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Abstract The aspects of triangulation of Near Earth Asteroids by two arbitrarily

positioned observers (space- and earth-bound) are being investigated, and the resulting

orbital elements are compared to those gained through common orbital determination

and refinement techniques. The main advantages of the method proposed in this work

are, that given the approximate position of an asteroid, high quality orbital elements

can be acquired very rapidly using two observations only.
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1 Introduction

Since the collision of comet Shoemaker-Levy 9 with Jupiter in 1994, which demon-

strated implications of impacts of Solar System’s small bodies on planets very illustra-

tively, threat assessment concerning Near Earth Objects has become a greater public

demand. Therefore knowledge of the actual number of asteroids in the vicinity of Earth,

as well as data on their orbits are required. Current observation programs concerning

Near Earth Asteroids (NEAs) are aiming at compiling a complete catalog of kilometer-

sized objects. Their focus mostly lies on the identification of unknown objects and

calculation of preliminary orbital elements being the basis of follow up observations,

that allow for plausible predictions on impact hazards. As identification runs often

tend to produce so-called Very Short Arc (VSA) observations, meaning that data on

the object’s trajectory is available for a very short period of time only, usual orbit

determination techniques such as Gaussian or Laplacian hardly produce reliable pre-

dictions on future positions, which are essential for follow up observations. Milani et

al. (2004) developed methods using data of VSA observations to confine the possible

parameter-space of NEAs locations and movements. They are able to define a so-called

“admissible region” restricting the space of an asteroid’s viable ephemerides for a cer-

tain period of time. Their predictions could be proven to be valid for some weeks at
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least, still it is not yet possible to do a full orbit determination for Solar System ob-

jects with this method, even though a possible strategy for Earth-bound space debris

has been proposed (Tommei et al., 2007). Ideally more VSA observations of the same

object can be combined to gain access to orbital elements - the so-called "linkage prob-

lem" (Milani & Gronchi, 2009) - using "attributables" (Milani et al., 2001), i.e. angular

positions and velocities of the body on the celestial sphere at given epochs (see e.g.

Gronchi et al. (2010)).

The fact, that follow up programs cannot always be performed soon after an initial

detection, leads to situations where already identified objects are mistaken for others

or even “lost” again. Apart from these problems concerning refinements of initial or-

bits, Near Earth Asteroids are subject to very complex gravitational interactions with

the planets, causing a permanent change in asteroids’ orbital elements (Morbidelli et

al., 2003). This makes precise measurements and frequent updates of orbital elements

absolutely necessary.

By using simultaneous measurements of two independent observing facilities, the

triangulation method proposed in this paper is capable of producing highly accurate

orbital elements with a minimum of observations necessary, once the approximate po-

sition of the asteroid is known. Being preferably space-based and allowing for fast and

precise determination of orbital elements, this method would be predestined for quick

follow ups as well as frequent updating measurements, ensuring that discovered objects

stay within eye-spot.

2 Previous Work and Current Accomplishments

The current success of spaceborne missions in detecting NEAs, e.g. WISE (Wright et

al., 2010), suggests a greater emphasis on such endeavours in the future. Yet, the basic

idea of using two simultaneous observations from spacecraft to improve orbital elements

was brought up by R. Dvorak in 2003 1 and has been consequently investigated by Gro-

maczkiewicz (2006). The configuration then proposed can be seen in Figure 1. With S1

and S2 being the known position-vectors of two observation-points in the Solar-System,

the goal is to determine the orbital elements of a celestial body having a heliocentric

position-vector H. Following a purely trigonometric Ansatz, Gromaczkiewicz (2006)

showed, that the position-vector H can be obtained from a simultaneous measurement

of two pairs of angles in S1 and S2, if the distance between these two points ‖S1S2‖

is known. Taking two of those measurements at different times, a velocity vector can

be linearly interpolated and orbital elements calculated. His method, however, was

proven to be confined to spacecraft configurations within the ecliptic (Eggl, 2008) as

well as to be prone to computational round-off errors due to a frequent occurrence of

trigonometric functions with non-constant arguments in denominators.

In this work, nearly all trigonometric elements have been replaced by transforma-

tions to affine coordinate systems, eliminating most denominators containing trigono-

metric functions, that may have given rise to singularities at certain observer-asteroid

configurations. The remaining “unfavorable configurations” (UC) are identified via error

propagation formulae. The change from a purely trigonometric treatment to a synthesis

of trigonometric and algebraic manipulations also solved the problem of the observers’

1 Dvorak, R.: private communication, University of Vienna, (2003)
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confinement to the ecliptic plane, meaning that the spacecraft may be placed com-

pletely arbitrarily now. In order to check the quality of the orbital elements produced

by the new method, simulations of observations as well as measurements of fictitious

and real NEAs have been performed and compared to orbital data published by the

Solar System Dynamics Group, JPL (2010).

The further outline of this paper will be as follows: section 3 contains a short

walk-through of the triangulation method, including an error propagation analysis. In

sections 4 and 5, the results of the simulated orbit-refinement are presented, and will

be discussed in section 6.

3 Theoretical Description of the Proposed Orbit Refinement Method

This section contains a walk-through of the triangulation method, describing step by

step how orbital elements of the observed celestial body can be obtained from simul-

taneous angular measurements from two spacecraft with known positions, as well as a

theoretical analysis of its error propagation behavior.

Fig. 1 A view on the ecliptic; the Earth’s orbit (dotted), as well as the orbit of the observing
spacecraft (dashed) are to be seen in a heliocentric coordinate system. S1 and S2 denote
the positions of the spacecraft, H the observed celestial body. α and β, are the angles to
be measured in an arbitrary plane S, containing S1 as well as S2 and θ1 and θ2 are angles
onto S, to be measured at S1 and S2 respectively. Note, that in the configuration following
Gromaczkiewicz (2006) β is measured counterclockwise, starting at the connection line between
S1 and S2. This will correspond to the angle β∗ in the reformulated version of Eggl (2008).
S1 and S2 do not necessarily have to share the same orbit.

3.1 Orbit Determination via Triangulation

For the localization of a celestial body H and a consequent orbit determination, the

following data are required (see Figure 1):
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– the heliocentric position-vectors of the observing spacecraft S1 and S2

– an arbitrary reference plane S containing S1 as well as S2

– angles in S1: α, θ1

– angles in S2: β, θ2

The next steps are as follows:

1. Given S1 and S2 the distance dS1S2
can be calculated.

dS1S2
= ‖S2 − S1‖

2. Angles α and β are transformed into α∗ and β∗ denoting angles in the triangle

S1S2ΠS(H) in the plane S, where ΠS(H) denotes the orthogonal projection of H

onto S (see Figure 1).

α
∗ = α, β

∗ = π − β for α, β ≤ π

α
∗ = 2π − α, β

∗ = β − π for α, β > π

γ = π − α
∗ − β

∗

γ, the third angle in the triangle S1S2ΠS(H) can be acquired through the triangle’s

angular sum.

3. Using trigonometric relations, one calculates the distances ΠS(dS1H) and ΠS(dS2H)

(see Figure 1).

ΠS(dS1H) = dS1S2
·
sin(β∗)

sin(γ)
ΠS(dS2H) = dS1S2

·
sin(α∗)

sin(γ)
(1)

4. Dividing by the cosine of the vertical angles θ1 and θ2 transforms the projected

distances ΠS(dS1H), ΠS(dS2H) into the true distances of the observing facilities

S1 and S2 from the celestial body.

dS1H =
ΠS(dS1H)

cos(θ1)
dS2H =

ΠS(dS2H)

cos(θ2)
(2)

5. So, a full set of polar coordinates for the celestial body H in the affine coordinate

systems Sys1 and Sys2, centered at the observers’ positions, is available.

HrSys1
= dS1H HrSys2

= dS2H

HφSys1
= α HφSys2

= β

HθSys1
= θ1 HθSys2

= θ2

6. Those polar coordinates can be transferred into Cartesian coordinates denoting the

position of H in the systems Sys1 and Sys2.0B�HrSys1

HφSys1

HθSys1

1CA→

0�HxSys1

HySys1

HzSys1

1A 0B�HrSys2

HφSys2

HθSys2

1CA→

0�HxSys2

HySys2

HzSys2

1A (3)
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7. In order to transform the position vectors HSys1
and HSys2

into heliocentric po-

sition vectors, the two coordinate systems Sys1, and Sys2 are chosen to have their

origins in the points S1 and S2 respectively (see Figure 1). Those systems are ori-

ented in such a way, that their first base-vector b1 denoting the new x-axis aligns

with the vector S1S2 connecting the points S1 and S2. The second base-vector b2

can be chosen to be e.g. the position vector S1.
2 As shown in Figure 1 the second

base-vector can be chosen to be in the plane S defined by the points S1, S2 and

the Sun. Therefore one could take e.g. the position vector S1 leaving the ortho-

normalization to the following Gram-Schmidt procedure. As the requirements for

the new coordinate systems are somewhat arbitrary, except being equally orien-

tated and having the x-axis aligned with S1S2, another possible way of finding the

second base-vector simply consists of an intermittent change to heliocentric polar

coordinates, adding 90◦ (= π
2 ) to the horizontal angle φ of b1.

3

The third base-vector b3 can be obtained through the cross product of b1 and b2

8. If the base, that has been chosen, is orthogonal, then its vectors (b1,b2,b3) are to

be normalized, in order to gain an orthonormal base B consisting of the normalized

vectors b called (c1, c2, c3).

Alternatively, having gained a non-orthogonal base, one may use the Gram-Schmidt

procedure to receive a set of orthonormal base-vectors (c1, c2, c3).

9. Consequently the position of the celestial body H can be transformed from systems

Sys1 and Sys2 into the heliocentric system Sys0.

HSys0
= B · HSys1

+ S1, HSys0
= B · HSys2

+ S2

At a first glance it seems like there were two different equations for the heliocentric

position-vector HSys0
, that could be used to achieve some error reduction in a

statistical way. Unfortunately these equations are not independent, for they are

related via the common angle γ that had to be used to calculate radial distances

from H to S1 and S2 respectively.

10. If more than one observation has been performed, the data acquired at different

times can be used to estimate the velocity-vector of H. The two basic methods to

gain velocities are linear interpolation, requiring two positions of H only, or the

Stirling-interpolation using three observations (see e.g. Vesely (2001)).

11. Using position-, and velocity-vectors of H, orbital elements can be calculated (see

e.g. Guthmann (2000)).

Figure 1 may suggest, that the observing spacecraft would have to share the same

orbit. In fact this is not the case, as the measurement reference plane S does not

have to remain constant in time. It can easily be constructed individually for each

measurement without influencing positioning results for H. Though, it must be fixed

during one measuring process, which is usually being achieved by requiring quick and

simultaneous measurements in S1 and S2.

2 Orthogonality is not a must for the choice of the second base-vector, as the real ortho-
normalization of the whole base will be ensured by the following Gram-Schmidt procedure.

3 Note, that the later method does not exactly correspond to Figure 1, because b2 will no
more lie in the plane spanned by S1, S2 and the Sun.
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3.2 Suggested way of measurement

As proposed in this paper, the method will serve as a quick and reliable improvement

of orbital elements of asteroids. Therefore it must be assumed, that a preliminary posi-

tioning of the asteroid (H) has already been performed, in order to fix the orientation

of both observing spacecraft to the particular segment of the celestial sphere, contain-

ing H. Given a positive identification of H from both observers, the angular distances

of H to guiding stars in the respective stellar background observed by S1 and S2 are to

be measured simultaneously. This data, together with the positions of S1 and S2 are

sent back to the control station, where α, θ1 for S1 and β, θ2 for S2 respectively can

be evaluated and the exact positioning of H may be performed. One further observa-

tion conducted after the proper motion of H caused a noticeable shift in its measured

position will result in a full set of orbital elements. Every further observation can be

used to increase the quality of these elements.

3.3 Correlations between observables

From a trigonometric point of view, the measured angles α, β, θ1 and θ2 are situated

in a tetrahedron spanned by the points S1,S2, ΠS(H) and H. Therefore they are

correlated via the tetrahedron relation:

sin(α)sin(
π

2
− θ1)sin(θ2) = sin(β)sin(

π

2
− θ2)sin(θ1)

which can be simplified to

sin(α)tan(θ2) = sin(β)tan(θ1) (4)

Relation (4) will not be used to eliminate one of the observables, as this would come at

the cost of adding trigonometric functions to denominators within the global method,

which in turn causes an increase in singularities. Also, the possible gain in doing so is

small, for a second observation site would still be required. It may, however, serve as a

valuable tool to check on correct alignment and aiming of the two observing sites.

3.4 Error Propagation Behavior

A large part of the triangulation method developed in (3.1) consists of linear trans-

formations, so the interesting aspects - from the point of error propagation behavior -

are equations (2). Being of similar structure, it is sufficient to perform a propagation

of absolute errors for one of these equations:

dS1H =
ΠS(dS1H)

cos(θ1)
(5)

Using equation (1) we get for α, β ≤ π:

ΠS(dS1H) = dS1S2
·
sin(β*)

sin(γ)
, γ = π − α − β*
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dS1H =
dS1S2

cos(θ1)
·

sin(β*)

sin(π − α − β*)

=
dS1S2

cos(θ1)
·

sin(β*)

sin(α + β*)

(6)

The absolute error of dS1H , denoted by ∆dS1H , can be calculated as follows, all ∆

being unsigned:

∆dS1H ≤

|
∂dS1H

∂α | · ∆α + |
∂dS1H

∂β*
| · ∆β*+

|
∂dS1H

∂θ1
| · ∆θ1+

|
∂dS1H

∂dS1S2

| · ∆dS1S2

Evaluating the partial derivatives holds the following expression for ∆dS1H :

∆dS1H ≤

dS1S2
· (|

sin(β*)
cos(θ1)

·
cot(α+β*)
sin(α+β*)

| · ∆α+

|
sin(α)

sin(α+β*)2·cos(θ1)
| · ∆β*+

|
sin(β*)

sin(α+β*)
·

tan(θ1)
cos(θ1)

| · ∆θ1)+

|
sin(β*)

sin(α+β*)·cos(θ1)
| · ∆dS1S2

(7)

A similar expression for ∆dS2H may easily be derived by switching the horizontal

angles α and β* and exchange the vertical angle θ1 with θ2.

The values of ∆dS1H for different angles α, β* and θ1 can be seen in Figure 2,

Table 1 shows the exact parameters used. The left picture in Figure 2 shows, that the

error in the calculated distance dS1H grows very fast, if the sum of α and β* comes

close to π = 180◦, or both angles become zero. Those are the cases, when the triangle

S1HS2 dissolves, because all three points are on the same line. A similar behavior can

be observed when looking at the right picture, except that β* has been fixed to 90◦, in

order to vary θ1. When the variable horizontal angle (α or β*) approaches 90◦, there

will be no triangle either, because the lines including dS1H and dS2H will not intersect

in finite space. Measurement errors will have large effects in those regions especially.

Taking into account given symmetries in the problem, it is obvious, that fixing α and

varying β* will yield similar results, which has also been found in (Eggl, 2008).

In summary, this error propagation analysis supports the intuitive arguments claim-

ing that the triangulation method will cause problems in “unfavorable configurations”

- i.e. when the triangle S1HS2 collapses. Fortunately, these cases are rare and closely

packed in the parameter-space. It has also been shown, that increased measurement

errors do not change the method’s global behavior (Eggl, 2008).

From the fact, that the measurement triangle will dissolve given too large obser-

vational errors on the angular measurements, one can derive a limiting separation of

the observation sites (∆min) as a function of the asteroid’s distance to the center of

the connecting baseline (d = ‖H− S1S2

2 )‖) and the error in angular measurements e.g.

∆α:

∆min = 2d · tan(∆α) (8)

The main assumption hereby was, that the angles α and β* as well as their errors are

being of the same size, so that ’outer’ limiting vectors towards H emerging from the

observers at total angles α + ∆α and β* + ∆β* become parallel.
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Fig. 2 α [◦] β* [◦] θ1 [◦] dS1S2
[AU] ∆α [”] ∆β* [”] ∆θ1 [”] ∆dS1H [AU]

l 0 to 180 0 to 180 fixed 45 1 1 1 1 10
−7

r 0 to 180 fixed 90 -90 to 90 1 1 1 1 10
−7

Table 1 Parameters used for absolute error propagation of equation (2). See Figure 2;
l denotes the left picture, r the right one.

4 Simulation of Observations

In order to be able to test the performance of the orbit refinement method presented

in section (3.1), some data on measurements have to be acquired. This was done by

simulating the observation-process in parallel to the time-propagation of the main Solar

System bodies via numerical integration of the non-relativistic equations of motion

using the order controlled Lie-Series Integrator (Hanslmeier, Dvorak, 1984), (Eggl,

Dvorak, 2010). Target of this virtual observation is to gain position angles for the

celestial body H as would be measured by the observing spacecraft S1 and S2, as well

as the respective distance of the spacecraft ‖S1S2‖ for all output-times of the numerical

integration.

4.1 Optional Error-Sources for the Virtual Measurement

Additionally, four optional error-sources have been included in the simulation of the

measurement process for the scenario to become more realistic.

– positioning error of H due to random deviations in angle-measurements

– check for measurement-blockades due to occultation of the line of sight between

one observer and H by the Sun

– positioning error of H due to differences in light travel time from H to S1 and S2

– positioning error of H due to deviations of distance measurements between S1 and

S2

4.1.1 Positioning Error of H due to Random Deviations in Angle Measurements

Deviations in measurements of the angles α, β, θ1 and θ2 are, in general, unavoidable.

They are, of course, dependent on the way of angle determination. Some uncertainties

are caused by e.g. the finite resolution capacities of the imaging apparatus of the

observing spacecraft, meaning that some solid angle mapped inside a pixel draws an

uncertainty region for the position of H on the corresponding celestial sphere of the

observer. This uncertainty region is simulated by randomly adding or subtracting a

fixed error ǫ to each angle during every measurement. For the simulations in section

5, ǫ has been chosen corresponding to a 1 [m] diameter, refraction limited, optical

(500 [nm]), space-based telescope (ǫ = 0.125822 [”]), a similar setting with a diameter

of 0.3 [m] (ǫ = 0.419405 [”]), as well as an Earth-based telescope (ǫ = 2 [”]).

4.1.2 Positioning Error of H due to Deviations of Distance Measurements between S1

and S2

The simulation of a measurement uncertainty (∆S) of the distance ‖S1S2‖ has been

implemented as follows: A unit vector R

‖R‖
of random direction is being determined,
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and stretched to the length representing the required displacement error ∆S. The

displacement vector Z is then added to, or subtracted from the real positions S of

the observers, resulting in new positions S
n. Since the measurement of the angles is

performed at the correct position, of the spacecraft, their values remain unaltered.

Z = ∆S ·
R

‖R‖
, S

n = S + Z

4.1.3 Measurement Blockades due to Occultation of the Line Of Sight between One

Observer and H by the Sun

In principle, the line of sight between an observing spacecraft and the observed celestial

object can be broken by any Solar System’s body. In practice, the Sun is the only object

in the inner Solar System having an angular diameter that is not to be neglected when

observed from a distance of approximately 1 [AU ]. Therefore the possibility of an

occultation has to be taken into account and was included in the simulations performed

(see Figure 3).

The one important parameter governing this behavior is the scalar normal-distance

of the vector of the line of sight to the Sun, which can be expressed by:

a = S1H = H − S1, r0 = S1

d1 = ‖
a

‖a‖
× (−r0)‖

d1 denotes the scalar normal-distances of the line of sight S1H to the center of the

coordinate system, which corresponds to the center of the Sun, as we are using helio-

centric coordinates. The same procedure can be applied in order to calculate d2, the

line of sight for S2H. Of course, a blocking radius of the Sun has to be taken into

account (r⊙ ≃ 696000km ≃ 0.00465247AU). Assuming flawless baffling, and the

Sun’s approximately spherical shape, the modified distances d′
1, d′

2 to the rim of the

Sun are:

d
′
1 = d1 − r⊙ d

′
2 = d2 − r⊙

If one of the distances d′
1, d′

2 < 0, then the corresponding line of sight will be broken,

and an orbit determination will become impossible.

4.1.4 Positioning Error of H due to Differences in Light Travel Time from H to S1

and S2

The fact that information on the location of the NEAs travels with light speed may

cause some measurement errors, as we are dealing with distances in the order of Astro-

nomical Units.4 Define the light travel time of the information of the asteroid’s location

H to the spaceborne observatories S1 and S2 as t1 and t2. As can be seen in Figure 4

the positioning of NEA H yields different results depending on the actual information

on the location of H that has arrived at the respective observation site. The differences

in positioning results depend on the distances ‖S1H‖, ‖S2H‖ as well as the speed of

4 The effects of General Relativity are not taken into account here.
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the observed celestial body, vH . In order to simulate this effect, the positions of H in

systems Sys1 and Sys2 have to be adapted as follows5

rSys1
= ‖S1H‖, rSys2

= ‖S2H‖, ∆r = rSys1
− rSys2

, ∆t =
|∆r|

c

∆H = vH · ∆t

HSys1
= HSys1

− ∆H for ∆r > 0

HSys2
= HSys2

− ∆H for ∆r < 0

In practice, the errors resulting from this effect are very hard to counter, as neither the

velocities vH nor the distances rSys1
and rSys2

are known initially. Still, having first

approximations of the location and velocity of H, an estimate on the size of this effect

can be obtained, which in turn can be used to calculate new positions and velocities.

If such an iterative process does indeed converge, is topic of future investigations.

4.2 Simulation Analysis

For the quantitative evaluation, ∆H and ∆vH curves are being generated, denoting

the difference of the triangulated quantities to their “true” values, e.g. difference of

position vector H gained by triangulation to the position vector that is taken directly

from the numerical integration.

∆H = ‖∆H‖ = ‖Hintegration − Htriangulation‖

∆vH = ‖∆vH‖ = ‖vHintegration
− vHtriangulation

‖

As these quantities can be evaluated after every time-step of a numerical integration,

statistical evaluation methods may be applied.

∆Hmax = sup{∆H}, ∆vHmax
= sup{∆vH}

∆Hmin = inf{∆H}, ∆vHmin
= inf{∆vH}

∆Hmax and ∆vHmax
denote the maximum values, ∆Hmin and ∆vHmin

the minimum

values of the corresponding quantities. As was shown in section 3.4 “unfavorable con-

figurations” may lead to sudden leaps in errors causing statistical “outriders”. For this

reason, the use of the arithmetic mean as a statistical tool is not recommendable. A

method known to me more robust in such cases is the statistical median. Introducing

the median of quantities ∆H and ∆vH as g∆H and f∆vH , let us call the correspond-

ing statistical deviation "median-deviation" ( eD∆H , eD∆vH
). Those can be defined as

follows (Sachs, 1999):g∆H = median(∆Hi) with ∆Hi ∈ {∆H}, i ∈ Nf∆vH = median(∆vHi
) with ∆vHi

∈ {∆vH}, i ∈ NeD∆H = median(|∆Hi − g∆H|) with ∆Hi ∈ {∆H}, i ∈ NeD∆vH
= median(|∆vHi

− f∆vH |) with ∆vHi
∈ {∆vH}, i ∈ N

5 c denotes vacuum light speed, in system units: c ≃ 174.89411491074148 [ AU
(ephemeric)D

].

The adaption of the positions of H has to be performed before the calculation of measurement
angles.
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a [AU] e [] i [◦] ω[◦] Ω[◦] M[◦] mass[M⊙]
S1 1.00000261 0.01671123 -0.00001531 102.9376819 0 57.5268897 0
S2 1.00000261 0.01671123 -0.00001531 102.9376819 0 297.5268897 0
H 2 0.5 30 0 0 0 0

Table 2 Initial orbital elements for epoch J2000 of observers S1, S2 and the asteroid H

4.3 Simulation of Orbit Determination of Fictitious Asteroids

In order to get a feeling for the behavior of the simulated orbit refinement method,

test-calculations with fictitious NEAs have been performed (Eggl, 2008), including cir-

cular, elliptic and inclined orbits of the asteroids, and different configurations for the

positioning of observation spacecraft. It was found, that the resulting orbital elements

were mostly independent of the positioning of the spaceborne observatories. The only

noticeable effects were, that the days, where virtual measurements could not be per-

formed due to occultation of the line of sight between spacecraft and asteroids by the

Sun, dropped from 22 in 3652.5 days to approximately one, when either one of the

spacecraft or the asteroid had an initial inclination, and that a dramatic decrease of

the distance between the obervers worsened the results. The arguments for this be-

havior are very intuitive, as with initial inclination, the triangle S1HS2 was no longer

confined to the ecliptic, so the possibility for the Sun to intersect the line of sight

decreased dramatically. Reducing the mutual distances of the spacecraft will result in

the angles α and β* being around 90◦, a configuration prone to produce large errors,

as can be seen in section 3.4. A massive influence on the quality of the resulting orbital

elements exerted a modification of eccentricities. Due to the fact, that the velocities of

the asteroid H have to be interpolated with fixed order algorithms, a change in orbital

velocities, e.g. near perihelion, will increase interpolation errors drastically, leading to

comparatively large deviations from the true orbital elements. The importance of ve-

locity interpolation also mirrors the fact that a reduction of time intervals between

observations causes a decrease in orbital element errors, which was of the same order

as the interpolation method used.

As an example, a probable asteroid - spacecraft configuration is examined more in

detail, the initial orbital elements are to be seen in Table 2. The total simulation time

was chosen to be 3652.5 days, consecutive observations were fixed to take place once

a day. The two upper pictures in Figure 5 show the time development of deviations

∆H and ∆vH from the triangulated positions H and velocities vH to the reference

values taken directly from numerical integration results. The middle ones denote the

corresponding development of measured angles α, β6, θ1 and θ2. The maximum de-

viations ∆H are found at “unfavorable configurations” of S1, S2, H (see section 3.4)

which are reached at α = β ≃ 0◦ or 180◦. The largest ∆vH values at perihelion po-

sitions of the asteroid, where the rate of change of the asteroid’s velocity vector will

be higher, and therefore the interpolations’ results deteriorate. Compared to the tri-

angulation of the position vector of H, the errors due to velocity interpolations are

larger by orders of magnitudes. As the positioning of H is, however, independent of

the velocity error, all angular orbital elements are very well approximated. Of course,

using more observations, one is able to apply higher order interpolation schemes, e.g.

Stirling-interpolation, combining three consecutive positionings of the asteroid. This

6 Please note that this is in fact the measured angle β not its calculated supplementary β*.



12

will reduce ∆vH curves’ amplitudes in proportion to the order of the method applied.

Adding a positioning uncertainty of 10−7 [AU ] 7 for each spacecraft, the lower left

picture in Figure 5 unveils the consequent growth of error in ∆H to be in the order of

magnitude of the positioning uncertainty itself, as was to be expected from equation

(7). The effects on ∆vH as produced by Stirling-interpolation are detectable, as can

be seen in the lower right picture, but they do not outweigh the influence of perihe-

lion passages for high eccentricities. Using linear velocity interpolation, perturbations

caused by positioning errors will not even register due to higher errors produced by

the interpolation method itself.

Table 3 shows the quantitative behavior of the simulated triangulation of the po-

sition of H. In general, finite light travel time induced positioning errors of H had the

largest influence on g∆H. This is partly due to the fact, that the linear approximation

of the displacement is only valid for small light travel time differences, causing an un-

natural displacement of H for larger separations. Still the errors produced by linear

velocity interpolation dominate the effects induced by the optional error components

(see Table 4). The data gained by Stirling velocity interpolation suffer proportionally

more from additionally introduced errors.

table units [AU ] ∆Hmax ∆Hmin
g∆H eD∆H

ideal 3.410E-12 4.728E-16 1.007E-14 6.927E-15
positioning error (10−7[AU ]) 5.242E-07 5.012E-09 1.494E-07 5.157E-08
angular measurement error (0.126′′) 2.004E-02 9.592E-07 3.720E-06 2.045E-06
finite light travel time 6.193E-01 2.936E-09 1.157E-04 7.688E-05

Table 3 Statistical parameters for positioning of H via triangulation. ∆H signifies the devi-
ation from the asteroid’s original position to the triangulation result. Satellite positioning and
angular measurement errors are given for each spacecraft and all angles.

table units [AU
D

] interpolation ∆vHmax
∆vHmin

∆̃vH
eD∆vH

ideal linear 1.483E-04 1.641E-05 2.470E-05 7.957E-06
Stirling 1.044E-06 1.281E-08 4.165E-08 2.815E-08

positioning error linear 1.485E-04 1.598E-05 2.473E-05 7.976E-06
(10−7[AU ]) Stirling 1.127E-06 5.318E-09 1.739E-07 7.315E-08
angular measurement linear 2.014E-02 2.406E-07 3.160E-05 1.491E-05
error (0.126′′) Stirling 1.005E-02 9.404E-09 2.722E-06 1.748E-06
finite light linear 6.279E-01 1.864E-06 2.436E-05 1.120E-05
travel time Stirling 3.118E-01 1.268E-07 2.686E-06 1.107E-06

Table 4 Statistical parameters for deviation of the asteroid’s interpolated velocities from their
reference values for different error scenarios. The timespan between consecutive observations
was one day.

7 10−7 [AU ] is the approximate accuracy of DDOR Radar positioning.
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5 Simulated Orbit Determination of Real Celestial Bodies

In order to be able to compare simulation results to real data on celestial bodies, a

sample of four potentially hazardous asteroids (PHA) has been treated (Eggl, 2008). As

all of them showed similar behavior concerning the simulated effects of the triangulation

method, just one has been chosen to be presented here, namely (2007 JY2). Initial

orbital elements valid for the epoch J2000 as well as their corresponding standard

deviations are shown in Table 5. The simulation has been performed as follows:

Initial conditions for the Solar System’s main bodies, i.e. the Sun and the 8 plan-

ets, as well as for the observation spacecraft, arbitrarily positioned in the Lagrangian

points L4 and L5 of the Sun-Earth system are being acquired for the epoch J2000.

The Solar System, together with the observing spacecraft and one PHA are being

propagated by numerical integration of the non-relativistic equations of motion us-

ing an order-controlled Lie-Series integrator (Eggl, Dvorak, 2010) for a total time

of 3600 [D]. As the choice of the time-span between observations is crucial for the

interpolation of a PHA’s velocity, the following time-steps have been chosen: ∆t =

0.04 [D] ≃ 1 [h], 0.4 [D], 4.0 [D] and 40 [D]. The velocity interpolation is being

done via linear interpolation, using two observations only, and Stirling-interpolation

using three observations respectively. Having acquired data on positions and velocities

at different times for all bodies involved, a series of virtual measurements of the re-

quired angles in S1: α, θ1, in S2: β, θ2 as well as the heliocentric position-vectors of

the observing spacecraft S1 and S2 can be performed. Optional error components as

introduced in section (4.1) were added during this process. In a next step the orbit

determination is simulated as discussed in section (3.1). The results of the simulated

measurements (= OEtriangulation) are being compared to the quasi-flawless orbital

elements directly calculated from the position and velocity output of the numerical

integration (= OEintegration). Finally the median values and median deviations of the

differences of the simulated measurements to the flawless orbital elements are being

plotted against the time-step, for linear-, and Stirling-interpolation of velocities.

The results can be studied in Figures 6 and 7. Ideal measurements, denoted by

triangles, will result in fast and accurate orbital elements, where naturally Stirling-

interpolation of velocities allows for better elements by using three consecutive ob-

servations. Interestingly, if observational errors are taken into account, the results for

linear and second order interpolation algorithms become very similar. Even-though

shorter observation intervals would serve ideal velocity interpolations, an optimum

time-separation of ≃ 0.4 [D] is found, which is due to an error-proneness of velocity

interpolation algorithms to miss-positioning of the asteroid given short time intervals.

Another surprise may lie in the fact, that the Earth-spacecraft configuration (squares)

- although punished by seeing - is seemingly able to compete with spacecraft-spacecraft

configurations. This can be explained by the selected sample of observations performed

by the Earth-spacecraft configuration due to the exclusion of all possible measurements

that would have happened during daytime. Consequently only about 30% of all possible

measurements remained, favoring those with the asteroid at aphelion position, where

the changes in velocities are small and therefore the interpolation methods provide

better results. All in all, comparing the simulation’s outcomes to the accuracy of the

orbital elements published by Solar System Dynamics Group, JPL (2010) (see Table

5), the triangulation method presented in this paper is more than competitive, for it

provides orbital elements of comparable quality with two observations only.
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a [AU] e [] i [◦] ω[◦] Ω[◦] M[◦] mass[M⊙]
2.19956074 0.68806235 1.5955816 105.080281 225.738210 329.8208272 0

σa [AU] σe [] σi [◦] σω [◦] σΩ [◦] σM [◦]
0.0031225 0.0005391 0.0016273 0.0037194 0.00049895 0.69888

Table 5 Initial conditions (heliocentric orbital elements for epoch J2000) and standard devi-
ations for the potentially hazardous asteroid (2007 JY2) published by the Solar System Dy-
namics Group, JPL (2010); these elements have been acquired from 78 observations spanning
a data arc of 31 days.

6 Summary and Discussion

In this paper the possible refinement of asteroids’ orbital elements via simultaneous

observation from two spacecraft and consequent triangulation has been explored. After

a brief description of the method proposed, an error propagation analysis uncovered

some “unfavorable configurations” (UC) where triangulation is no more possible. A sim-

ulation of a full measurement process, including optional error components of fictitious

asteroids, confirmed the existence of UC, and allowed for estimates on their influence

and number of their occurrences (see Figure 5). It could be shown, that measurement

errors have greater effects around UC (see Figure 2). Even-though, the dominant effects

on the triangulated elements are caused by deviations of velocities due to interpola-

tions’ deficiencies (see Tables 3 and 4). Consequently, gaining the object’s velocity by

alternative methods, for example simultaneous high precision radar Doppler shift mea-

surements would improve the outcome. The simulation was extended to real asteroids,

where the results could be compared to current data provided by the Solar System Dy-

namics Group, JPL (2010), showing that the triangulation method was able to produce

refined orbital elements of equal quality in a fraction of the time necessary for con-

ventional methods. Taking observational inaccuracies into account, it was found that,

although shorter observation intervals would favor ideal measurements, an optimum

time-separation of ≃ 0.4 [D] gives the best approximations to the asteroid’s orbital el-

ements a and e. The main limitation of the triangulation method proposed is the fact,

that the approximate heliocentric position of the observed asteroid has to be known, in

order to allow for a simultaneous observation from both spacecraft. Therefore it is not

usable for initial orbit determination in its current formulation. Nevertheless there are

numerous advantages, concerning refinement of orbital data on NEAs, such as the pro-

duction of very accurate orbital elements with a minimum of necessary observations,

re-usability, variability in positioning of the observing spacecraft and the fact that only

few configurations prevent measurements. All in all, the method proposed would allow

for a frequent and reliable update on NEAs’ orbital elements, and could help keeping

track of PHAs, which can undoubtedly be considered a very important topic, as one

day our very lives may depend on it.
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Fig. 2 Absolute error propagation for ∆dS1H , containing measurement errors as pointed out
in Table 1. left: vertical angle θ1 is fixed at π/4, α and β* are varied, right: horizontal angle
β* is fixed at π/2, α and θ1 are varied.
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Fig. 3 Occultation of line of sight of one spacecraft by the Sun, orthogonal projection to the
observers’ reference plane, spacecraft are positioned in the ecliptic. S1 and S2 are spacecraft
observatories, H the observed celestial body. ΠS(H) denotes the orthogonal projection of H

to the spacecraft’s reference plane. left : The Sun blocks the line of sight of S1 concerning H

right : If H moves in front of the Sun as seen from S2, an observation becomes impossible, due
to the Sun’s glare.

Fig. 4 The positioning error due to different light travel times of the location information of
H. This error depends on the distances ‖S1H‖, ‖S2H‖, as well as the velocity vH .
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Fig. 5 Time development of the norms of deviations ∆H and ∆vH from the triangulated
positions H and velocities vH to the reference values taken directly from numerical integration
results (see Table 2); upper left : ∆H from reference-positions for spacecraft S1 (+) and S2 (x)
for ideal observations, upper right : corresponding ∆vH from reference-velocities for spacecraft
S1 using linear interpolation, mid left : horizontal measurement angles α (gray) and β (black),
mid right : vertical measurement angles θ1 (gray) and θ2 (black), lower left : ∆H for spacecraft
S1 including positioning errors of 10−7[AU ] for each observer, lower right : corresponding
∆vH from reference-velocities for spacecraft S1 using Stirling-interpolation. The largest ∆H
are found in the vicinity of “unfavorable configurations” (see section 3.4) which are reached at
α = β ≃ 0◦ or 180◦, the largest ∆vH values at perihelion positions of the asteroid. Stirling
velocity interpolation yields better approximations for the velocities, but is more susceptible
to measurement and spacecraft positioning errors. Time between consecutive observations was
fixed to 1 [D].
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Fig. 6 median and median deviations (errorbars) of the difference between original and mea-
sured orbital elements (a,e,i) of (2007 JY2) over 3600 [D]
left column: two consecutive observations separated by ∆ t days used
right column: three consecutive observations separated by ∆ t days used
non-ideal observations contain all error sources discussed in section 4.1
triangle: ideal observation from two spacecraft in L4 and L5 of the Sun-Earth system
cross: non-ideal observation from two spacecraft (L4, L5, diffraction limited, diameter 1 [m])
circle: non-ideal observation from two spacecraft (L4, L5, diffraction limited, diameter 0.3 [m])
square: non-ideal observation in spacecraft (L4) - Earth configuration
(diffraction limited, diameter 1 [m] + seeing 2 [”])
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Fig. 7 median and median deviations (errorbars) of the difference between original and mea-
sured orbital elements (ω, Ω, M) of (2007 JY2) over 3600 [D]
left column: two consecutive observations separated by ∆ t days used
right column: three consecutive observations separated by ∆ t days used
non-ideal observations contain all error sources discussed in section 4.1
triangle: ideal observation from two spacecraft in L4 and L5 of the Sun-Earth system
cross: non-ideal observation from two spacecraft (L4, L5, diffraction limited, diameter 1 [m])
circle: non-ideal observation from two spacecraft (L4, L5, diffraction limited, diameter 0.3 [m])
square: non-ideal observation in spacecraft (L4) - Earth configuration
(diffraction limited, diameter 1 [m] + seeing 2 [”])


