Evaluation of a new method for the measurement of corneal thickness in eye bank posterior corneal lenticules using Anterior Segment Optical Coherence Tomography

Domenico Amato, Marco Lombardo, Francesco Oddone, Mario Nubile, Rossella A.M. Colabelli-Gisoldi, Carlo Maria Villani, Sonia Yoo, Jean-Marie Parel, Augusto Pocobelli

To cite this version:

HAL Id: hal-00596283
https://hal.science/hal-00596283
Submitted on 27 May 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evaluation of a new method for the measurement of corneal thickness in eye bank posterior corneal lenticules using Anterior Segment Optical Coherence Tomography

Domenico Amato¹*, Marco Lombardo¹, Francesco Oddone¹, Mario Nubile², Rossella AM Colabelli Gisoldi³, Carlo M Villani³, Sonia Yoo⁴, Jean-Marie Parel⁴, Augusto Pocobelli³

¹ IRCCS Fondazione G. B. Bietti, Rome, Italy.
² Department of Medicine and Ageing Science, Ophthalmology Clinic, University of Chieti-Pescara, Italy.
³ S. Giovanni - Addolorata - Britannico Hospital, Rome, Italy.
⁴ Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA

Supported in part by the Eye Bank of Rome, S.Giovanni - Addolorata - Britannico Hospital, Rome, Italy and the Florida Lions Eye Bank, Miami, FL, USA

* Corresponding Author:
Domenico Amato,
Via Merulana, 143
00184 Rome, Italy
Fax: +39 06 77055844
Telephone: +3906 77055952
E-mail: damato@hsangiovanni.roma.it

Keywords: DSAEK, eye bank, precut tissue, AS-OCT

Word Count: 1,540
Abstract

Background/aims: To preliminary evaluate the repeatability of central corneal thickness (CCT) measurements performed with Anterior Segment Optical Coherence Tomography (AS-OCT) on eye bank posterior corneal lenticules.

Methods: Six donor lenticules were created with a 350 μm head microkeratome (Moria, Antony, France). All donor tissues were stored at 4°C in Eusol-C solution (Alchimia S.r.l, Ponte S. Nicolò, Italy), without the anterior cornea lamella. The CCT of each lenticule, maintained in the glass vial, was measured using a commercial AS-OCT instrument (Visante, Carl Zeiss Meditec, Dublin, CA, USA) and a special designed adaptor immediately and 4-, 24- and 48-hours after dissection. Immediately after AS-OCT, CCT values were measured with the ultrasound (US) pachymetry method used at the Eye Bank.

Results: The mean donor cornea central thickness was 647 ± 36 μm and 660 ± 38 μm (P=0.001) as measured by AS-OCT and US respectively; immediately after dissection, CCT values of posterior lenticules were 235 ± 43 μm and 248 ± 44 μm respectively (P=0.001). No statistically significant changes in CCT values of donor lenticules were assessed over the 48 hours period with both methods. There was a high level of agreement, evidenced by Bland-Altman analysis, between the two methods of pachymetry.

Conclusion: AS-OCT, with the corneal tissue in the vial, revealed to be a repeatable and reliable method for measuring posterior donor lenticule central thickness. Lenticule CCT values measured with the investigational AS-OCT method were on average 10 μm thinner than those measured with the established US method.
Introduction

Descemet’s stripping automated endothelial keratoplasty (DSAEK)1,2 is a surgical technique for the treatment of corneal endothelial diseases. The preparation of DSAEK donor tissue was originally done in the operating room by the surgeon3,4 but currently an increasing number of surgeons prefers to obtain donor tissue directly from the eye bank just before tissue shipment5,6. Precut donor tissue for DSAEK offers the advantage of saving surgery time with precise information regarding central thickness, providing at the same time visual and refractive outcomes and rate of postoperative complications comparable to surgeon-dissected donor tissue7,8,9,10,11.

Contact ultrasound (US) pachymetry is in general the preferred method for measuring the corneal thickness in eye bank worldwide5,7. Anterior Segment Optical Coherence Tomography (AS-OCT) has been also recently used for characterizing eye-bank donor tissues12. AS-OCT is a non-contact method that can give central and peripheral thickness measurements of the entire cornea and it is widely used in the clinical environment for the examination of DSAEK donor tissue during follow-up of patients. On the other hand, the knowledge of either central or peripheral thickness values before surgery may be valuable for DSAEK surgeons, since it has been widely demonstrated how either the central thickness or a non-uniform thickness profile of the donor tissue may influence the definite refractive outcome after surgery13,14,15,16. The purpose of this study was to preliminary evaluate a new method for measuring the central thickness of posterior corneal lenticules using a commercial AS-OCT instrument. A custom adaptor was used in order to maintain the tissue in the glass vial, thus avoiding tissue manipulation during measurements.
Methods

Six donor corneas obtained from the eye bank of Rome (Italy) were used for the study. All corneas were used within 4 days post-mortem and were stored at 4°C in corneal storage medium Eusol-C (Alchimia S.r.l, Ponte S. Nicolò, Italy). The donors had a negative ophthalmic history but positive serology, which made the tissue unsuitable for transplantation.

All tissues were prepared by an expert eye bank operator (DA) using the standardized method for obtaining DSAEK precut tissues at the eye bank of Rome. Each corneal lenticule was prepared from the donor cornea by using a 350 µm head microkeratome (Moria One, Moria S.A., Antony, France) and an artificial anterior chamber (AAC, Moria S.A., Antony, France) cushioned with Eusol-C. Each lenticule was created by a full pass of the microkeratome blade which resulted in a posterior lamellar donor and a free cap. The free anterior cap was then eliminated and the posterior lamellar tissue was stored over a period of 48 hours at 4°C in Eusol-C between measurements.

Donor corneal central thickness (CCT) before dissection and lenticule CCT immediately and after 4-, 24- and 48-hours post-cut were first measured by AS-OCT (Visante, Carl Zeiss Meditec, Dublin, CA, US) and then by US pachymetry using a 20 MHz probe (Hiscan, Optikon 2000 S.p.A., Rome, Italy), capable of measuring thickness values lower than 100 µm and calibrated by the manufacturer. Measurements were performed 5 times by the same operator to assess repeatability of both methods.

The tissue was analyzed by AS-OCT through the glass vial containing Eusol-C. OCT measurements were performed using a specially designed adaptor: the device consists of a holder accepting standard glass vials or plastic viewing chambers and a mirror placed in the optical path of the AS-OCT instrument allowing to carry out measurements through the vial’s or chamber’s optically clear bottom (figure 1). The adaptor (Abeamed Inc, Miami,
Florida, USA) does not require modification of the AS-OCT instrument and can be plugged in/removed without compromising tissue sterility.

In the AS-OCT image, the corneal apex was identified from the peak of the reflectivity profile on the horizontal axis and the automated flap tool of the instrument was then used for thickness measurement. US pachymetry was obtained in a perpendicular direction from the corneal surface to the central cornea by direct contact of the probe with the corneal tissue mounted on the AAC cushioned with Eusol-C and pressurized to approximately 40 mmHg, as measured with hand-held applanation tonometry (Tono-pen, Mentor Ophthalmics, Norwell, MA, US). The tip of the probe was wetted using Eusol-C.

Statistical analysis

Repeatability was determined with the coefficient of variation (CV) value, expressed in %, that was calculated from the intrasession standard deviations for the five independent consecutive measurements. Bland-Altman plots were used to assess the degree of agreement between AS-OCT and US pachymetry and their 95% confidence interval. Differences in measurements between AS-OCT and US were evaluated by paired *t*-test. A *P* value of 0.05 or less was considered statistically significant. Statistical data analysis was carried out using SPSS for Windows (version 10.0, SPSS Inc.).

Results

The mean central corneal thickness before dissection was 647 ± 35 μm and 660 ± 38 μm (*P*=0.001), as measured by AS-OCT and US respectively. Immediately after dissection, posterior lenticule CCT values were 235 ± 43 μm and 248 ± 44 μm, as measured by AS-OCT and US respectively (*P*<0.001). No statistically significant changes in lenticule CCT
values (1-way ANOVA, $P>0.05$) were assessed during the post-cut time course, as measured by both devices (table 1).

Table 1
Central corneal thickness values and coefficient of variation (CV, %) calculated with the investigational AS-OCT and US methods of pachymetry during the time course

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre-cut*</th>
<th>Post-cut (p-c)*</th>
<th>4 hours p-c*</th>
<th>24 hours p-c*</th>
<th>48 hours p-c*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-OCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (± SD, μm)</td>
<td>647 ± 35</td>
<td>235 ± 43</td>
<td>224 ± 37</td>
<td>239 ± 42</td>
<td>233 ± 39</td>
</tr>
<tr>
<td>Min (μm)</td>
<td>594</td>
<td>173</td>
<td>181</td>
<td>187</td>
<td>185</td>
</tr>
<tr>
<td>Max (μm)</td>
<td>690</td>
<td>280</td>
<td>271</td>
<td>281</td>
<td>277</td>
</tr>
<tr>
<td>CV (%)</td>
<td>5%</td>
<td>18%</td>
<td>16%</td>
<td>18%</td>
<td>17%</td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (± SD, μm)</td>
<td>660 ± 38</td>
<td>248 ± 44</td>
<td>238 ± 42</td>
<td>247 ± 41</td>
<td>240 ± 40</td>
</tr>
<tr>
<td>Min (μm)</td>
<td>605</td>
<td>185</td>
<td>188</td>
<td>195</td>
<td>189</td>
</tr>
<tr>
<td>Max (μm)</td>
<td>705</td>
<td>298</td>
<td>283</td>
<td>289</td>
<td>282</td>
</tr>
<tr>
<td>CV (%)</td>
<td>6%</td>
<td>18%</td>
<td>17%</td>
<td>17%</td>
<td>17%</td>
</tr>
</tbody>
</table>

*P<0.05: t-test between methods of pachymetry

The mean AS-OCT thickness values were statistically significant lower than US measurements before dissection and at all time points after dissection: mean differences ranged from 14 μm at 4 hours post-cut to 7 μm at 48 hours post-cut. The mean CCT differences between the two methods of pachymetry before and immediately after cut were approximately 13 μm. The limits of agreement (LOA) between the two methods ranged from -6.1 μm to -18.9 μm immediately after dissection and from 2.1 μm to -16.4 μm at 48 hours.
after cut. Full details with 95% LOA are given in figure 2. An example of the AS-OCT imaging of a corneal tissue during the time course of examinations is shown in figure 3.

Discussion

AS-OCT is a valuable imaging tool for providing information on donor posterior lamella apposition after DSAEK and further in the management of surgical complications after the procedure, such as dislocation, primary graft failure, and anterior chamber crowding with consequent chamber angle encroachment and pupillary block. On the other hand, AS-OCT may provide useful information prior to surgery, with detailed description of central thickness and profile of donor tissue. Recently, a custom built AS-OCT has been demonstrated to be a potential instrument for the preoperative eye bank routine analysis of donor lamellar tissues for transplantation. In this work we aimed at preliminary estimating the repeatability of a new method for measuring donor corneal thickness of eye bank-prepared tissues for DSAEK using a commercial AS-OCT device. A special-designed adaptor was used to maintain the cornea in the glass vial during AS-OCT measurements. CCT values obtained with the investigational AS-OCT method were compared to those performed with the established US method of pachymetry at our eye bank. There was a high level of agreement between methods with mean differences of approximately 10 μm before and after dissection. A high repeatability of the investigational AS-OCT method of central pachymetry, comparable to US pachymetry, was calculated and further confirmed previous findings. In our study, mean AS-OCT central pachymetry revealed lower values, ranging from 7 to 14 μm, than US pachymetry, both before and after dissection. The results from the present work are in accordance with several clinical studies that have been conducted with the aim to compare corneal thickness measurements obtained with different devices,
including US and AS-OCT21,22,23,24,25,26,27. In general, all the authors have reported a reproducible systematic difference between CCT measurements taken with US and OCT, with the latter method providing an average underestimation of approximately 15-30 μm of central pachymetry readings.

Possible bias in the measurement of CCT values between AS-OCT and US methods of pachymetry could be introduced by the fact that, during AS-OCT measurements, the corneal tissue was completely immersed in liquid and it was not pressurized into the AAC as done during US measurements. A potential source of error in the conversion from OCT distance to geometric thickness is therefore the assumption of a constant corneal refractive index, as in general discussed for the OCT technique28,29. Although changes of the refractive index were considered unlikely, intra-individual and local variations of the refractive index, due to increasing hydration and thickening of corneal tissue, could influence the propagation of light through different corneal layers30,31: a constant corneal thickness, however, has been measured during the time course of examinations in all specimens. On the other hand, one should bear in mind how the sound velocity in corneal tissue has been a subject of long debate and the speed of sound is likely to vary between different layers of the cornea32. Moreover, it is unlikely to take thickness measurements precisely at the corneal apex with US pachymetry. Although the limited number of cases, the investigational AS-OCT system provided a non-contact and repeatable method in the evaluation of corneal thickness of posterior donor cornea lenticules. The measurement of corneal thickness directly inside the vial can reduce the mounting time of the cornea on the artificial anterior chamber, thereby minimizing the stress placed upon the endothelium and the risks of contamination; in addition, the method can quantify the tissue swelling rate during prolonged storage at the eye bank and has the potential to provide information about regional variations in the donor lenticule profile that could be used to correlate with postoperative DSAEK outcomes16. Notwithstanding these
advantages, the cost of an AS-OCT instrument is clearly a hindering factor when compared to
that of an US pachymeter and could limit a widespread use by eye banks.

Acknowledgments
The authors are thankful to Cornelius Rowaan BSEM, William Lee and Izuru Nos BSEE,
from the Ophthalmic Biophysics Center of the Bascom Palmer Eye Institute, for fabricating
the AS-OCT adaptor used in this study. Funds for construction were generously provided by
the Florida Lions Eye Bank in Miami Florida.

The authors finally are thankful to Cesare Amici and Roberto Donati, from the eye bank of
Rome, for their help in processing donor corneas used in this study.

The authors are thankful to Al.chi.mi.a Srl (Padova, Italy) for their support during the
experiments.

Competing Interests
The authors have no financial or commercial interest in the materials described herein

Copyright licence statement
The Corresponding Author has the right to grant on behalf of all authors and does grant on
behalf of all authors, an exclusive licence on a worldwide basis to the BMJ Group and co-
owners or contracting owning societies (where published by the BMJ Group on their behalf),
and its Licensees to permit this article (if accepted) to be published in British Journal of
Ophthalmology and any other BMJ Group products and to exploit all subsidiary rights, as set out in our licence.

References

307 32) Silverman RJ, Patel MS, Gal O, Sarup A, Deobhakta A, Dababneh H, Reinstein DZ,
308 Feleppa EJ, Coleman DJ. Effect of Corneal Hydration on Ultrasound Velocity and
310
311
312
313 **Figure Legends**
314
315 **Figure 1.** The eye bank tissue adaptor does not require modification of the AS-OCT
316 instrument and can be easily plugged in/removed without compromising sterility of the donor
317 corneal tissue. A) The device consists of a holder accepting standard glass vials or plastic viewing
318 chambers and a fixation mechanism fitting the AS-OCT. B) front and C): top views of the device.
319
320 **Figure 2.** Bland-Altman plots analyzing the agreement between AS-OCT and US thickness
321 measurements. Average and difference CCT values between methods of pachymetry are
322 plotted in the x- and y-axes respectively. A) measurements before the microkeratome
323 dissection; B) measurements immediately after dissection; C) at 4 hours post-cut; D) at 24
324 hours and E) at 48 hours post-cut. All measurements were within 95% LOA.
325
326 **Figure 3.** AS-OCT images of a corneal sample obtained during tissue storage. The corneal
327 central thickness was 670 μm before dissection (A). The posterior lenticule central corneal
328 thickness was 240 μm immediately after dissection (B); 250 microns at 4 hours (C); 230 μm
329 at 24 hours (D) and 220 μm at 48 hours post-cut (E). Thickness measurement was done by
330 using the automated *flap tool* of the instrument.