by η may
seriously impact model-choice Bayesian inference. Indeed, the
information contained in ηðyÞ is lesser than the information con-
tained in y and this even in most cases when ηðyÞ is a sufficient
statistic for both models. In other words, ηðyÞ being sufficient
for both f 1ðyjθ1Þ and f 2ðyjθ2Þ does not usually imply that ηðyÞ is
sufficient for fm;fmðyjθmÞg. To see why this is the case, consider
the most favorable case, namely when ηðyÞ is a sufficient statistic
for both models. We then have by the factorization theorem (15)
that f iðyjθiÞ ¼ giðyÞf ηi ðηðyÞjθiÞ ði ¼ 1;2Þ; i.e.,

B12ðyÞ ¼
w1ðyÞ
w2ðyÞ

¼
R
Θ1

πðθ1Þg1ðyÞf η1ðηðyÞjθ1Þdθ1R
Θ2

πðθ2Þg2ðyÞf η2ðηðyÞjθ2Þdθ2

¼ g1ðyÞ
R
π1ðθ1Þf η1ðηðyÞjθ1Þdθ1

g2ðyÞ
R
π2ðθ2Þf η2ðηðyÞjθ2Þdθ2

¼ g1ðyÞ
g2ðyÞ

Bη
12ðyÞ: [1]

Thus, unless g1ðyÞ ¼ g2ðyÞ, as in the special case of Gibbs random
fields detailed below, the two Bayes factors differ by the ratio
g1ðyÞ∕g2ðyÞ, which is equal to one only in a very small number
of known cases. This decomposition is a straightforward proof
that a modelwise sufficient statistic is usually not sufficient across
models, hence for model comparison. An immediate corollary is
that the ABC-MC approximation does not always converge to the
exact Bayes factor.

The discrepancy between limiting ABC and genuine Bayesian
inferences does not come as a surprise, because ABC is indeed an
approximation method. Users of ABC algorithms are therefore
prepared for some degree of imprecision in their final answer,
a point stressed by refs. 16 and 42 when they qualify ABC as exact
inference on a wrong model. However, the magnitude of the
difference between B12ðyÞ and Bη

12ðyÞ expressed by Eq. 1 is such
that there is no direct connection between both answers. In a gen-
eral setting, if η has the same dimension as one component of the
n components of y, the ratio g1ðyÞ∕g2ðyÞ is equivalent to a density
ratio for a sample of size OðnÞ; hence it can be arbitrarily small or
arbitrarily large when n grows. Contrastingly, the Bayes factor
Bη
12ðyÞ is based on an equivalent to a single observation and hence

does not necessarily converge with n to the correct limit, as shown
by the Poisson and normal examples below and in SI Text. The
conclusion derived from the ABC-based Bayes factor may there-
fore completely differ from the conclusion derived from the exact
Bayes factor and there is no possibility of a generic agreement
between both, or even of a manageable correction factor. This
discrepancy means that a theoretical validation of the ABC-based
model-choice procedure is currently missing and that, due to
this absence, potentially costly simulation-based assessments are
required when calling for this procedure.

Therefore, users must be warned that ABC approximations to
Bayes factors do not perform as standard numerical or Monte
Carlo approximations, with the exception of Gibbs random fields
detailed in the next section. In all cases when g1ðyÞ∕g2ðyÞ differs
from one, no inference on the true Bayes factor can be derived
from the ABC-MC approximation without further information
on the ratio g1ðyÞ∕g2ðyÞ, most often unavailable in settings where
ABC is necessary.

Ref. 40 also derived this relation between both Bayes factors
in their formula 18. Although they still advocate the use of
ABC model choice in the absence of sufficient statistic, we stress
that no theoretical guarantee can be given on the validity of the
ABC approximation to the Bayes factor and hence of its use as a
model-choice procedure.

Note that the authors of ref. 43 resort to full allelic distributions
in an ABC framework, instead of choosing summary statistics.
They show how to apply ABC using allele frequencies to draw
inferences in cases where selecting suitable summary statistics is
difficult (and where the complexity of the model or the size of
dataset prohibits the use of full-likelihood methods). In such set-
tings, ABC-MC does not suffer from the divergence exhibited
here because the measure of distance does not involve a reduction
of the sample. The same comment applies to the ABC-SysBio soft-
ware of ref. 26, which relies on the whole dataset. The theoretical
validation of ABC inference in hidden Markov models by ref. 44
should also extend to the model-choice setting because the
approach does not rely on summary statistics but instead on the
whole sequence of observations.

Results
The Specific Case of Gibbs Random Fields. In an apparent contradic-
tion with the above, ref. 25 showed that the computation of the
posterior probabilities of Gibbs random fields under competition
can be done via ABC techniques, which provide a converging
approximation to the true Bayes factor. The reason for this result
is that, for these models in the above ratio Eq. 1, g1ðyÞ ¼ g2ðyÞ.
The validation of an ABC comparison of Gibbs random fields is
thus that their specific structure allows for a sufficient statistic
vector that runs across models and therefore leads to an exact
(when ϵ ¼ 0) simulation from the posterior probabilities of the
models. Each Gibbs random field model has its own sufficient
statistic ηmð·Þ, and ref. 25 exposed the fact that the vector of
statistics ηð·Þ ¼ ðη1ð·Þ;…;ηMð·ÞÞ is also sufficient for the joint
parameter ðM;θ1;…;θMÞ.
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The authors of ref. 40 point out that this specific property of
Gibbs random fields can be extended to any exponential family
(hence to any setting with fixed-dimension sufficient statistics; see
ref. 15). Their argument is that, by including all sufficient statis-
tics and all dominating measure statistics in an encompassing
model, models under comparison are submodels of the encom-
passing model. The concatenation of those statistics is then jointly
sufficient across models. Although this encompassing principle
holds in full generality, in particular when comparing models that
are already embedded, we think it leads to an overly optimistic
perspective about the merits of ABC for model choice: In prac-
tice, most complex models do not enjoy sufficient statistics (if
only because they are beyond exponential families). The Gibbs
case processed by ref. 25 therefore happens to be one of the very
few realistic counterexamples. As demonstrated in the next
section and in the normal example in SI Text, using insufficient
statistics is more than a mere loss of information. Looking at what
happens in the limiting case when one relies on a common mod-
elwise sufficient statistic is a formal but useful study because it
sheds light on the potentially huge discrepancy between the ABC-
based and the true Bayes factors. To develop a solution to the pro-
blem in the formal case of the exponential families does not help
in understanding the discrepancy for nonexponential models.

Arbitrary Ratios. The difficulty with the discrepancy between
B12ðyÞ and Bη

12ðyÞ is that this discrepancy is impossible to evaluate
in a general setting, whereas there is no reason to expect a reason-
able agreement between both quantities. A first illustration was
produced by ref. 45 in the case of MAðqÞ models. A second illus-
tration is detailed in SI Text for the normal mode; see Fig. S1.

A simple illustration of the discrepancy due to the use of a
modelwise sufficient statistic is a sample y ¼ ðy1;…;ynÞ that could
come either from a Poisson PðλÞ distribution or from a geo-
metric GðpÞ distribution, already introduced in ref. 25 as a coun-
terexample to Gibbs random fields and later reprocessed in
ref. 40 to support their sufficiency argument. In this case, the sum
S ¼ ∑n

i¼1 yi ¼ ηðyÞ is a sufficient statistic for both models but not
across models. The distribution of the sample given S is a multi-
nomial MðS;1∕n;…;1∕nÞ distribution when the data are Poisson,
whereas it is the uniform distribution over the y’s such that
∑iyi ¼ S in the geometric case, because S is then a negative
binomial Negðn;pÞ variable. The discrepancy ratio is therefore

g1ðyÞ∕g2ðyÞ ¼ nþ S − 1

S

� �
S!n−S∕

Y
i

yi!:

When simulating n Poisson or geometric variables and using prior
distributions as exponential λ ∼ Eð1Þ and uniform p ∼Uð0;1Þ on
the parameters of the respective models, the exact Bayes factor is
available and the distribution of the discrepancy is therefore
available. Fig. S2 gives the range of B12ðyÞ versus Bη

12ðyÞ, showing
that Bη

12ðyÞ is then unrelated with B12ðyÞ: The values produced by
both approaches have nothing in common. As noted above, the
approximation Bη

12ðyÞ based on the sufficient statistic S is produ-
cing figures of the magnitude of a single observation, whereas the
true Bayes factor is of the order of the sample size.

The discrepancy between both Bayes factors is in fact increas-
ing with the sample size, as shown by the following result:

Lemma. Consider model selection between model 1: PðλÞ with
prior distribution π1ðλÞ equal to an exponential Eð1Þ distribution
and model 2: GðpÞ with a uniform prior distribution π2 when the
observed data y consists of independent observations with expecta-
tion E½yi� ¼ θ0 > 0. Then SðyÞ ¼ ∑n

i¼1 yi is the minimal sufficient
statistic for both models and the Bayes factor based on the sufficient
statistic SðyÞ, Bη

12ðyÞ, satisfies

lim
n→∞

Bη
12ðyÞ ¼ θ−10 ðθ0 þ 1Þ2e−θ0 a:s:

Therefore, the Bayes factor based on the statistic SðyÞ is not
consistent; it converges to a nonzero, finite value.

In this specific setting, ref. 40 shows that adding P ¼ Q
iyi! to

the S creates a statistic ðS;PÞ that is sufficient across both models.
Although this is mathematically correct, it does not provide
further understanding of the behavior of ABC model choice in
realistic settings: Outside formal examples such as the one above
and well-structured if complex exponential families such as Gibbs
random fields, it is not possible to devise completion mechanisms
that ensure sufficiency across models, or even select well-discri-
minating statistics. It is therefore more fruitful to study and detect
the diverging behavior of the ABC approximation as given, rather
than attempting at solving the problem in a specific and for-
mal case.

Population Genetics.We recall that ABC has first been introduced
by population geneticists (2, 5) for statistical inference about
the evolutionary history of species, because no likelihood-based
approach existed apart from very simple and hence unrealistic
situations. This approach has since been used in an increasing
number of biological studies (20, 24, 46), most of them including
model choice. It is therefore crucial to get insights into the valid-
ity of such studies, particularly when they deal with species of
economical or ecological importance (see, e.g., ref. 47). To this
end, we need to compare ABC estimates of posterior probabil-
ities to reliable likelihood-based estimates. Combining different
modules based on ref. 48, it is possible to approximate the like-
lihood of population genetic data through importance sampling
(IS) even in complex scenarios. In order to evaluate the potential
discrepancy between ABC-based and likelihood-based posterior
probabilities of evolutionary scenarios, we designed two experi-
ments based on simulated data with limited information content,
so that the choice between scenarios is problematic. This setting
thus provides a wide enough set of intermediate values of model
posterior probabilities, in order to better evaluate the divergence
between ABC and likelihood estimates.

In the first experiment, we consider two populations (1 and 2)
having diverged at a fixed time in the past and a third population
(3) having diverged from one of those two populations (scenarios
1 and 2, respectively). Times are set to 60 generations for the first
divergence and to 30 generations for the second divergence. One
hundred pseudo observed datasets have been simulated, repre-
sented by 15 diploid individuals per population genotyped at
five independent microsatellite loci. These loci are assumed to
evolve according to the strict stepwise mutation model; i.e., when
a mutation occurs, the number of repeats of the mutated gene
increases or decreases by one unit with equal probability. The
mutation rate, common to all five loci, has been set to 0.005 and
effective population sizes to 30. In this experiment, both scenarios
have a single parameter: the effective population size, assumed
to be identical for all three populations. We chose a uniform
prior U½2;150� for this parameter (the true value being 30). The
IS algorithm was performed using 100 coalescent trees per par-
ticle. The marginal likelihood of both scenarios has been com-
puted for the same set of 1,000 particles, and they provide the
posterior probability of each scenario. The ABC computations
have been performed with DIY-ABC (3). A reference table of
2 million datasets has been simulated using 24 usual summary
statistics (provided in Table S1) and the posterior probability
of each scenario has been estimated as their proportion in the
500 simulated datasets closest to the pseudo observed one. This
population genetic setting does not allow for a choice of sufficient
statistics, even at the model level.
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The second experiment also opposes two scenarios including
three populations, two of them having diverged 100 generations
ago and the third one resulting from a recent admixture between
the first two populations (scenario 1) or simply diverging from
population 1 (scenario 2) at the same time of 5 generations in
the past. In scenario 1, the admixture rate is 0.7 from population
1. Pseudo observed datasets (100) of the same size as in experi-
ment 1 (15 diploid individuals per population, 5 independent mi-
crosatellite loci) have been generated for an effective population
size of 1,000 and mutation rates of 0.0005. In contrast with experi-
ment 1, analyses included the following six parameters (provided
with corresponding priors): admixture rate (U½0.1;0.9�), three
effective population sizes (U½200;2000�), the time of admixture/
second divergence (U½1;10�), and the time of the first divergence
(U½50;500�). To account for a higher complexity in the scenarios,
the IS algorithm was performed with 10,000 coalescent trees per
particle. Apart from this change, both ABC and likelihood ana-
lyses have been performed in the same way as experiment 1.

Fig. 1 shows a reasonable fit between the exact posterior prob-
ability of model 1 (evaluated by IS) and the ABC approximation
in the first experiment on most of the 100 simulated datasets,
even though the ABC approximation is biased toward 0.5. When
using 0.5 as the decision boundary between model 1 and model 2,
there is hardly any discrepancy between both approaches, demon-
strating that model choice based on ABC can be trusted in this
case. Fig. 2 considers the same setting when moving from 24 to
15 summary statistics (given in Table S1): The fit somehow de-
grades. In particular, the number of opposite conclusions in the
model choice moves to 12%. In the more complex setting of the
second experiment, the discrepancy worsens, as shown in Fig. 3.
The number of opposite conclusions reaches 26% and the fit
between both versions of the posterior probabilities is consider-
ably degraded, with a correlation coefficient of 0.643.

The validity of the importance sampling approximation can
obviously be questioned in both experiments; however, Figs. S3
and S4 display a strong stability of the posterior probability IS
approximation across 10 independent runs for 5 different data-
sets and give proper confidence in this approach. Increasing the
number of loci to 50 and the sample size to 100 individuals
per population (see SI Text) leads to posterior probabilities of
the true scenario overwhelmingly close to one (Fig. S5), thus blur-

ring the distinction between ABC and likelihood-based estimates
but also reassuring the ability of ABC to provide the right choice
of model with a higher information content of the data. We note
that, for this experiment, all ABC-based decisions conclude in
favor of the correct model. As shown in Fig. S6, this second ex-
periment requires an increase in the number of importance sam-
pling simulations because of a higher variability in the likelihood.

Discussion
Since its introduction by refs. 1 and 5, ABC has been extensively
used in areas involving complex likelihoods, both for point
estimation and testing of hypotheses. In realistic settings, with
the exception of models such as Gibbs random fields, which are
resilient with respect to their sufficient statistics, the conclusions
drawn on model comparison cannot be trusted per se but require
further simulation analyses as to the pertinence of the (ABC)
Bayes factor based on the summary statistics. This paper has
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Fig. 1. Comparison of IS and ABC estimates of the posterior probability
of scenario 1 in the first population genetic experiment, using 24 summary
statistics.
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Fig. 2. Same caption as Fig. 1 when using 15 summary statistics.
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Fig. 3. Comparison of IS and ABC estimates of the posterior probability of
scenario 1 in the second population genetic experiment.
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examined in details only the case when the summary statistics are
sufficient for both models, while practical situations imply the
use of insufficient statistics. The rapidly increasing number of
applications estimating posterior probabilities by ABC indicates
a clear need for further evaluations of the worth of those estima-
tions, especially because our population genetic experiments
showed that those ABC approximations were selecting the proper
model.

Further research is needed for producing trustworthy approx-
imations to the posterior probabilities of models. At this stage,
unless the whole data are involved in the ABC approximation
as in ref. 43, our conclusion on ABC-based model choice is to
exploit the approximations in an exploratory manner as measures
of discrepancies rather than genuine posterior probabilities. This
direction relates with the analyses found in ref. 9. Furthermore, a
version of this exploratory analysis is already provided in the
DIY-ABC software of ref. 3. An option in this software allows
for the computation of a Monte Carlo evaluation of false alloca-

tion rates resulting from using the ABC posterior probabilities
in selecting a model as the most likely. For instance, in the setting
of both our population genetic experiments, DIY-ABC gives
false allocation rates equal to 20% (under scenarios 1 and 2) and
14.5% and 12.5% (under scenarios 1 and 2), respectively. This
evaluation obviously shifts away from the performances of ABC
as an approximation to the posterior probability toward the per-
formances of the whole Bayesian apparatus for selecting a model,
but this nonetheless represents a useful and manageable quality
assessment for practitioners.
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