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Abstract

In this paper, the problem of fast point-to-point MIMO channel mutual information estimation is addressed, in

the situation where the receiver undergoes unknown colored interference, whereas the channel with the transmitter

is perfectly known. The considered scenario assumes that the estimation is based on a few channel use observations

during a short sensing period. Using large dimensional random matrix theory, an estimator referred to as G-estimator

is derived. This estimator is proved to be consistent as the number of antennas and observations grow large and its

asymptotic performance is analyzed. In particular, the G-estimator satisfies a central limit theorem with asymptotic

Gaussian fluctuations. Simulations are provided which strongly support the theoretical results, even for small system

dimensions.

I. INTRODUCTION

The use of multiple-input-multiple-output (MIMO) technologies has the potential to achieve high data rates,

since several independent channels between the transmitter and the receiver can be exploited. However, the proper

evaluation of the achievable rate in the MIMO setting is fundamentally contingent to the knowledge of the transmit-

receive channel as well as of the interference pattern. In recent communication schemes such as cognitive radios [1],

it is fundamental for a receiver to be able to infer these achievable rates in a short sensing period, hence extremely

fast. This article is dedicated to the study of novel algorithms that partially fulfill this task without resorting to the

(usually time consuming) evaluation of the covariance matrix of the interference.

Conventional methods for the estimation of the mutual information in single antenna systems rely on the use of

classical estimation techniques which assume a large number of observations. In general, consider θ a parameter

we wish to estimate, and M the number of independent and identically distributed (i.i.d.) observation vectors

y1, · · · ,yM ∈ CN . Assume θ is a function of the covariance matrix Σ = E
[
y1y

H

1

]
of the received random

process, i.e. θ = f(Σ), for some function f . From the strong law of large numbers, a consistent estimate of

the covariance of the random process is simply given by the empirical covariance of Y = [y1, · · · ,yM ], i.e.

Σ̂ , 1
MYYH = 1

M

∑M
i=1 yiy

H

i . The one-step estimator θ̂ of θ would then consist in using the empirical covariance

matrix Σ̂ as a good approximation of Σ, thus yielding θ̂ = f(Σ̂) [2]. Such methods provide good performance

as long as the number of observations M is very large compared to the vector size N , a situation not always

encountered in wireless communications, especially in fast changing channel environments.
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To address the scenario where the number of observations M is of the same order as the dimension N of

each observation, new consistent estimation methods, sometimes called G-estimation methods (named after Girko’s

pioneering works [3], [4] on General Statistical Analysis) have been developed, mainly based on large dimensional

random matrix theory. In the context of wireless communications, works devoted to the estimation of eigenvalues and

eigenspace projections [5], [6] have given rise to improved subspace estimation techniques [7], [8]. Recently, the use

of these methods to better estimate system performance indexes in wireless communications has triggered the interest

of many researchers. In particular, the estimation of the mutual information of MIMO systems under imperfect

channel knowledge has been addressed in [9] and [10], where methods based respectively on free probability

theory and the Stieltjes transform were proposed.

In this article, we consider a different situation where the receiver perfectly knows the channel with the transmitter

but does not a priori know the experienced interference. Such a situation can be encountered in multi-cell scenarios,

where interference stemming from neighboring cell users changes fast, which is a natural assumption in packet switch

transmissions. Our target is to estimate the instantaneous or ergodic mutual information of the transmit-receive link,

which serves here as an approximation of the achievable communication rate provided that no improved precoding

is performed. An important usage of the mutual information estimation is found in the context of cognitive radios

where multiple frequency bands are sensed for future transmissions. In this setting, the proposed estimator provides

the expected rate performance (either instantaneous or ergodic) achievable in each frequency band, prior to actual

transmission. The transmit-receive pair may then elect the frequency sub-bands most suitable for communication.

The setting of the article assumes that the channel from the transmitter to the receiver is known by the receiver

(but not known by the transmitter), which is a realistic scenario provided that some channel state feedback is

delivered by the transmitter, and that the statistical inference on the mutual information is based on M successive

observations of channel uses, where M is not large compared to the number of receive antennas N , therefore

naturally calling for the G-estimation framework. The progression of this article will consist first in studying

the conventional one-step estimator, hereafter called the standard empirical (SE) estimator, which corresponds to

estimating the interference covariance matrix by the empirical covariance matrix and to replacing the estimate in

the mutual information formula. We then show that this approach, although consistent in the large M regime,

performs poorly in the regime where both M and N are of similar sizes. We then provide an alternative approach,

based on the G-estimation scheme, and produce a novel G-estimator of the mutual information which we first prove

consistent in the large M,N regime and for which we derive the asymptotic second order performance through a

central limit theorem.

The remainder of the article is structured as follows. In Section II, the system model is described and the

considered problem is mathematically formalized. In Section III, first order results for both the SE-estimator and

the G-estimator are provided. In Section IV, the fluctuations of the G-estimator are studied. We then provide in

Section V numerical simulations that support the accuracy of the derived results, before concluding the article in

Section VI. Mathematical details are provided in the appendices.
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Notations: In the following, boldface lower case symbols represent vectors, capital boldface characters denote

matrices (IN is the size-N identity matrix). If A is a given matrix, AH stands for its transconjugate; if A is square,

tr(A), det(A) and ‖A‖ respectively stand for the trace, the determinant and the spectral norm of A. We say that

the variable X has a standard complex Gaussian distribution if X = U+iV (i2 = −1) , where U, V are independent

real random variables with Gaussian distribution N(0, 1/2). The complex conjugate of a scalar z will be denoted

by z∗. Almost sure convergence will be denoted by
a.s.−−→, and convergence in distribution by

D−→. Notation O will

refer to Landau’s notation: un = O(vn) if there exists a bounded sequence Kn such that un = Knvn. For a square

N ×N Hermitian matrix A, we denote λ1(A) ≤ . . . ≤ λN (A) the ordered eigenvalues of A.

II. SYSTEM MODEL AND PROBLEM SETTING

A. System model

Consider a wireless communication channel Ht ∈ CN×n0 between a transmitter equipped with n0 antennas and

a receiver equipped with N antennas, the latter being exposed to interfering signals. The objective of the receiver

is to evaluate the mutual information of this link during a sensing period assuming Ht known at all time. For this,

we assume a block-fading scenario and denote by T ≥ 1 the number of channel coherence intervals (or time slots)

allocated for sensing. In other words, we suppose that, within each channel coherence interval t ∈ {1, . . . , T }, Ht

is deterministic and constant. We also denote by M the number of channel uses employed for sensing during each

time slot (M times the channel use duration is therefore less than the channel coherence time). The M concatenated

signal vectors received in slot t are gathered in the matrix Yt ∈ CN×M defined as

Yt = HtXt,0 +Wt

where Xt,0 ∈ Cn0×M is the concatenated matrix of the transmitted signals and Wt ∈ CN×M represents the

concatenated interference vectors.

Since Wt is not necessarily a white noise matrix in the present scenario, we write Wt = GtWt where Gt ∈
CN×n is such that GtG

H
t ∈ CN×N is the deterministic matrix of the noise variance during slot t while Wt ∈ Cn×M

is a matrix filled with independent entries with zero mean and unit variance. That is, we assume that the interference

is stationary during the coherence time of Ht, which is a reasonable assumption in practical scenarios, as commented

in Remark 1. The choice of using the additional system parameter n, not necessarily equal to N , is also motivated

by practical applications where the sources of interference may be of different dimensionality than the number of

receive antennas, as discussed in Remark 1 below. This will have no effect on the resulting mutual information

estimators.

We finally assume that perfect decoding of Xt,0 (possibly transmitted at low rate or not transmitted at all) is

achieved during the sensing period. If so, since Ht is assumed perfectly known, the residual signal to which the

receiver has access is given by

Yt = Yt −HtXt,0 = GtWt.
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Fig. 1. System model of Remark 1 with two interferers.

Remark 1: The usual white noise assumption naturally arises from the thermal noise created by the electronic

components at the receiver radio front end as well as from the large number of exogenous sources of interference

in the vicinity of the receiver. However, in cellular networks, and particularly so in cell edge conditions, the main

source of interference arises from coherent transmissions in adjacent cells. In this case, only a small number K of

signal sources interfere in a colored manner. Calling Gt,k ∈ CN×nk the channel from interferer k ∈ {1, . . . ,K},

equipped with nk antennas, to the receiver and Xt,k ∈ Cnk×M the concatenated transmit signals from interferer k,

the received signal Yt can be modeled as

Yt = HtXt,0 +

K∑

k=1

Gt,kXt,k + σW′
t (1)

where σW′
t ∈ CN×M is the concatenated additional white Gaussian noise with variance σ2 > 0. In this case, we

see that, denoting n = n1 + . . .+ nK +N and

Gt = [Gt,1, · · · ,Gt,K , σIN ]

Wt =
[
XT

t,1, · · · ,XT

t,K ,W′
t
T
]T

we fall back on the above model. Figure 1 depicts this scenario in the case of K = 2 interfering users.

The statistical properties of the random variables Xt,0 and Wt are precisely described as follows.

Assumption A1: For a given t where 1 ≤ t ≤ T , the entries of the matrices Xt,0 and Wt are i.i.d. random

variables with standard complex Gaussian distribution.

The objective for the receiver is to evaluate the average (per-antenna) mutual information that can be achieved

during the T slots. In particular, for T = 1, the expression is that of the instantaneous mutual information which
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allows for an estimation of the rate performance of the current channel. If T is large instead, this provides an

approximation of the long-term ergodic mutual information. Under Assumption A1, the average mutual information

is given by

I =
1

NT

T∑

t=1

[
log det

(
HtH

H

t +GtG
H

t

)
− log det

(
GtG

H

t

)]
. (2)

The target of the article is to address the problem of estimating I based on T successive observations Y1, . . . ,YT

assuming perfect knowledge of H1, · · · ,HT , but unknown Gt for all t.

B. The standard empirical estimator ÎSE

If the number M of available observations during the sensing period in each slot is very large compared to the

channel vector N , a natural estimator, hereafter referred to as the standard empirical (SE) estimator, consists in the

following one-step estimator

ÎSE =
1

NT

T∑

t=1

log det

(
HtH

H

t +
1

M
YtY

H

t

)
− 1

NT

T∑

t=1

log det

(
1

M
YtY

H

t

)
. (3)

For future use, it is convenient to introduce the notation

ÎSE(y) =
1

NT

T∑

t=1

log det

(
yHtH

H

t +
1

M
YtY

H

t

)
− 1

NT

T∑

t=1

log det

(
1

M
YtY

H

t

)
. (4)

With this notation at hand, ÎSE = ÎSE(1).

For N fixed, it is an immediate application of the law of large numbers and of the continuous mapping theorem

to observe that, as M → ∞,

ÎSE − I
a.s.−→ 0. (5)

However, from the discussions above, the assumption M ≫ N may not be tenable for practical settings where

sensing needs to be performed fast, particularly so under fast fading conditions. In this case, as will be shown

in Section III, the SE-estimator is asymptotically biased in the large M,N regime, hence not consistent, and (5)

will no longer hold true. This motivates the study of an alternative consistent estimator based on the G-estimation

framework. To this end, we first need to study in depth the statistical properties of the SE-estimator from which the

G-estimator will naturally arise. The statistical properties of the latter will similarly be obtained by first studying

the second order statistics of the SE-estimator (themselves being of limited practical interest). Before moving to

our main results, we first need some further technical hypotheses.

C. The asymptotic regime

In this section, we formalize the conditions under which the large M,N regime is considered. We will require

the following assumptions.
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Assumption A2: M,N, n, n0 → +∞, and

0 < lim inf
M,N→∞

N

n
≤ lim sup

M,N→∞

N

n
< +∞ ,

1 < lim inf
M,N→∞

M

N
≤ lim sup

M,N→∞

M

N
< +∞ ,

0 < lim inf
N,n0→∞

n0

N
≤ lim sup

N,n0→∞

n0

N
< +∞ .

Remark 2: The constraints over N and n simply state that these quantities remain of the same order. The lower

bound for the ratio M/N accounts for the fact that that M is larger than N , although of the same order.

In the remainder of the article, we may refer to Assumption A2 as the convergence mode M,N, n → ∞.

We also need the channel matrices to be bounded in spectral norm, as M,N, n → ∞, as follows.

Assumption A3: Let N = N(n) a sequence of integers indexed by n. For each t ∈ {1, · · · , T }, consider the

family of N × n matrices Gt. Then,

• The spectral norms of Gt are uniformly bounded in the sense that

sup
1≤t≤T

sup
N,n

‖Gt‖ < ∞ .

• For t ∈ {1, · · · , T }, the smallest eigenvalue of GtG
H

t denoted by λN (GtG
H

t ) is uniformily bounded away

from zero, i.e. there exists σ2 > 0 such that

inf
1≤t≤T

inf
N,n

λN (GtG
H

t ) ≥ σ2 > 0 .

Assumption A4: Let N = N(n0) a sequence of integers indexed by n0. For each t ∈ {1, · · · , T }, consider the

family of N × n0 matrices Ht. Then, The spectral norms of Ht are uniformly bounded in the sense that

sup
1≤t≤T

sup
N,n0

‖Ht‖ < ∞ .

Assumption A5: The family of matrices (Ht) satisfies additionally the following assumptions:

1) Denote by pt the rank of Ht. Then

0 < lim inf
N,n0→∞

pt
N

≤ lim sup
N,n0→∞

pt
N

< 1 .

2) The smallest non-zero eigenvalue of HtH
H

t is uniformly bounded away from zero, i.e. there exists κ > 0 such

that:

inf
1≤t≤T

inf
N,n0

{
λi(HtH

H

t ) | λi(HtH
H

t ) > 0
}
≥ κ > 0.

III. CONVERGENCE OF THE AVERAGE MUTUAL INFORMATION ESTIMATORS

In this section, we study the asymptotic behavior of the SE-estimator ÎSE and prove that under the asymptotic

regime A2, this estimator is asymptotically biased. Relying on this first analysis, we then derive a consistent

estimator based on the random matrix inference techniques known as G-estimation.

These techniques can be classified in two categories. One is based on the link between the Stieltjes transform

(see Appendix A) and the Cauchy complex integral, recently exhibited by Mestre who developed a framework
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for the estimation of eigenvalues and eigenspace projections [5]. This approach is often well-adapted as long as

the estimation of parameters depending either on the eigenvalues or on the eigenvector projections of YtY
H

t is

considered (see for instance Lemma 1) but may fail when the dependence is more involved. The second approach,

which we will adopt here, is based on the technique of deterministic equivalents developed in [11], [12]. It follows

from the initial work [10] of Vallet and Loubaton, and will be illustrated in Section III-B.

A. The standard empirical estimator ÎSE

We start by studying the second of the two terms in the difference (2) for which it is much easier to derive an

estimate.

Lemma 1: Let Assumptions A1-A4 hold. Then, we have the following convergence.

1

N
log det(GtG

H

t )−
1

N
log det

(
1

M
YtY

H

t

)
+

N −M

N
log

(
M −N

M

)
− 1

a.s.−−−−−−−→
M,N,n→∞

0 .

Proof: See Appendix A

Remark 3: It should be noted that in the proof of lemma 1, the Gaussianity assumption of the entries is not

necessary and can be replaced by a finite moment condition.

Remark 4: Lemma 1 relies on the Stieltjes transform estimation technique from Mestre. The latter is used to

compute a consistent estimate of the quantity 1
N

∑T
t=1 log det(GtG

H

t ), which is seen here as a functional of

the (non-observable) eigenvalues of GtG
H
t . Following the work from Mestre [5], the idea is to link the Stieltjes

transform of GtG
H

t to that of the (almost sure) limiting Stieltjes transform of the (observable) sample covariance

matrix 1
MYtY

H

t . See [13] for a tutorial on these notions.

As a consequence of Lemma 1, we see that the 1
N log det( 1

MYtY
H
t ) is a consistent estimate of 1

N log det(GtG
H
t )

(recall that 1
MEYtY

H

t = GtG
H

t ) up to a bias term depending on the time and space dimensions only. This may

suggest that, up to the introduction of the term HtH
H
t in the log determinants for estimating the first term in (2),

the SE-estimator is also a consistent estimator for I. This is however not true. To study the first term in (2), which

is not as immediate as the second term, we need some further work. We start with a first technical lemma which

follows instead from random matrix operations on deterministic equivalents. 1

Lemma 2: Let Assumptions A1–A4 hold and let y > 0. Then we have the following identities.

1) The fixed-point equation in y

κt(y) =
1

M
tr

(
GtG

H

t

(
GtG

H
t

1 + κt(y)
+ yHtH

H

t

)−1
)

(6)

admits a unique positive solution κt(y).

1By deterministic equivalents, we mean deterministic quantities which are asymptotically close to the quantity under investigation. The

advantage of considering such equivalents comes from the fact that this prevents from studying the true limit of the quantities under investigation

(which might not exist anyway). See [11] for more details.
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Denote by Tt(y) and Qt(y) the following quantities:

Tt(y) =

(
yHtH

H

t +
GtG

H
t

1 + κt(y)

)−1

, Qt(y) =

(
yHtH

H

t +
1

M
YtY

H

t

)−1

.

2) Then, for any deterministic family (SN ) of N ×N complex matrices with uniformly bounded spectral norm,

we have:
1

M
trSNQt(y)−

1

M
trSNTt(y)

a.s.−−−−−−−→
M,N,n→∞

0.

3) Let

Vt(y) = log det

(
yHtH

H

t +
GtG

H

t

1 + κt(y)

)
+M log(1 + κt(y))−M

κt(y)

1 + κt(y)
.

Then, the following convergence holds

1

N
log det

(
yHtH

H

t +
1

M
YtY

H

t

)
− 1

N
Vt(y)

a.s.−−−−−−−→
M,N,n→∞

0 .

Proof: See Appendix B.

Clearly, when setting y = 1, this result provides a convergence result for the SE-estimator, as will be stated

in Theorem 1. Lemma 2 is however more generic in its replacing the term 1 in front of HtH
H

t by an auxiliary

parameter y. As a matter of fact, the introduction of y is at the core of the novel estimator derived later. We can

indeed already anticipate the remainder of the derivations: if (1 + κt(y))
−1 can be made equal to y, then the first

term in the expression of Vt(y) is proportional to the first term in (2) which we are interested in. Turning the

factor 1 into a generic variable y will therefore provide the flexibility missing to estimate (2) precisely in the large

M,N, n regime. Before getting into these considerations, let us start with the following result on the SE-estimator.

Theorem 1 (Asymptotic bias of the SE-estimator): Let Assumptions A1-A4 hold, and denote

V(y) =
1

NT

T∑

t=1

(
log det

(
yHtH

H

t +
GtG

H
t

1 + κt(y)

)
− log det(GtG

H

t )

)

+
1

T

T∑

t=1

(
M

N
log(1 + κt(y))−

M

N

κt(y)

1 + κt(y)

)
+

M −N

N
log

(
M −N

M

)
+ 1. (7)

where κt(y) is the unique solution of (6). Then,

ÎSE − V(1)
a.s.−−−−−−−→

M,N,n→∞
0 .

Proof: Gathering item 3) of Lemma 2 together with Lemma 1 yields the desired result.

This result suggests that the SE-estimator is not necessarily a consistent estimator of the mutual information, as

there is no reason for the bias term in (7) (for y = 1) to be identically null. However, based on the discussion prior

to Theorem 1, we are now in position to derive a novel consistent estimator. The following section is dedicated to

this task.
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B. A G-estimator of the average mutual information

The following result is our main contribution, which provides the novel consistent estimator for (2).

Theorem 2 (G-estimator for the average mutual information): Assume that A1-A4 hold and define the quantity

ÎG =
1

NT

T∑

t=1

log det

(
IN + ŷN,tHtH

H

t

(
1

M
YtY

H

t

)−1
)

+
1

T

T∑

t=1

(M −N)

N

[
log

(
M

M −N
ŷN,t

)
+ 1

]
− M

N
ŷN,t

where ŷN,t is the unique real positive solution of

ŷN,t =
ŷN,t

M
trHtH

H

t

(
ŷN,tHtH

H

t +
1

M
YtY

H

t

)−1

+
M −N

M
.

Then

ÎG − I
a.s.−−−−−−−→

M,N,n→∞
0 .

Proof: We hereafter provide an outline of the proof, which is developed in full detail in Appendix C. Denote

It the average mutual information at time t as

It ,
1

N
log det(GtG

H

t +HtH
H

t )−
1

N
log det(GtG

H

t ) ,

, It,1 − It,2.

Recall that a consistent estimate Ît,2 of It,2 was provided in Lemma 1. It therefore remains to build a consistent

estimate for It,1.

The proof is divided into four steps, as follows.

1) In the first step, we exploit the convergence of parametrized quantities of interest. Denote

f(y) =
1

N
log det

(
1

M
YtY

H

t + yHtH
H

t

)

and recall the definition of κt(y) as given in Lemma 2-1). By Lemma 2-3),

−f(y) +
1

N
log det

(
GtG

H

t

1 + κt(y)
+ yHtH

H

t

)
+

M

N
log(1 + κt(y))−

M

N

κt(y)

1 + κt(y)

a.s−−−−−−−→
M,N,n→∞

0 .

Clearly, for most values of y; the deterministic quantity to which f(y) converges differs from It,1.

2) In the second step, we find a specific value of y to enforce the desired quantity It,1 to appear. One can readily

check that if yN,t is the solution of the equation in y

y =
1

1 + κt(y)
(8)

then we immediately obtain

It,1 −
[
1

N
log det

(
1

M
YtY

H

t + yN,tHtH
H

t

)
+

M −N

N
log(yN,t) +

M

N
(1− yN,t)

]
a.s.−−−−−−−→

M,N,n→∞
0 . (9)
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From the definition of κt(y), we show that there exists a unique positive yN,t solution of (8), given by the

closed-form expression

yN,t = 1− 1

M
tr
[
(GtG

H

t )(HtH
H

t +GtG
H

t )
−1
]
. (10)

However, the value of yN,t still depends upon the unknown matrix Gt to this point.

3) In the third step, we provide a consistent estimator ŷN,t of yN,t. Based on an analysis of κt(y), and on finding

a consistent estimate for this quantity, we show that there exists a unique positive solution ŷN,t to

ŷN,t =
1

M
tr ŷN,tHtH

H

t

(
ŷN,tHtH

H

t +
1

M
YtY

H

t

)−1

+
M −N

M
. (11)

Moreover, ŷN,t satisfies

ŷN,t − yN,t
a.s.−−−−−−−→

M,N,n→∞
0 .

4) Finally, it remains to check that we can replace yN,t by ŷN,t in the convergence (9). This immediately yields

a consistent estimate Ît,1 for It,1. For the proof of the theorem to be complete, it remains to gather the

estimates of It,1 and It,2, which finally yields the announced result

ÎG =
1

T

T∑

t=1

(
Ît,1 − Ît,2

)
.

IV. FLUCTUATIONS OF THE G-ESTIMATOR

In this section, we establish a central limit theorem for the improved G-estimator ÎG, so to evaluate the asymptotic

performance of our novel estimator. Due to the Gaussian assumption on Wt, we can use the powerful Gaussian

methods developed for the study of large random matrices by Pastur et al. [14], [12]. In order to derive the asymptotic

fluctuations of the G-estimator ÎG, similar to the previous section, a first step consists in evaluating the fluctuations

of ÎSE(y).

Theorem 3: Let Assumptions A1-A5 hold and recall the definition (4) of ÎSE(y). We then have the following

results.

1) The sequence of real numbers

αN (y) =
2 log(M)

T 2
− 1

T 2

T∑

t=1

log

[
(M −N)

(
M(κt(y) + 1)2 − tr

(
IN

κt(y) + 1
+ yHtH

H

t (GtG
H

t )
−1

)−2
)]

is well-defined and

0 < lim inf
M,N,n→∞

αN (y) ≤ lim sup
M,N,n→∞

αN (y) < +∞ .

2) The following convergence holds

N√
αN (y)

(
ÎSE(y)− V(y)

)
D−−−−−−−→

N,M,n→∞
N(0, 1)

where V(y) is defined in (7).

Proof: See Appendix D.
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With the above result at hand, we are now in position to derive the fluctuations of the G-estimator. As opposed

to ÎSE(y) though, the G-estimator has no closed-form expression, as the ŷN,t’s are solutions of implicit equations.

Establishing a CLT for ÎG therefore requires to control both the fluctuations of the received matrix Yt and of the

quantity ŷN,t. In the following lemma, we first prove that the fluctuations of ŷN,t − yN,t are of order O(M−2),

a rate which will turn out to be sufficiently fast to discard the randomness stemming from ŷN,t in the asymptotic

fluctuations of ÎG.

Lemma 3: For t ∈ {1, · · · , T }, the following estimates hold true, as M,N, n → ∞:

1) var(ŷN,t) = O(M−2) ,

2) E ŷN,t = yN,t + O(M−2) .

Proof: See Appendix E.

We are now in position to state the central limit theorem for ÎG.

Theorem 4: Let Assumptions A1-A5 hold true. Then,

N√
θN

(ÎG − I)
D−−−−→

N→∞
N(0, 1)

where θN given by

θN =
1

T 2

T∑

t=1

2 log(MyN,t)− log
[
(M −N)

(
M − tr

(
IN +HtH

H

t (GtG
H

t )
−1
)−2
)]

(12)

which is a well-defined quantity which satisfies

0 < lim inf
M,N,n→∞

θN ≤ lim sup
M,N,n→∞

θN < +∞ .

Proof: Consider the function Jt(y) defined for y > 0 as:

Jt(y) =
1

N
log det

(
yHtH

H

t +
YtY

H

t

M

)
+

M −N

N

[
log

(
M

M −N
y

)
+ 1

]
− M

N
y − log det

(
YtY

H

t

M

)
.

Then ÎG = 1
T

∑T
t=1 Jt(ŷN,t). Since all the random variables (Jt(ŷN,t), 1 ≤ t ≤ T ) are independent, it is sufficient

to prove a CLT for Jt(ŷN,t), for a given t ∈ {1, · · · , T }. In order to handle the randomness of ŷN,t, we shall

perform a Taylor expansion of Jt around ŷN,t. Recall the following differentiation formula

d

dx
log detA(x) = trA′(x)A−1(x).

A direct application of this formula, together with the mere definition of ŷN,t yields

d Jt
d y

(ŷN,t) = 0 .

Hence, the Taylor expansion writes:

NJt(yN,t) = NJt(ŷN,t) +N
(yN,t − ŷN,t)

2

2

d2Jt
dy2

(ŷN,t) +N
(yN,t − ŷN,t)

3

6

d3Jt
dy3

(ξN,t) , (13)

where ξN,t lies between yN,t and ŷN,t. The definition (11) of ŷN,t yields

M −N

M
≤ ŷN,t ≤ 1 +

M −N

M
.
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In particular, ŷN,t uniformly belongs to a fixed compact interval, and so does yN,t for similar reasons. One can

easily prove that the second and third derivatives of Jt(y) are uniformly bounded on the union of these intervals.

This result combined with the fact that NE(ŷN,t − yN,t)
2 = O(M−1) implies that the last two terms in the right

hand side (r.h.s.) of (13) converge to zero in probability. By Slutsky’s lemma [2], it suffices to establish the CLT

for NJ(yN,t) instead of NJ(ŷN,t) = N ĴG. This is extremely helpful since unlike ŷN,t which is random, yN,t

is deterministic. The result is thus obtained by applying Theorem 3 and noticing that κ(yN,t) + 1 = 1
yN,t

. Note

that although being valid only for fixed y, Theorem 3 could be applied by considering the slightly different model

H̃t =
√
yN,tHt.

V. SIMULATIONS

In the simulations, we consider the case where a mobile terminal with N = 4 antennas receives during a sensing

period of T slots data stemming from an n0 = 4 antenna secondary transmitter. We also set the number of symbols

for sensing per slot to M = 15. We assume that the communication link is degraded by both additive white

Gaussian noise with covariance σ2IN and interference caused by K = 8 mono-antenna users. Hence, this scenario

follows the model described by (1), where for each t, the vectors Gt,k, k ∈ {1, · · · , 8} respectively represent

the channel from the interferers to the receiver, whereas Ht represent the channel with the transmitter. Denote

by Bt = [Gt,1, · · · ,Gt,8]. In the simulations, Ht and Bt are randomly chosen as Gaussian matrices and remain

constant during the Monte Carlo averaging. To control the interference level, we scale the matrix Bt for each t so

that the signal-to-interference ratio SIR be given by

SIRt ,
trHtH

H
t

trBtB
H
t

= α.

In a first experiment we set T = 10 and SNR = 1
σ2 = 10 dB and represent in Figure 2 the theoretical and empirical

normalized mean square errors for the G-estimator with respect to the SIR given respectively by:

MSEth =
θN
I2

,

MSEg,emp =
1

P

P∑

i=1

N2(ÎiG − I)2

I2
,

where ÎiG is the G-estimator at the i-th Monte Carlo iteration and P = 10 000 is the total number of iterations. We

also display in the same graph the empirical normalized mean square error of the SE-estimator defined as

MSEt,emp =
1

P

P∑

i=1

N2(ÎiSE − I)2

I2
.

We observe that the G-estimator exhibits better performance for the whole SIR range. These results are somewhat

in contradiction with the intuition that a low level of interference tends to have a small impact on the accuracy of

the SE-estimator. The reason is that the mutual information depends rather on the inverse of the covariance of the

interference and noise signals BtB
H

t + σ2IN , as

log det(HtH
H

t +BtB
H

t + σ2IN )− log det(BtB
H

t + σ2IN ) = log det(HtH
H

t (BtB
H

t + σ2IN )−1 + IN ).
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We study in a second experiment the effect of T when the SNR and the SIR are set respectively to 10 dB and −10

dB. Figure 3 depicts the obtained results. We observe that, since the SE-estimator is asymptotically biased, its mean

square error does not significantly decrease with T and remains almost unchanged, whereas the G-estimator exhibits

a low variance which drops linearly with T . Finally, to assess the Gaussian behavior of the proposed estimator,

we represent in Figure 4 its corresponding histogram. We note a good fit between theoretical and empirical results

although the system dimensions are small.
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Fig. 2. Empirical and theoretical variances with respect to the SIR.

101 101.2 101.4 101.6 101.8 102

−30

−25

−20

−15

−10

−5

0

T

N
o
rm

al
iz

ed
m

ea
n

sq
u
ar

e
er

ro
r

[d
B

]

MSEth

MSEg,emp

MSEt,emp

Fig. 3. Empirical and theoretical variances with respect to T .
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VI. CONCLUSION

In this paper, we have proposed a novel G-estimator for fast estimation of the MIMO mutual information in

the presence of unknown interference in the case where the number of available observations is of the same order

as the number of receive antennas. Based on large random matrix theory, we have proved that the G-estimator is

asymptotically unbiased and consistent, and have studied its fluctuations. Numerical simulations have been provided

and strongly support the accuracy of our results even for usual system dimensions.
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APPENDIX A

PROOF OF LEMMA 1

Recall that if P is a probability distribution on R+, then the Stieltjes transform m(z) of P is defined as

m(z) =

∫

R

P(dλ)

λ− z
, z ∈ C \ R+ . (14)

For example, the Stieltjes transform m 1
M

YtY
H
t

associated to the empirical distribution of the eigenvalues of the

Hermitian matrix 1
MYtY

H

t is simply the normalized trace of the associated resolvent:

m 1
M

YtY
H

t
(z) =

1

N

N∑

i=1

1

λi − z
=

1

N
tr

(
1

M
YtY

H

t − zIN

)−1

,

where λ1, · · · , λN denotes the eigenvalues of 1
MYtY

H
t . Since their introduction by Marčenko and Pastur in their

seminal paper [15], Stieltjes transforms have proved to be a highly efficient tool to study the spectrum of large
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random matrices. From an estimation point of view, Stieltjes transform are, in the large dimension regime of interest,

consistent estimates of well-identified deterministic quantities. Therefore, the approach below consists in expressing

the parameters of interest as functions of the Stieltjes transform of the eigenvalue distribution of 1
MYtY

H

t .

Using the same eigenvalue decomposition as in Appendix B, we can prove that Yt = UtD
1
2
t W̃t where W̃t is

an N × M standard Gaussian matrix, and where Dt is a diagonal matrix with the same eigenvalues as GtG
H

t .

In the sequel, if A is a p × p hermitian matrix, denote by FA the empirical distribution of its eigenvalues, i.e.

FA = 1
p

∑p
i=1 δλi(A), and by mA the associated Stieltjes transform.

Notice that due to Assumption A3, the following decomposition holds true:

GtG
H

t = σ2IN + Γt,

where Γt is a positive semi-definite matrix (simply write GtG
H
t = σ2IN +Ut(Dt − σ2IN )UH

t ).

Notice that mDt
(z) = mΓt

(z − σ2). Using this fact, and the result in [16, Theorem 1.1], one can easily prove

that m 1
M

YH

t Yt
satisfies:

∀z ∈ C \ R+ , m 1
M

YH

t Yt
(z)−m(z)

a.s.−−−−−−−→
M,N,n→∞

0 ,

where m(z) is the unique Stieltjes transform of a probability distribution F , solution of the following functional

equation:

m(z) =

(
−z +

N

M

∫
λ+ σ2

1 + (λ+ σ2)m(z)
dFΓt(λ)

)−1

. (15)

Moreover, m(z) is analytical on C+ = {z ∈ C,ℑ(z) > 0} where ℑ(z) stands for the imaginary part of z ∈ C.

Using (15), one can prove that mΓt
(z) satisfies:

mΓt

(
− 1

m(z)
− σ2

)
= m(z)(1− M

N
)− M

N
zm2(z) . (16)

The link between the unobservable Stieltjes transform mΓt
and the deterministic equivalent m(z) being established,

it remains to express N−1 log det(IN + σ−2Γt) in terms of mΓt
, which follows easily by differentiation:

∂

∂σ2

1

N
log det

(
IN +

Γt

σ2

)
=

1

N
tr
(
Γt + σ2IN

)−1 − 1

σ2
.

Hence:

1

N
log det

(
IN +

Γt

σ2

)
=

∫ +∞

σ2

1

v
− 1

N
tr (Γt + vIN )−1 dv ,

=

∫ 1
σ2

0

1

v
− 1

v2
mΓt

(
−1

v

)
dv . (17)

We shall now perform a change of variables within the integral in order to substitute m for mΓt
with the help of

(16). Since the support of F is on [0,+∞[, the Stieltjes transform m is continuous and increasing on ]−∞, 0[.

It establishes then a bijection from ]−∞, 0[ to ]limx→−∞ m(x), limx→0 m(x)[. Obviously, limx→−∞ m(x) = 0

whereas limx→0− m(x) = −∞ since 0 is an eigenvalue of 1
MYtY

H
t with multiplicity at least equal to M −N .

We have thus,

u 7→
(

1

m(u)
+ σ2

)−1
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establishes a bijection from R
∗
− to (0, 1/σ2). Considering the change of variable 1

t = 1
m(u) + σ2, (17) writes:

1

N
log det

(
IN +

Γt

σ2

)

=

∫ 0

−∞

[
1

m(u)
+ σ2 −

(
1

m(u)
+ σ2

)2

mΓt

(
− 1

m(u)
− σ2

)]
m′(u)

(1 + σ2m(u))2
du

=

∫ 0

−∞

[
m′(u)

m(u)(1 + σ2m(u))
−
(
1− M

N

)
m′(u)

m
+

M

N
um′(u)

]
du

=

∫ 0

−∞

[
M

N

m′(u)

m(u)
− σ2m′(u)

1 + σ2m(u)
+

M

N
um′(u)

]
du.

We shall now compute this integral, denoted by I in the sequel. Write I = limx→−∞
y→0

Ix,y where

Ix,y =

∫ y

x

[
M

N

m′(u)

m(u)
− σ2m′(u)

1 + σ2m(u)
+

M

N
um′(u)

]
du .

Straightforward computations yield:

Ix,y = log

∣∣∣∣∣
(m(y))

M
N

1 + σ2m(y)

∣∣∣∣∣− log

∣∣∣∣∣
(m(x))

M
N

1 + σ2m(x)

∣∣∣∣∣+
M

N
ym(y)− M

N
xm(x)−

∫ y

x

M

N
m(u)du . (18)

As our objective is to compute the limit of Ix,y as x → −∞ and y → 0, we need to obtain equivalents for m at 0

and −∞. A direct application of the dominated convergence theorem yields:

m(x) ∼
x→−∞

− 1

x
.

Recall that F is the probability distribution associated to m. Then, F ({0}) = M−1(M−N). Although this property

is not easy to write down properly, it is quite intuitive if one sees F a.s. close to FY
H

t Yt (the empirical distribution

of the eigenvalues of YH

t Yt) which clearly satisfies FY
H

t Yt({0}) = M−1(M − N) by Assumption A2: This

assumption implies in fact that zero is an eigenvalue of YH

t Yt of order M −N . Hence,

m(y) ∼
y→0

−M −N

My
.

Using these relations, we can derive equivalents for the first four terms in the right-hand side of (18). In particular,

we obtain:

log

∣∣∣∣∣
(m(y))

M
N

1 + σ2m(y)

∣∣∣∣∣ ∼
y→0

(
M

N
− 1

)
log

(
M −N

M

)
− log(σ2) +

(
1− M

N

)
log |y| , (19)

− log

∣∣∣∣∣
(m(x))

M
N

1 + σ2m(x)

∣∣∣∣∣ ∼
x→−∞

M

N
log |x| , (20)

M

N
ym(y) ∼

y→0
−
(
M

N
− 1

)
, (21)

−M

N
xm(x) ∼

x→−∞

M

N
. (22)

Let us now handle the last term in (18). Clearly, we have:

F
1
M

Y
H

t Yt(dx) =
N

M
F

1
M

YtY
H

t +
(M −N)

M
δ0(dx)
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which implies that

m 1
M

YH
t Yt

(z) =
M

N
m 1

M
YtY

H
t
(z) +

(M −N)

N

1

z

The above relations can be also transferred to the limit Stieltjes transforms m and m and their associated probability

distribution functions F and F . Actually, we have:

F (dx) =
(M −N)

M
δ0(dx) +

N

M
F (dx) .

and also:

m(z) =
M

N
m(z) +

(M −N)

N

1

z
.

Note in particular that m
YtY

H

t
−m → 0, hence that F is a deterministic approximation of F

1
M

YtY
H

t , the empirical

distribution of the eigenvalues of 1
MYtY

H
t . Now,

∫ y

x

M

N
m(u)du =

∫ y

x

∫
dF (t)

t− u
du − M −N

Nu
du ,

=

∫
(− log |t− y|+ log |t− x|)dF (t) +

M −N

N
(log |x| − log |y|) . (23)

Using the dominated convergence theorem, one can prove that the r.h.s. of (23) is equivalent to:
∫ y

x

M

N
m(u)du ∼

x→−∞
y→0

−
∫

log(t)dF (t) +
M

N
log |x| − M −N

N
log |y| . (24)

Plugging (19), (20), (21), (22) and (24) into (18) yields:

lim
x→−∞
y→0

Ix,y =
M −N

N
log

(
M −N

M

)
− log σ2 +

∫
log(t)dF (t) + 1.

Since the spectrum of 1
MYtY

H

t is almost surely eventually bounded away from zero and upper-bounded [17],

uniformly along N , we have:

1

N

N∑

i=1

log(λi)−
∫

log(t)dF (t)
a.s.−−−−−−−−→

M,N,n→+∞
0

where (λi, 1 ≤ i ≤ N) are the eigenvalues of 1
MYtY

H

t . A consistent estimator of 1
N log det(GtG

H

t ) is thus given

by:

I1 =
M −N

N
log

(
M −N

M

)
+ 1 +

1

N

N∑

i=1

log(λi)

=
M −N

N
log

(
M −N

M

)
+ 1 +

1

N
log det

(
1

M
YtY

H

t

)
,

which concludes the proof.
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APPENDIX B

PROOF OF LEMMA 2

Define for ρ ≥ 0:

Qt(ρ, y) =

(
ρIN + yHtH

H

t +
1

M
YtY

H

t

)−1

,

gt(ρ, y) =
1

N
log det

(
ρIN + yHtH

H

t +
1

M
YtY

H

t

)
.

Recall that Yt = GtWt. Denote by Gt = UtD
1
2
t V

H

t the singular value decomposition of Gt, Dt being the

diagonal matrix of eigenvalues of GtG
H
t ; in particular, Dt’s entries are nonnegative and bounded away from zero.

Let W̃t = VH

t Wt. Since the entries of Wt are i.i.d. and Gaussian, W̃t has the same entry distribution as Zt.

Hence gt(ρ, y) becomes:

gt(ρ, y) =
1

N
log det

(
ρIN + yHtH

H

t +
1

M
UtD

1
2
t W̃tW̃

H

t D
1
2
t U

H

t

)
,

=
1

N
log det

(
ρIN + yUH

t HtH
H

t Ut +
1

M
D

1
2
t W̃tW̃

H

t D
1
2
t

)
.

Obviously, we have − 1
N log det(Qt(y)) = gt(0, y) and 1

M trQt(y) =
1
M trQt(0, y). Deterministic equivalents for

gt(ρ, y) and Qt(ρ, y) have been derived in [11] and are recalled in the lemma below.

Lemma 4 (cf. [11]): Let ρ > 0.

1) Let y > 0. The following functional equation:

κt(ρ, y) =
1

M
tr

(
GtG

H

t

(
ρIN + yHtH

H

t +
GtG

H

t

1 + κt(ρ, y)

)−1
)

admits a unique positive solution κt(ρ, y).

2) Define

Tt(ρ, y) =

(
ρIN + yHtH

H

t +
GtG

H

t

1 + κt(ρ, y)

)−1

.

Then, for any sequence of deterministic matrices SN ∈ CN×N with uniformly bounded spectral norm:

1

M
trSNQt(ρ, y)−

1

M
trSNTt(ρ, y)

a.s.−−−−−−−→
M,N,n→∞

0 .

In particular, setting SN = GtG
H
t , we get:

1

M
trGtG

H

t Qt(ρ, y)− κt(ρ, y)
a.s.−−−−−−−→

M,N,n→∞
0 .

3) Let

Vt(ρ, y) = log det

(
ρIN + yHtH

H

t +
GtG

H

t

1 + κt(ρ, y)

)
+M log(1 + κt(ρ, y))−M

κt(ρ, y)

1 + κt(ρ, y)
,

then

g(ρ, y)− 1

N
Vt(ρ, y)

a.s.−−−−−−−→
M,N,n→∞

0 .
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The general idea of the proof of Lemma 2 is to transfer these deterministic equivalents to the case ρ ց 0; we

will proceed by taking advantage from the fact that all the diagonal elements of Dt are positive and uniformly

bounded away from zero.

We first prove the existence and uniqueness of κt(y). Consider the function f defined on [0,∞[ by:

f : x 7→ x− 1

M
trDt

(
yUH

t HtH
H

t Ut +
Dt

1 + x

)−1

.

An easy computation yields the derivative of f with respect to x:

f ′(x) = 1− 1

M
trDt

(
yUH

t HtH
H

t Ut +
Dt

1 + x

)−1
Dt

(1 + x)2

(
yUH

t HtH
H

t Ut +
Dt

1 + x

)−1

which is obviously always positive. Function f is thus always increasing and thus establishes a bijection from

[0,∞[ to [f(0),+∞[. Since f(0) is negative, we conclude that f has a single zero. This proves the existence and

uniqueness of κt(y). It remains to extend the asymptotic convergence results to the case ρ = 0.

In the sequel, we only prove item 2) for SN = GtG
H
t as it captures the key arguments of the proof; the extension

to general sequences (SN ) will then be straightforward. Write 1
M trGtG

H

t Qt(y)− κt(y) as:

1

M
trGtG

H

t Qt(y)− κt(y) =
1

M
trGtG

H

t Qt(y)−
1

M
trGtG

H

t Qt(ǫ, y)

+
1

M
trGtG

H

t Qt(ǫ, y)− κt(ǫ, y)

+ κt(ǫ, y)− κt(y) ,

where ǫ > 0. We now handle sequentially each of the differences of the r.h.s. of the previous decomposition. We

first prove that there exists a fixed constant K > 0 (which only depends on lim supNM−1) such that for every

ǫ > 0, there exists N1 (which depends on the realization and hence is random) such that for every N ≥ N1, we

have: ∣∣∣∣
1

M
trGtG

H

t Qt(y)−
1

M
trGtG

H

t Qt(ǫ, y)

∣∣∣∣ ≤
ǫ

K
. (25)

To prove this, we rely on the resolvent identity B−1 −C−1 = −B−1 (B−C)C−1 which holds for any square

invertible matrices B and C. Then, we have:
∣∣∣∣
1

M
trGtG

H

t Qt(y)−
1

M
trGtG

H

t Qt(ǫ, y)

∣∣∣∣ =
∣∣∣ ǫ
M

trGtG
H

t Qt(0, y)Qt(ǫ, y)
∣∣∣

≤ ǫ

M
trGtG

H

t

∥∥∥∥∥

(
1

M
D

1
2
t W̃W̃HD

1
2
t

)−1
∥∥∥∥∥

2

.

Recall that W̃t is an N ×M matrix and that by Assumption A2, lim supM,N NM−1 < 1. Therefore the spectrum

of W̃tW̃
H
t is almost surely eventually bounded away from zero2. In particular, there exists a constant K such that

eventually, we have

∥∥∥∥
(

1
MD

1
2
t W̃W̃HD

1
2
t

)−1
∥∥∥∥
2

≤ K−1, hence:

∃N1, ∀N ≥ N1,

∣∣∣∣
1

M
trGtG

H

t Qt(y)−
1

M
trGtG

H

t Qt(ǫ, y)

∣∣∣∣ ≤
ǫ

K
.

2Recall that if limNM−1 = c < 1, then the smallest eigenvalue λmin(W̃tW̃
H
t ) converges to (1 −

√

c)2 > 0; it remains to argue on

subsequences to conclude in the case where lim supM,N NM−1 < 1 .
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The second step consists in proving that for some constant K̃ (depending on lim supNM−1) there exists N2

(depending on the realization) such that for all N ≥ N2:

|κt(ǫ, y)− κt(y)| ≤ K̃ǫ . (26)

The proof of (28) relies on the following identity:

κt(y)− κt(ǫ, y) = ǫαN + βN (κt(y)− κt(ǫ, y)) , (27)

where

αN =
1

M
trGtG

H

t Tt(ǫ, y)Tt(y) ,

βN =
1

M
tr

(
GtG

H
t Tt(ǫ, y)GtG

H
t Tt(y)

(1 + κt(y))(1 + κt(ǫ, y))

)
.

It is clear that βN < lim inf N
M . Thus, by Assumption A2, βN < 1. Also, one can prove that there exists K̃ > 0

such that lim supαN < K̃. In fact, αN satisfies:

αN ≤ N

M

∥∥GtG
H

t

∥∥
∥∥∥
(
GtG

H

t

)−1
∥∥∥
2

(1 + κt(y))(1 + κt(ǫ, y)) . (28)

One can prove that κt(y) and κt(ǫ, y) are smaller than N
M(1−N/M) . In fact, κt(y) can be written as:

κt(y) =
N(1 + κt(y))

M
− (1 + κt(y))

M
tr

(
yHtH

H

t

(
yHtH

H

t +
GtG

H

t

1 + κt(y)

)−1
)

,

=
N

M(1− N
M )

− (1 + κt(y))

M(1− N
M )

tr

(
yHtH

H

t

(
yHtH

H

t +
GtG

H
t

1 + κt(y)

)−1
)

,

≤ N

M(1− N
M )

.

Similar arguments hold for κt(ǫ, y), thus proving that lim supαN ≤ K̃. From (27), we conclude that there exists

N3 such that for all N ≥ N3,

|κt(ǫ, y)− κt(y)| ≤ K̃ǫ .

We are now in position to prove the almost sure convergence of 1
M trGtG

H

t Qt(y)− κt(y). Consider the constants

K and K̃ as defined previously and let ǫ > 0. According to (25), there exists N1 such that:

∀N ≥ N1 ,

∣∣∣∣
1

M
trGtG

H

t Qt(y)−
1

M
trGtG

H

t Qt(ǫ, y)

∣∣∣∣ ≤
ǫ

K
.

Using the almost sure convergence result of 1
M trGtG

H

t Qt(ǫ, y) stated in Lemma 4, there exists N2 such that:

∀N ≥ N2 ,

∣∣∣∣
1

M
trGtG

H

t Qt(ǫ, y)− κt(ǫ, y)

∣∣∣∣ ≤ ǫ .

Finally from (26), there exists N3 such that for all N ≥ N3:

|κt(ǫ, y)− κt(y)| ≤ K̃ǫ .

Combining all these results, we have, for N ≥ max(N1, N2, N3):
∣∣∣∣
1

M
trGtG

H

t Q(y)− κt(y)

∣∣∣∣ ≤ ǫ

(
1

K
+ 1 + K̃

)
,
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hence proving that:
1

M
trGtG

H

t Qt(y)− κt(y)
a.s.−−−−−−−→

M,N,n→∞
0 ,

which is the desired result.

APPENDIX C

PROOF OF THEOREM 2

As previously mentionned, the proof of Theorem 2 relies on the existence of a consistent estimate for

It,1 =
1

N
log det(GtG

H

t +HtH
H

t ) .

Denote by f(y) the parametrized quantity:

f(y) =
1

N
log det(YtY

H

t + yHtH
H

t ) .

Then by Lemma 2-3), we obtain:

−f(y) +
1

N
log det

(
GtG

H

t

1 + κt(y)
+ yHtH

H

t

)
+

M

N
log(1 + κt(y))−

M

N

κt(y)

1 + κt(y)

a.s.−−−−−−−→
M,N,n→∞

0 . (29)

Obviously, if y is replaced by yN,t, a solution of:

yN,t =
1

1 + κt(yN,t)
, (30)

then the term Ct,1 appears in (29). The existence and uniqueness of yN,t immediately follows from the fact that

the function g defined as:

g : x 7→ (1 + x)
1

M
tr(GtG

H

t )(HtH
H

t +GtG
H

t )
−1

is a contraction. Moreover, straightforward computations yield:

yN,t = 1− 1

M
trGtG

H

t (HtH
H

t +GtG
H

t )
−1 . (31)

Unfortunately, yN,t depends on the unobservable matrix Gt. One needs therefore to provide a consistent estimate

ŷN,t of yN,t. In order to proceed, we shall study the asymptotics of κt(y). By Lemma 2-2), we have:

y

M
trHtH

H

t Qt(y)−
y

M
trHtH

H

t Tt(y)
a.s.−−−−−−−→

M,N,n→∞
0 . (32)

On the other hand, we have:

y

M
trHtH

H

t Tt(y) =
1

M
tr yHtH

H

t

(
yHtH

H

t +
GtG

H
t

1 + κt(y)

)−1

,

=
N

M
− 1

M(κt(y) + 1)
tr

(
GtG

H

t

(
yHtH

H

t +
GtG

H

t

1 + κt(y)

)−1
)

,

=
N

M
− κt(y)

1 + κt(y)
,

=
N

M
− 1 +

1

1 + κt(y)
. (33)
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Substituting (33) into (32), we obtain:

1

M
tr yHtH

H

t Qt(y)−
N

M
+ 1− 1

κt(y) + 1

a.s.−−−−−−−→
M,N,n→∞

0 . (34)

Intuitively, a consistent estimate ŷN,t of yN,t should satisfy ŷN,t = M−1ŷN,t trHtH
H

t Qt(ŷN,t) − N
M + 1. This

intuition is confirmed by the following lemma:

Lemma 5: There exists a unique positive solution ŷN,t to the equation:

ŷN,t

M
trHtH

H

t Qt(ŷN,t)−
N

M
+ 1− ŷN,t = 0 .

Moreover, the following convergence holds true:

ŷN,t − yN,t
a.s.−−−−−−−→

M,N,n→∞
0 ,

where yN,t is defined by (30) (see also (31)).

Proof: The existence of ŷN,t follows from the fact that: h : y 7→ y
M trHtH

H

t Qt(y) − N
M + 1 − y is a

continuous function on [0,+∞[, satisfying h(0) > 0 and limy→+∞ h(y) = −∞. Assume that h admits more

than one zero. It is clear that the zeros of h are isolated. Since h(0) > 0, there exists then y1 and y2 such that

h(y1) = h(y2) = 0 and h(y) < 0 for every y ∈ [y1, y2]. However, this could not happen since h is concave, and

as such h(y1+y2

2 ) ≥ 1/2h(y1) + 1/2h(y2) = 0. Function h admits then a unique zero ŷN,t.

Using (34), we get that:

yN,t

M
trHtH

H

t Qt(yN,t)−
N

M
+ 1− yN,t

a.s.−−−−−−−→
M,N,n→∞

0 .

Beware that in (34), the convergence holds true for a fixed y while yN,t depends upon N . A way to circumvent

this issue is to merge yN,t into Ht and to consider the slightly different model based on H̃t =
√
yN,tHt.

Therefore, the mere definition of ŷN,t and the previous convergence yield:

k(yN,t, ŷN,t)
a.s.−−−−−−−→

M,N,n→∞
0,

where

k(yN,t, ŷN,t) =
ŷN,t

M
tr(HtH

H

t Qt(ŷN,t))− ŷN,t + yN,t −
yN,t

M
tr(HtH

H

t Qt(yN,t)).

Expanding k(yN,t, ŷN,t), we get:

k(yN,t, ŷN,t) =
ŷN,t

M
tr(HtH

H

t Qt(ŷN,t))−
ŷN,t

M
tr(HtH

H

t Qt(yN,t)) +
ŷN,t

M
tr(HtH

H

t Qt(yN,t)) + (yN,t − ŷN,t)

− yN,t

M
tr(HtH

H

t Qt(yN,t))

= ŷN,t(yN,t − ŷN,t)
1

M
tr(HtH

H

t Qt(ŷN,t)HtH
H

t Qt(yN,t)) + (yN,t − ŷN,t)

+ (ŷN,t − yN,t)
1

M
tr(HtH

H

t Qt(yN,t))

= (yN,t − ŷN,t)

(
1− 1

M
trHtH

H

t Qt(yN,t) +
ŷN,t

M
tr(HtH

H

t Qt(ŷN,t)HtH
H

t Qt(yN,t))

)
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To conclude that yN,t − ŷN,t converges almost surely zero, one needs to estabslish that a deterministic asymptotic

approximate of (
1− 1

M
trHtH

H

t Qt(yN,t) +
ŷN,t

M
tr(HtH

H

t Qt(ŷN,t)HtH
H

t Qt(yN,t))

)

could not be equal to zero. This is true, since from the definition of yN,t, we can easily check that 1− 1
M trHtH

H

t Qt(yN,t)

can be approximated asymptotically by 1− 1
MyN,t

trHtH
H

t

(
HtH

H

t +GtG
H

t

)−1
, where we recall that yN,t writes

as:

yN,t = 1− 1

M
GtG

H

t

(
HtH

H

t +GtG
H

t

)−1
= 1− N

M
+

1

M
trHtH

H

t

(
GtG

H

t +HtH
H

t

)−1
.

The deterministic equivalent of 1− 1
M trHtH

H
t Qt(yN,t) is thus given by:

1− N
M

1− N
M + 1

M trHtH
H
t

(
GtG

H
t +HtH

H
t

)−1

which is obviously uniformly lower-bounded by 1.

With the help of Lemma 5, the following convergence can be easily verified:

κ(ŷN,t)− κ(yN,t)
a.s.−−−−−−−→

M,N,n→∞
0 .

Let h : y 7→ − 1
N log det(Qt(y)), where h′(y) = 1

N tr(HtH
H

t Qt(y)) ≤ ‖Ht‖
2

λmin(
1
M

YtY
H

t )
. As the minimum eigenvalue

of 1
M (YtY

H

t ) is almost surely bounded away zero, function h is Lipschitz. Therefore, the following convergence

hold true:
1

N
log det(Qt(yN,t))−

1

N
log det(Qt(ŷN,t))

a.s.−−−−−−−→
M,N,n→∞

0 ,

We then get:

−f(ŷN,t) +
1

N
log det(GtG

H

t +HtH
H

t )−
M −N

N
log(ŷN,t)−

M

N
(1− ŷN,t)

a.s.−−−−−−−→
M,N,n→∞

0 ,

which in turn implies that:

It,1 −
1

N
log det(ŷN,tHtH

H

t +YtY
H

t )−
M −N

N
log(ŷN,t)−

M

N
(1 − ŷN,t)

a.s.−−−−−−−→
M,N,n→∞

0 .

Using this estimate of It,1 together with the estimate of It,2 as provided in Lemma 1 immediately yields a consistent

estimate for It(σ
2) = It,1 − It,2, and the theorem is proved.

APPENDIX D

PROOF OF THEOREM 3

The proof of Theorem 3 relies on the tools used in [12], adapted for dealing with Gaussian random variables.

Recall that ÎSE(y) is given by:

ÎSE(y) =
1

NT

T∑

t=1

log det

(
yHtH

H

t +
1

M
YtY

H

t

)
− log det

(
1

M
YtY

H

t

)
,
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where Yt = GtWt. Similarly, as in Appendix B and Appendix A, we can prove that Yt = UtD
1
2
t W̃t where W̃t

is a N ×M standard Gaussian matrix, and Dt is the N ×N diagonal matrix containing the eigenvalues of GtG
H

t .

Then, ÎSE(y) becomes:

ÎSE(y) =
1

NT

T∑

t=1

log det(yHtH
H

t +
1

M
UtD

1
2
t W̃tW̃

H

t D
1
2
t U

H

t )− log det(
1

M
D

1
2
t W̃tW̃

H

t D
1
2
t ),

=
1

NT

T∑

t=1

log det(yD
− 1

2
t UH

t HtH
H

t UtD
− 1

2
t +

1

M
W̃tW̃

H

t )− log det(
1

M
W̃tW̃

H

t ),

=
1

NT

T∑

t=1

log det

(
yD

− 1
2

t UH

t HtH
H

t UtD
− 1

2
t

(
1

M
W̃tW̃

H

t

)−1

+ IN

)
.

Denote by D
− 1

2
t UH

t HtH
H

t UtD
− 1

2
t = ŨtΛtŨ

H

t the eigenvalue decomposition of D
− 1

2
t UH

t HtH
H

t UtD
− 1

2
t . Since pt

is the rank of HtH
H
t , matrix Λt has exactly pt non zero entries which we denote by (λi,t, 1 ≤ i ≤ pt). We get

that ÎSE can be written as:

ÎSE(y) =
1

NT

T∑

t=1

log det

(
yΛt

(
1

M
W̃tW̃

H

t

)−1

+ IN

)
.

Let Λpt,t = diag (λ1,t, . . . , λpt,t). Obviously, only the diagonal elements of Λpt,t contribute in the expression of

ÎSE(y). Then, using [18, Theorem 3.2.11], we can prove that ÎSE(y) can be written as:

ÎSE(y) =
1

NT

T∑

t=1

log det

(
yΛpt,t

(
1

M
W̃pt,tW̃

H

pt,t

)−1

+ Ipt

)
,

where W̃pt,t is a pt ×M −N + pt standard Gaussian matrix. Let M = (M−N+pt)
My Λ−1

pt,t, we finally get:

ÎSE(y) =
1

NT

T∑

t=1

log det

(
1

M −N + pt
M

1
2W̃pt,tW̃

H

pt,tM
1
2 + Ipt

)
− log det (M)− log det

(
1

M −N + pt
W̃pt,tW̃

H

pt,t

)

,

T∑

t=1

ÎES,t(y).

Let s = M −N + pt. By Assumptions A2 and A5-1), we have:

0 < lim inf
M,N,n0→∞

s

pt
≤ lim sup

M,N,n0→∞

s

pt
< +∞.

Moreover, Assumption A4 and A5-2) implies that matrix M satisfies:

sup
N,M,n

‖M‖ < ∞ and inf
N,M,n

1

s
trM > 0.

We retrieve then the same model as in [12], with the slight difference that ÎES,t(y) has an extra random term

log det
(

1
M W̃pt,tW̃

H

pt,t

)
. As we will see next, this has no impact on the applicability of the method and one can

get the desired result by following the same lines of [12]. For ease of notation, we will drop next the subscripts pt

and t from all matrices. In particular, we consider to prove a CLT for the functional log det(ρsM
1
2W̃W̃HM

1
2 +I)−

log det(1sM
1
2W̃W̃HM

1
2 ) where ρ > 0, W̃ is an pt×s standard Gaussian matrix and M is an pt×pt deterministic

matrix.

The expression of the variance for this CLT will depend on some deterministic quantities which we recall hereafter.
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A. Notations

Let Z = M
1
2W̃ and define the resolvent matrix S(z) by:

S(z) =
(z
s
M

1
2W̃W̃HM

1
2 + I

)−1

=
(z
s
ZZH + I

)−1

,

Let also Is(z) be given by:

Is(z) = log det
(z
s
M

1
2W̃W̃HM

1
2 + I

)
= − log detS(z).

We introduce the following intermediate quantities:

β(z) =
1

s
trMS, α(z) =

1

s
trMES, and

o

β= β − α.

Matrix R̃(z) is an s× s diagonal matrix defined by:

R̃(z) = r̃Is,

where r̃ = 1
1+zα(z) . We also define R(z) the pt × pt diagonal matrix given by:

R(z) = (I+ zr̃M)
−1

= diag(ri, 1 ≤ i ≤ pt),

where ri =
1

1+zr̃mi
. We also define δ(z) as the unique positive solution of the following equation:

δ(z) =
1

s
trM

(
I+

z

1 + zδ(z)
M

)−1

,

where the existence and uniqueness of δ(z) have already been proven in [12]. Let Ξ and Ξ̃ be the pt × pt and

s× s diagonal matrices defined by:

Ξ =

(
I+

z

1 + zδ(z)
M

)−1

and Ξ̃ =
1

1 + zδ(z)
Is

Define also γ, δ̃(z) and γ̃ as γ = 1
s trM

2Ξ2, δ̃(z) = 1
1+zδ(z) and γ̃ = 1

(1+zδ(z))2 .

B. Mathematical tools

We recall here the mathematical tools that will be used to establish theorem 3. All these results can be found in

[12].

1) Differentiation formulas:

∂Sp,q

∂Zi,j
= −z

s

[
ZHS

]
j,q

Sp,i,

∂Sp,q

∂Z∗
i,j

= −z

s
[SZ]p,j Si,q,

∂Is(z)

∂Z∗
i,j

=
z

s
[SZ]i,j ,

∂log det(1sZZ
H)

∂Z∗
i,j

=
[(
ZZH

)−1
Z
]
i,j

.
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2) Integration by parts formula for Gaussian functionals: Denote by Φ be a C1 complex function polynomially

bounded with its derivatives, then

E [Zi,jΦ(Z)] = miE

[
∂Φ(Z)

∂Z∗
i,j

]
.

where mi is the i-th diagonal element of M.

3) Poincaré-Nash inequality: The variance of Φ(Z) can be upper-bounded as:

var(Φ(Z)) ≤
pt∑

i=1

s∑

j=1

miE



∣∣∣∣
∂Φ(Z)

∂Zi,j

∣∣∣∣
2

+

∣∣∣∣∣
∂Φ(Z)

∂Z∗
i,j

∣∣∣∣∣

2

 .

4) Deterministic approximations of some functionals:

Proposition 1: Let A and B be two sequences of respectively pt×pt and s×s diagonal deterministic matrices

with uniformly bounded spectral norm. Let Assumptions A1-A4 hold true. Then, the following holds true:

1

s
trAR =

1

s
trAΞ+ O

(
s−2
)
, r̃ = δ̃ + O

(
s−2
)

and E
1

s
trAH =

1

s
trAΞ+ O

(
s−2
)
.

Proposition 2: Let A, B and C be three sequences of pt × pt, s × s and pt × pt diagonal deterministic

matrices whose spectral norm are uniformly bounded in pt. Consider the following:

Φ(Z) =
1

s
tr

(
AS

ZBZH

s

)
, Ψ(Z) =

1

s
tr

(
ASMS

ZBZH

s

)
,

and assume that A1-A4 hold true. Then,

a) The following estimations hold true: var(Φ(Z)), var(Ψ(Z)), var(β) are O
(
s−2
)
.

b) The following approximations hold true:

E [Φ(Z)] = δ̃
1

s
trAMΞ+ O

(
s−2
)
, (35)

E [Ψ(Z)] =
1

1− z2γγ̃

(
δ̃
1

s
trB

1

s
tr(AM2Ξ2)− zγγ̃

1

s
trB

1

s
trAMΞ

)
+ O

(
s−2
)
, (36)

E

[
1

s
trMSMS

]
=

γ

1− z2γγ̃
+ O

(
s−2
)
. (37)

C. Central limit theorem

All the notations being defined, we are now in position to show the CLT. We recall that our objective is to

study the fluctuations of ÎSE(y) =
∑T

t=1 ÎES,t(y). Since
(
ÎIES,t(y), t = 1, · · · , T

)
are independent, it suffices to

consider the CLT for ÎES,t(y), for t ∈ {1, · · · , T }. We consider thus the random quantity Is(z)− log det
(
1
sZZ

H
)
.

Before getting into the proof details, we shall first recall the CLT of g(Z) = − log det(1sZZ
H) whose proof can be

found in [19]. Indeed, it is shown that:

−1

log(1 − pt

s )

(
− log det

(
1

s
ZZH

)
− bs

)
D−−−−−−−→

N,M,n→∞
N(0, 1).

March 9, 2012 DRAFT



27

where bs = −pt

[(
1− s

pt

)
log
(
1− pt

s

)
− 1
]
. Like in [12], define Ψs(u, z) = E

[
eu(Is(z)−Vs(z)+g(Z)−bs)

]
, where

Vs(z) is the deterministic equivalent defined by:

Vs(z) = s log (1 + zδ(z)) + log det

(
I+

z

1 + zδ(z)
M

)
− szδ(z)δ̃(z),

and verifying:
1

s
(Is(z)− Vs(z))

a.s−−−−−−−→
M,N,n→∞

0.

The principle of the proof is to establish a differential equation verified by Ψs(u, z). Writing the derivative of

Ψs(u, z) with respect to z, we get:

∂Ψs

∂z
= E

[
u

∂Is(z)

∂z
euIs(z)+ug(Z)

]
e−uVs(z)−ubs − u

dVs(z)

dz
Ψs(u, z). (38)

Since
dVs(z)

dz = sδδ̃ [12], we have:

∂Ψs

∂z
= E

[
u

∂Is(z)

∂z
euIs(z)+ug(Z)

]
e−uVs(z)−ubs − usδδ̃Ψs(u, z). (39)

On the other hand, we have:

E

[
∂Is(z)

∂z
euIs(z)+ug(Z)

]
= E

[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]

=
1

s

pt∑

p,i=1

s∑

j=1

E

[
Zi,jSp,iZ

∗
p,je

uI(z)+ug(Z)
]
.

Applying the integration by part formula, we get:

E

[
Zi,jSp,iZ

∗
p,je

uIs(z)+ug(Z)
]
= E

[
mi

∂

∂Z∗
i,j

[
Sp,iZ

∗
p,je

uI(z)+ug(Z)
]]

= E

[
miSp,iδ(p− i)euI(z)+ug(Z)

]

− z

s
E

[
[SZ]p,j miSi,iZ

∗
p,je

uIs(z)+ug(Z)
]

+
uz

s
E

[
miSp,iZ

∗
p,j [SZ]i,j e

uIs(z)+ug(Z)
]

+ E

[
umiSp,iZ

∗
p,j

∂g(Z)

∂Z∗
i,j

euIs(z)+ug(Z)

]
.

After summing over index i, we obtain:

E

[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]
= E

[
mpSp,pe

uIs(z)+ug(Z)
]

− z

s
E

[
tr(MS) [SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

+
zu

s
E

[
[SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE

[[
SM

(
ZZH

)−1
Z
]
p,j

Z∗
p,je

uIs(z)+ug(Z)

]
. (40)
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Recall the relation β = 1
s trMS and

o

β= β − α where α = 1
s trMES. Plugging the relation β = α+

o

β into (40),

we get:

E

[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]
= E

[
mpSp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β [SZ]p,j Z
∗
p,je

uIs(z)+ug(Z)

]

− zαE
[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]
+

zu

s
E

[
[SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE

[[
SM

(
ZZH

)−1
Z
]
p,j

Z∗
p,je

uIs(z)+ug(Z)

]
. (41)

Hence, solving this equation with respect to E

[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

and using the fact that r̃ = 1
1+zα , we

get:

E

[
[SZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]
= E

[
mpr̃Sp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β r̃ [SZ]p,j Z
∗
p,je

uIs(z)+ug(Z)

]

+
z

s
E

[
ur̃ [SMSZ]p,j Z

∗
p,je

uIs(z)+ug(Z)
]

− uE

[
r̃
[
SM

(
ZZH

)−1
Z
]
p,j

Z∗
p,je

uIs(z)+ug(Z)

]
. (42)

Using the relation Sp,p = 1− z
s

[
SZZH

]
p,p

, we get after summing with respect to j,

E

[[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]
= E

[
mpr̃e

uIs(z)+ug(Z)
]
− zmpr̃

[[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]

− zE

[
o

β r̃

[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]
+

uz

s
E

[
r̃

[
SMS

ZZH

s

]

p,p

euIs(z)+ug(Z)

]

− uE

[
r̃

[
SM

s

]

p,p

euIs(z)+ug(Z)

]
.

Using the relation rp = 1
1+zr̃mp

, we have:

E

[[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]
= E

[
mprpr̃e

uIs(z)+ug(Z)
]
− zE

[
o

β r̃rp

[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]

+
uz

s
E

[
r̃rp

[
SMS

ZZH

s

]

p,p

euIs(z)+ug(Z)

]
− uE

[
r̃rp

[
SM

s

]

p,p

euIs(z)+ug(Z)

]
.

Summing over p, we finally obtain:

E

[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]
= r̃ tr(MR)E

[
euIs(z)+ug(Z)

]
− zE

[
o

β r̃ tr

(
RS

ZZH

s

)
euIs(z)+ug(Z)

]

+
z

s
uE

[
r̃ tr

(
RSMS

ZZH

s

)
euIs(z)+ug(Z)

]

− ur̃E

[
tr

(
RSM

s

)
euIs(z)+ug(Z)

]

= χ1 + χ2 + χ3 + χ4.

It remains thus to deal with the terms (χi, 1 ≤ i ≤ 4). Using proposition 1, we have:

χ1 = r̃ trMRE

[
euIs(z)+ug(Z)

]
= sδδ̃E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (43)
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To deal with χ3, we apply the results of proposition 2-b, with A = R and B = I. In this case, χ3 writes as :

χ3 = zur̃EΨ(Z)euIs(z)+ug(Z). Using Cauchy-Schwartz inequality, we get:

∣∣∣E
(
Ψ(Z)euIs(z)+ug(Z)

)
− EeuIs(z)+ug(Z)

E (Ψ(Z))
∣∣∣ ≤

√
E

[∣∣∣
o

Ψ (Z)
∣∣∣
2
]
,

where
o

Ψ (Z) = Ψ(Z)− E (Ψ(Z)). Therefore,

χ3 =
zuδ̃

1− z2γγ̃

[
δ̃
1

s
tr(M2Ξ3)− zγγ̃

s
trMΞ2

]
E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (44)

The term χ2 can be dealt with in the same way, thus proving:

χ2 = −zE

[
o

β euIs(z)+ug(Z)

]
γ̃ tr(MΞ2) + O

(
s−1
)
. (45)

Since tr(MΞ2) is of order s, we shall expand E

[
o

β euIs(z)+ug(Z)

]
to at least the order s−1, and thus

o

β and

E
[
euIs(z)+ug(Z)

]
cannot be separated in the same way as above.

Indeed, we shall first take the sum over j in (42), thus yielding:

E

[[
SZZH

]
p,p

euIs(z)+ug(Z)
]
= E

[
smpr̃Sp,pe

uIs(z)+ug(Z)
]
− zE

[
o

β r̃
[
SZZH

]
p,p

euIs(z)+ug(Z)

]

+
z

s
E

[
ur̃

[
SMSZZH

]
p,p

euIs(z)+ug(Z)
]
− uE

[
r̃ [SM]p,p e

uIs(z)+ug(Z)
]
.

(46)

Using the fact that:

z

s

[[
SZZH

]
p,p

euIs(z)+ug(Z)
]
= E

[
euIs(z)+ug(Z)

]
− E

[
Sp,pe

uIs(z)+ug(Z)
]
,

Eq. (46) becomes:

E

[
euIs(z)+ug(Z)

]
− E

[
Sp,pe

uIs(z)+ug(Z)
]
= zE

[
mpr̃Sp,pe

uIs(z)+ug(Z)
]
− z2E

[
o

β r̃

[
SZZH

s

]

p,p

euIs(z)+ug(Z)

]

+
z2

s
E

[
ur̃

[
SMS

ZZH

s

]

p,p

euIs(z)+ug(Z)

]
− uz

s
E

[
r̃ [SM]p,p e

uIs(z)+ug(Z)
]
.

(47)

Solving E
[
Sp,pe

uIs(z)+ug(Z)
]

in (47) and using the relation rp = 1
1+zmpr̃

, we obtain:

E

[
Sp,pe

uIs(z)+ug(Z)
]
= E

[
rpe

uIs(z)+ug(Z)
]
+

z2

s
E

[
o

β rpr̃
[
SZZH

]
p,p

euIs(z)+ug(Z)

]

− z2

s
E

[
ur̃rp

[
SMS

ZZH

s

]

p,p

euIs(z)+ug(Z)

]
+

uz

s
E

[
r̃rp [SM]p,p e

uIs(z)+ug(Z)
]
.

(48)

Multiplying both sides in (48) by mp and summing over p, we get:

E

[
o

β euIs(z)+ug(Z)

]
= E

[
1

s
tr(MR−MES)euIs(z)+ug(Z)

]
+

z2

s
E

[
o

β
r̃

s
tr(MRSZZH)euIs(z)+ug(Z)

]

− z2

s
E

[
ur̃

1

s
tr(MRSMS

ZZH

s
)euIs(z)+ug(Z)

]
+

uz

s2
r̃E
[
tr (MRMS) euIs(z)+ug(Z)

]
.
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Using the approximating expressions in proposition 2, we obtain:

E

[
o

β euIs(z)+ug(Z)

]
= z2γγ̃E

[
o

β euIs(z)+ug(Z)

]
− z2δ̃u

s(1− z2γγ̃)

(
δ̃
1

s
tr(M3Ξ3)− zγ2γ̃

)
E

[
euIs(z)+ug(Z)

]

+
uz

s2
r̃E
[
tr(MRSM)euIs(z)+ug(Z)

]
+ O

(
s−2
)
.

Hence,

E

[
o

β euIs(z)+ug(Z)

]
= − z2u

s(1− z2γγ̃)2

(
γ̃
1

s
tr(M3Ξ3)− zγ2δ̃3

)
E

[
euIs(z)+ug(Z)

]

+
uzδ̃γ

s(1− z2γγ̃)
E

[
euIs(z)+ug(Z)

]
+ O

(
s−2
)
. (49)

Plugging (49) into (45), the term χ2 can be written as:

χ2 =
z3uγ̃

s(1 − z2γγ̃)2

(
γ̃
1

s
tr(M3Ξ3)− zγ2δ̃3

)
tr(MΞ2)E

[
euIs(z)+ug(Z)

]
(50)

− uz2γδ̃3

(1− z2γγ̃)

1

s
tr
(
MΞ2

)
E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (51)

Finally, it remains to deal with χ4. Using proposition 1, we get:

χ4 = − uδ̃

s
tr
(
MΞ2

)
E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
. (52)

Summing (43), (44), (51) and (52), we obtain after some calculations:

E

[
tr

(
SZZH

s

)
euIs(z)+ug(Z)

]
=

[
sδδ̃ +

z3uγ̃2

s(1− z2γγ̃)2
1

s
tr
(
M3Ξ3

)
tr
(
MΞ2

)
+

zuγ̃

1− z2γγ̃

1

s
tr(M2Ξ3)

− z2uγδ̃3

(1− z2γγ̃)2
1

s
tr(MΞ2)− uδ̃

1− z2γγ̃

1

s
trMΞ2

]
× E

[
euIs(z)+ug(Z)

]
+ O

(
s−1
)
.

(53)

Hence the differential of Ψs(u, z) with respect to z satisfies:

∂Ψs

∂z
=

[ −u2z3γ̃2

(1 − z2γγ̃)2
1

s
tr
(
M3Ξ3

) 1
s
tr
(
MΞ2

)
− u2zγ̃

(1− z2γγ̃)

1

s
tr
(
M2Ξ3

)

+
u2z2γδ̃3

(1 − z2γγ̃)2
1

s
tr
(
MΞ2

)
+

u2δ̃

1− z2γγ̃

1

s
tr
(
MΞ2

)
]
Ψs(u, z) + O

(
s−1
)
.

Following the same lines as in [12], one can prove that:

−1

2

d log
(
1− z2γγ̃

)

dz
=

1

1− z2γγ̃

(
−z2γδ̃3 1

s tr
(
MΞ2

)

1− z2γγ̃
+ zγ̃

1

s
tr
(
M2Ξ3

)
+

z3γ̃2 1
s tr

(
M3Ξ3

)
1
s tr

(
MΞ2

)

1− z2γγ̃

)
.

(54)

Moreover, from the system of equations (51) in [12], one can find that:

1

2

d log γ̃

dz
= − δ̃ 1

s tr
(
MΞ2

)

1− z2γγ̃
. (55)

Using (54) and (55), we finally get:

∂Ψs

∂z
= −u2

2

[
− d

dz
log(1− z2γγ̃) +

d log γ̃

dz

]
Ψs(u, z) + O

(
s−1
)
.
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Let σ2
T = − log

(
1− z2γγ̃

)
+ log γ̃ and Ks(u, z) = Ψs(u, z) exp

(
u2σ2

T

2

)
. Therefore, Ks(u, z) satisfies:

∂Ks

∂z
= ǫ(s, z) exp

(
u2σ2

T

2

)
,

where it can be proven that |ǫ(s, z)| ≤ K
s , for every s in [0, ρ]. On the other hand, we have:

Ks(u, 0) = E

[
eu(− log det( 1

s
ZZ

H−bs))
]
.

Hence,

Ks(u, ρ) = Ks(u, 0) +

∫ ρ

0

ǫs(u, x)dx

= e
u2 log(1−

pt
s

)

2 + O
(
s−1
)
.

The characteristic function Ψs(u, ρ) can be thus approximated as:

Ψs(u, ρ) = exp

(
−u2σ2

T

2
+

u2 log(1− pt

s )

2

)
+ O

(
s−1
)
. (56)

The characteristic function satisfies the same equation as in [12]. The single difference is that the variance αN,t(y)

given by:

αN,t(y) = − log

(
1− γγ̃

γ̃

)
− log(1− pt

s
) (57)

has two additive terms accounting for the variance of g(Z) and the correlation between g(Z) and Is(z). The CLT

can be thus established by using the same arguments in [12], provided that we show that lim inf αN,t(y) > 0. For

that, we need only to prove that:

lim inf
s,pt

1− z2γγ̃

γ̃
> 0.

Deriving δ̃ with respect to z, one can easily see that:

1− z2γγ̃

γ̃
= − 1

dδ̃
dz

1

s
tr
(
MΞ2

)
.

It has been shown in [12, eq.(67)] that − dδ̃
dz satisfies:

0 < −dδ̃

dz
<

pt
s
λmax,t,

where λmax = max (λ1,t, · · · , λpt,t). This fact combined with lim inf 1
s tr

(
MΞ2

)
> 0 implies that lim inf αN,t(y) >

0. It remains thus to express the variance αN,t(y) using the original notations. One can easily show that:

δ =
1

s
tr

(
My

s
D

− 1
2

t UH

t HtH
H

t UtD
− 1

2
t +

IN

1 + δ

)−1

− (N − pt)(1 + δ)

s

=
1

s
tr

(
(GtG

H

t )

(
My

s
HtH

H

t +
GtG

H

t

1 + δ

)−1
)

− (N − pt)(1 + δ)

s

=
1

M
tr

(
(GtG

H

t )

(
yHtH

H

t +
sGtG

H

t

M(1 + δ)

)−1
)

− (N − pt)(1 + δ)

s
. (58)
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Then, from (58), we can prove that
M(δ+1)

s − 1 is solution in x of:

x =
1

M
tr

(
(GtG

H

t )

(
yHtH

H

t +
GtGt

1 + x

)−1
)
. (59)

Since κt is the unique solution of (59), we have:

M(δ + 1)

s
− 1 = κt,

or equivalently:

δ̃ =
1

1 + δ
=

M

s(κt + 1)
.

Therefore:

γ̃ = δ̃2 =
M2

s2(κt + 1)2
. (60)

In the same way, one can prove that γ can be expressed in terms of the original notations as:

γ =
s

M2
tr

(
yHtH

H

t

(
GtG

H

t

)−1
+

IN

κt + 1

)−2

− (κt + 1)2s(N − pt)

M2
. (61)

Substituting (61) and (60) into (57), αN,t(y) becomes

αN,t(y) = logM2 − log

(
(M −N)

(
M(κt + 1)2 − tr

(
yHtH

H

t

(
GtG

H

t

)−1
+

IN

κt + 1

)−2
))

.

APPENDIX E

PROOF OF THEOREM 3

1) Denote by R(y) and f(y) the functionals given by:

f(y) =
1

M
tr(yHtH

H

t Qt(y)) +
M −N

M
− y

R(y) = − log det(Qt(y)) + (M −N) log(y)−My.

where Qt(y) =
(
yHtH

H
t + 1

MYtY
H
t

)−1
. According to Poincaré-Nash inequality, we have:

var(ŷN,t) ≤ K

N∑

i=1

M∑

j=1


E
∣∣∣∣∣
∂ŷN,t

∂Y ∗
i,j

∣∣∣∣∣

2

+ E

∣∣∣∣
∂ŷN,t

∂Yi,j

∣∣∣∣
2

 . (62)

We only deal with the first sum in the previous inequality; the second one can be handled similarly. By the implicit

function theorem, if ∂f
∂y 6= 0 then

∂ŷN,t

∂Y ∗

i,j

writes:

∂ŷN,t

∂Y ∗
i,j

=

∂f
∂Y ∗

i,j

(ŷN,t)

∂f
∂y (ŷN,t)

. (63)

As will be shown later, to conclude that var(ŷN,t) = O(M−2), we need to establish that
∣∣∣∂f∂y (ŷN,t)

∣∣∣ is lower

bounded away from zero, which is a much stronger requirement than ∂f
∂y 6= 0. This can be proved by noticing that

∂R
∂y = Mf

y . Hence

∂2R

∂y2
(ŷN,t) =

M ∂f
∂y (ŷN,t)

ŷN,t
. (64)
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On the other hand, one can prove by straightforward calculations that
∣∣∣∂2R
∂y2 (ŷN,t)

∣∣∣ ≥ M−N
ŷ2
N,t

which, plugged into

(64), yields: ∣∣∣∣
∂f

∂y

∣∣∣∣ ≥
M −N

MŷN,t
, (65)

which is eventually uniformily lower bounded away from 0 due to Assumption A2 and to the fact that ŷN,t ≤ 1

by mere definition. Therefore,

N∑

i=1

M∑

j=1

E

∣∣∣∣∣
∂ŷN,t

∂Y ∗
i,j

∣∣∣∣∣

2

≤ K

M4

N∑

i=1

M∑

j=1

|
[
ŷN,tQtHtH

H

t QtY
]
i,j

|2 ,

≤ K

M3
tr

(
QtHtH

H

t Qt
YY∗

M
QtHtH

H

t Qt

)
,

≤ K

M2
.

To prove 2), we rely on the resolvent identity which states:

Qt(a)−Qt(b) = (b− a)Qt(a)HtH
H

t Qt(b) . (66)

Using (66), we obtain:

ŷN,t =
1

M
(ŷN,t − EŷN,t) trHtH

H

t Qt(ŷN,t) +
1

M
trE(ŷN,t)HtH

H

t Qt(ŷN,t) +
M −N

M
,

=
1

M
(ŷN,t − EŷN,t)HtH

H

t Qt(EŷN,t)−
1

M
tr(ŷN,t − EŷN,t)

2HtH
H

t Qt(ŷN,t)HtH
H

t Qt(EŷN,t)

+
1

M
trE(ŷN,t)HtH

H

t Qt(EŷN,t)−
1

M
trE(ŷN,t)(ŷN,t − E(ŷN,t))HtH

H

t Qt(ŷN,t)HtH
H

t Qt(E(ŷN,t)) +
M −N

M
,

(a)
=

1

M
(ŷN,t − EŷN,t) trHtH

H

t T(E(ŷN,t)) +
1

M
E(ŷN,t)HtH

H

t T(E(ŷN,t))

− E(ŷN,t)(ŷN,t − EŷN,t)E

[
1

M
trHtH

H

t Qt(ŷN,t)HtH
H

t Qt(E(ŷN,t))

]
+

M −N

M
+ ε ,

where ε satisfies E(ε) = O(M−2). Note that equality (a) follows from the fact that

var(ŷN,t) = O

(
1

M2

)
and var

(
1

M
trHtH

H

t Qt(ŷN,t)HtH
H

t Qt(E(ŷN,t))

)
= O

(
1

M2

)
.

Both estimates can be established with the help of Poincaré-Nash inequality. Therefore:

E(ŷN,t) =
1

M
E(ŷN,t) trHtH

H

t Tt(E(ŷN,t)) +
M −N

M
+ O(M−2)

= 1− 1

M(1 + κ(E(ŷN,t))
tr((GtG

H

t )Tt(E(ŷN,t))) + O(M−2)

= 1− κt(E(ŷN,t))

1 + κ(E(ŷN,t))
+ O(M−2)

=
1

1 + κt(E(ŷN,t))
+ O(M−2) . (67)

Using the mere definition of yN,t and (67), we obtain:

E(ŷN,t)− yN,t =
1

1 + κ(E(ŷN,t))
− 1

1 + κ(yN,t)
+ O(M−2) ,

=
κ(yN,t)− κ(E(yN,t))

(1 + κ(E(ŷN,t)))(1 + κ(yN,t))
+ O(M−2) . (68)
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Following the same lines as in Appendix B, we can prove that for every real postives y1 and y2, we have:

κt(y1)− κt(y2) = (y2 − y1)α̃N,t(y1, y2) + (κt(y1)− κt(y2))β̃N,t(y1, y2)

where α̃N,t(y1, y2) and β̃N,t(y1, y2) are given by:

α̃N,t(y1, y2) =
1

M
trGtG

H

t T(y2)HtH
H

t T(y1),

β̃N,t(y1, y2) =
1

M
tr

GtG
H
t T(y2)GtG

H
t T(y1)

(1 + κt(y1))(1 + κt(y2))
.

Moreover, we can easily notice that β̃N,t ≤ lim inf N
M < 1. This allows us to express κt(y1)− κt(y2) as:

κt(y1)− κt(y2) =
α̃N,t(y1, y2)(y2 − y1)

1− β̃N,t(y1, y2)

Using this relation, we obtain from (68):

E(ŷN,t)− yN,t = γN,t(EŷN,t − yN,t) + O(M−2)

where

γN,t =
α̃N,t(yN,t,EŷN,t)

(1− β̃N,t(yN,t, ŷN,t))(1 + κt(EŷN,t))(1 + κ(yN,t))

To conclude, we shall establish that lim sup γN,t < 1. This is true, since using the relation yN,t = (1+κ(yN,t))
−1,

we prove after some calculations that:

γN,t =
cN,t

1− dN,t
,

where

cN,t =
1

M(1 + κ(E(ŷN,t))
tr(HtH

H

t +GtG
H

t )
−1HtH

H

t T(E(ŷN,t))GtG
H

t

dN,t =
1

M(1 + κ(E(ŷN,t)))
tr(HtH

H

t +GtG
H

t )
−1GtG

H

t T(E(ŷN,t))GtG
H

t

Since cN,t + dN,t ≤ N
M , and dN,t ≤ N

M

cN,t

1− dN,t
− 1 =

cN,t + dN,t − 1

1− dN,t
≤

N
M − 1

1− N
M

< 0,

which implies that:

lim sup
N,M

cN,t

1− dN,t
< 1.
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