
HAL Id: hal-00596118
https://hal.science/hal-00596118v1

Submitted on 1 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A pragmatic testing approach for wireless sensor
networks

Cédric Ramassamy, Hacène Fouchal, Philippe Hunel, Nicolas Vidot

To cite this version:
Cédric Ramassamy, Hacène Fouchal, Philippe Hunel, Nicolas Vidot. A pragmatic testing approach
for wireless sensor networks. Proceedings of the 6th ACM workshop on QoS and security for wireless
and mobile networks, Oct 2010, Turkey. pp.55–61, �10.1145/1868630.1868641�. �hal-00596118�

https://hal.science/hal-00596118v1
https://hal.archives-ouvertes.fr

A Pragmatic Testing Approach for Wireless Sensor
Networks

Cédric Ramassamy
LAMIA

Université des Antilles et de la
Guyane
France

cramassa@gmail.com

Hacène Fouchal
CReSTIC

Université de Reims
Champagne-Ardenne

France
Hacene.Fouchal@univ-

reims.fr

Philippe Hunel
LAMIA

Université des Antilles et de la
Guyane
France

Philippe.Hunel@univ-
ag.fr

Nicolas Vidot
LAMIA

Université des Antilles et de la
Guyane
France

Nicolas.Vidot@univ-ag.fr

ABSTRACT
Applications over wireless sensor networks are growing quickly.
Traditional software development tools are not well adapted
to this technology. In particular, adequate testing method-
ologies are required. Many issues have not been formally ad-
dressed as energy-conservation, congestion control, reliabil-
ity data dissemination, security. In this paper, we present a
pragmatic approach to detect some kind of anomalies based
on defined scenarios on wireless sensor networks. A scenario
is considered as a set of events which should happen on the
network in an ordered way. We discuss a formal architec-
ture able to perform these scenarios over the wireless sensor
networks and to raise alarms if necessary. This methodology
has been implemented on a prototype and has been exper-
imented with various examples. This contribution is a first
attempt for a formal testing methodology for wireless sensor
networks.

Categories and Subject Descriptors
C.4 [Performance of systems]: Fault tolerance; D.2.8
[Software Engineering]: Software/Program Verification—
Formal methods, Model checking, Reliability

General Terms
Reliability

Keywords
Wireless Sensor Networks, Software Testing, Runtime Mon-
itoring, Fault Detection

Q2SWinet’10, October 20–21, 2010, Bodrum, Turkey.

1. INTRODUCTION
Presently, in software industry, an important validation pro-
cess is performed using various testing techniques as confor-
mance, robustness, performance and interoperability of a
system. Conformance testing consists of 2 steps: the first
one deals with the generation of test sequences from a speci-
fication and the second one takes care of the execution of the
sequences on an implementation which is referred to as an
Implementation Under Test (IUT), and checks the reactions
of the implementation in order to detect faults.

Many well known formalisms for system description are pro-
posed like LTS1 and FSM2 for untimed systems and TIOA3

and ETIOA4 for timed systems [2, 20, 21]. Many method-
ologies have been proposed since many decades for test se-
quence generation. For example, in [3] the authors propose a
model to describe a system and a method to test communi-
cating systems. In [5] the authors propose a testing method
for a system which can be described as an Extended Finite
State Machine. In [6] the authors propose a generalization
of the W-method (from T. S. Chow [10]) for a specification
which do not has a characterization set. A survey about
testing Real-Time systems can be found in [7, 11, 13] and
FSM [16]. Some other works [8, 19, 18, 22, 14] are dedicated
to embedded systems and distributed systems.

Wireless sensor networks have been studied in academia and
industry in recent years. Their main advantages are the
ability to have computation and communication capabili-
ties as well as a reduced cost. WSN can be used for many
applications such as habitat monitoring, in-door monitor-
ing, target tracking, and security monitoring, etc. However,
embedded applications over WSN are not widely deployed
since WSN have still some issues to overcome, for exam-

1Labelled Transition System
2Finite State Machine
3Timed Input Output Automaton
4Extended Timed Input Output Automaton

ple, energy-conservation, congestion control, reliability data
dissemination, security and management of a WSN itself.

In this study, we propose an architecture to test wireless
sensor networks. The user may monitor the system by us-
ing this methodology. He may also execute test sequences
using defined scenarios on WSN. On one hand, the moni-
toring process checks if the system works properly, and on
another hand the scenario ensures a low level conformance
for the system. A scenario describes a test sequence to be
experimented on the implementation. It is composed of an
ordered set of input actions with the average waiting time
before two successive actions. The formalism suggested in
[18, 24] is used to represent our scenarios. This paper is orga-
nized as follows. Section 3 presents a description of scenario
generation, test architecture and test execution. Section 4
describes a prototype case study to illustrate our approach.
Section 5 concludes the study.

2. RELATED WORK
Distributed systems may be viewed as a set of components
connected via a communication system, where each compo-
nent sends and/or receives messages through one or more
communication channels. Distributed testing was studied
with different test architectures. [17] proposed a distributed
tester, with the distribution of global test sequence (GTS)
into local test sequences executed over local testers, where
the synchronization and the fault detection problems are
discussed.

A noticeable work has been done on distributed testing [17];
however, only few of them, [4], [30] dealt with testing com-
ponent based systems, and others [25], [29], [27] studied
the construction of component based systems. [17], handles
testing distributed real-time systems, proposing a method
for solving the controllability and observability problem by
holding some timing constraints. [17] assumed a more re-
alistic clock between testers synchronizing with a reference
clock with a given inaccuracy rather than synchronizing with
other tester’s clock.

In Component Based Systems (CBS), components must in-
teract with different external elements [29]. Those compo-
nents may run on a single, multiple, distributed or network
systems in a sequential or individual concurrent manner,
and may communicate with every other component. Such
systems require a tight and loose coupling of components of
diverse granularity. [25] takes into consideration some ma-
jor requirements such as, flexibility, time-to-market, quality,
cross-department standardization. With all its advantages,
CBS still lacks some aspects of real-time systems that can-
not be encapsulated in a component such as synchronization,
and memory optimization [27]. From the above require-
ments, it is clear how complex and sensitive it is to build
and to have a reliable tested component-based system.

In [28], MoteLab, a Web-based sensor network testbed is
presented. MoteLab consists of a set of permanently-deployed
sensor network nodes connected to a central server which
handles reprogramming and data logging while providing a
web interface for creating and scheduling jobs on the testbed.
MoteLab accelerates application deployment by streamlin-
ing access to a large, fixed network of real sensor network

devices; it accelerates debugging and development by au-
tomating data logging, allowing the performance of sensor
network software to be evaluated offline. Additionally, by
providing a web interface MoteLab allows both local and
remote users access to the testbed, and its scheduling and
quota system ensure fair sharing.

In [26], authors deal with the observation of faults in real de-
ployments. They considered three types of transient faults,
caused by faulty sensor readings that appear abnormal. To
understand the prevalence of such faults, they explore four
qualitatively different classes of fault detection methods:
1) Rule-based methods leverage domain knowledge to de-
velop heuristic rules for detecting and identifying faults; 2)
Learning methods about the system behavior; 3) Estima-
tion methods predict to normal sensor behavior by leverag-
ing sensor correlations, flagging anomalous sensor readings
as faults; 4) Time-series-analysis-based methods start with
an a priori model for sensor readings. A sensor measurement
is compared against its predicted value computed using time
series forecasting to determine if it is faulty. They concluded
that: training data, and then statistically detect and iden-
tify classes of faults. These four classes of methods sit at
different points on the accuracy/robustness spectrum. Rule-
based methods can be highly accurate, but their accuracy
depends critically on the choice of parameters. Learning
methods can be cumbersome to train, but can accurately
detect and classify faults. Estimation methods are accurate,
but cannot classify faults. Time-series-analysis-based meth-
ods are more effective for detecting short duration faults
than long duration ones, and incur more false positives than
the other methods. They apply these techniques to four real-
world sensor datasets and find that the prevalence of faults
as well as their type varies with datasets. All four meth-
ods are qualitatively consistent in identifying sensor faults,
lending credence to our observations.

In [1] is a tiered wireless sensor network testbed. It consists
of 13 clusters, with each cluster consisting of a stargate and
several motes attached to it via USB cables. These stargates
communicate with a central PC over 802.11b, from where
any node on the testbed can be programmed. Thus a testbed
consisting of 13 stargates and 104 motes (91 tmoteSky and
13 MicaZ) is currently running in at University of Southern
California. The main features of Tutornet are Tiered sensor
network testbed: consists of 3 tiers staring with top tier, the
testbed sever is on the top, Stargates, and then motes re-
spectively. Wireless multi-hop routing between the testbed
server and a stargate or among stargate is performed.

[15] extends the Emulab network testbed software to provide
a remotely-accessible mobile wireless and sensor testbed.
Robots carry motes and single board computers through
a fixed indoor field of sensor-equipped motes, all running
the user’s selected software. In real-time, interactively or
driven by a script, remote users can position the robots,
control all the computers and network interfaces, run arbi-
trary programs, and log data. This mobile testbed provides
simple path planning, a vision-based tracking system accu-
rate to 1 cm, live maps, and webcams. Precise positioning
and automation allow quick and painless evaluation of lo-
cation and mobility effects on wireless protocols, location

algorithms, and sensor-driven applications. The system is
robust enough that it is deployed for public use.

[12] presents TWIST, a scalable and reconfigurable testbed
architecture for indoor deployment of wireless sensor net-
works. The design of TWIST is based on an analysis of
typical and desirable use-cases. It provides basic services
like node configuration, network-wide programming, out-
of-band extraction of debug data and gathering of appli-
cation data. TWIST supports experiments with heteroge-
neous node platforms. it also supports active power sup-
ply control of the nodes. This enables easy transition be-
tween USB-powered and battery-powered experiments, dy-
namic selection of topologies as well as controlled injection of
node failures into the system. Thirdly, TWIST supports cre-
ation of both at and hierarchical sensor networks. The self-
configuration capability, the use of hardware with standard-
ized interfaces and open-source software makes the TWIST
architecture scalable, affordable, and easily replicable.

In all these studies, the main objective is to check if the
data handled by the wireless sensor network are computed
without errors. The testing is data oriented. In our case, we
intend to focus on the behavior checking. We will test how
the network react to stimulus sent by the environment. This
kind of testing aims to prove if the expected correct behavior
of the whole network will be executed without any fault. Our
technique is inspired from protocol testing engineering field
that we adapt to the wireless sensor networks.

3. CONTRIBUTION
Our goal is to check if a wireless sensor network works with-
out executing faulty actions. The approach aims to detect
anomalies related to defined scenarios on wireless sensor net-
works. The objective is to provide an appropriate testing
methodology for WSN.

3.1 Definitions
In this section, we introduce some notions needed to describe
the approach as an observer, a scenario, a node and some
other notions and notations used in the paper.

Definition 1. (Node) A node is a sensor which could be
connected to some neighbor nodes.

In our case the communication is performed through a wire-
less method.

Definition 2. (Network) A WSN is a network composed
of nodes. It executes a distributed application. Each node
execute a part of the application (usually all of them has the
same code)

Definition 3. (Reaction Time) Reaction time is an up-
per bound of time amount between : (i) the instant when
an event e is received by a node and (ii) the instant when a
node has ended to send all its outputs (if any) as a reaction
to the reception of e.

Figure 1: Sequence exchange

This amount of time is used when the application has time
constraints like real time applications.

Definition 4. (Observer) An observer is a specific node
which is dedicated to listen, receive and analyze messages
responses of request on WSN.

This node is particular. Its role is to monitor the network
in a remote way and will not participate to the application
execution.

Definition 5. (Transfer Time) Transfer time, denoted
∆, between observers and nodes, is defined as the time amount
between : (i) the instant when a message M is sent and (ii)
the instant when M is received.

In general this delay expresses network topology complexity.
In most of cases, we assume that we have no delay between
observers or sensors.

Definition 6. (WSN application) A WSN application is
characterized by a set of events and tasks.

The application is composed of tasks over all nodes. We need
to describe the events observed over the network. These
events are the key point of our testing process.

Definition 7. (Black-box testing) Black-box testing uses
external descriptions of the software, including specifications,
requirements, and design to derive test cases. These test
cases can be functional or non-functional. There is no knowl-
edge about internal structure of the implementation to test.

This kind of testing is very common in hardware and proto-
col engineering. For competition reasons, many companies

Figure 2: Observer with Base Station

(like electronic device producers) do not wish to show the in-
ternal structure of their products. But all companies which
need to use these kind of products should perform black-
box testing in order to check if some non required behavior
is observed on the products they intend to use (like telecom
providers).

Definition 8. (Scenario) A scenario is described by a
test sequence. A test sequence is an ordered set of of ac-
tion/reactions where each event corresponds to the reception
of an input and a response is the output generated after re-
ceiving an event.

Scenario generation may be achieved by an user. A sce-
nario must be generic enough to check if the system works
properly. Automatic generation is widely required for large
systems and will ensure formally fault coverage as described
in [18, 24]. The base station is the interface between the ob-
server and the WSN. The observer is connected to the base
station through a serial port, a parallel port or a network
port.

Definition 9. (Correct scenario) Let a sequence of in-
put action tia = a1, a2, ..., an and output reaction trm =
b1, b2, ..., bn. An execution of scenario on a WSN is correct
iff : (1)bi is the reaction to ai (2) ai is executed before ai+1

and bi before bi+1; and (3) the timing constraints (reaction
time) between the input event and output reaction are re-
spected.

Due to radio range coverage of a node, we use distributed
observers to be sure to cover all nodes in the WSN. In Sect.
3.2, we detail the repartition method of observers.

3.2 The approach
Our testing approach is based on monitoring scenario exe-
cution on a WSN. This monitoring is ensured by distributed
observers. Observers are controlled by a user (or by an
automated process). In order to determine the observers
location on the network, we split the network into several
sub-networks. This is done according to the radio range cov-
erage of sensors. For each sub-network, we have a local base
station which will be used to collect the sub-network data.

3.2.1 Test Architecture
For each sub-network, we set an observer and a base station.
The approach is based on the following parts :

➢ The base station is a specific node. It is a relay node
able to provide a communication between an observer
and all sensors of the related sub-network .

➢ The observer is the tester. Its role is to send input
action and receive output reaction through the base
station. The observer analyzes output reactions and
checks if timed constraints are respected. The aim is
to check if a scenario is executed properly over the
network.

➢ The user controls the scenario execution. He can
check if an anomaly is observed over the network (dead
links, energy decrease, congestion control, overload,
etc).

➢ The verdict is produced by an observer and concludes
if the WSN encounters anomalies.

Figure 3: Test Architecture

3.2.2 Scenario generation
In order to achieve the generation of scenarios, we have to
describe the application with a formal formalism like LTS
(Labelled Transition Systems). Then a generation of most
pertinent sequences could be done by a well-known tech-
nique as W-method for example. That means we do not

need to generate all possible sequences. When the applica-
tion is very large, a space explosion can be expected. In
practical cases, this generation is oriented by the user.

4. EXPERIMENTATION
We have implemented a prototype tool which implements
our approach.

4.1 The prototype
This prototype is composed of three parts :

➢ The application.

➢ The scenario management,

➢ The analysis and monitoring of messages sensors.

4.2 The environment
In our tool, we achieved the testing process on a real envi-
ronment. The application to test is deployed over a WSN.
It is written in NesC language. The framework is composed
of two base stations, five sensors and a computer. Sensors
communicate using the Zigbee protocol (802.15.4). Com-
puter communicates with base station using USB connection
Figure. 2.

4.3 The network
The sensor radio coverage may be represented by groups
denoted sub-networks (Figure 4). Sensors are spread us-
ing geographically random way, they represent sub-networks
communication (Figure 4 is an example).

Figure 4: Sub networks

4.4 The application
The application is deployed over the whole WSN. The fol-
lowing three events are possible on each sensor:

➢ The timer management event

➢ The radio management event (switch on or off),

➢ The message sending/receiving management event.

Each sensor has a message setup to 0. On the sub-network,
one sensor is dedicated to sense a value from the environment
(temperature, pressure,..). This sensor updates its message
with the sensed value. Every 20 seconds, it broadcasts its
message on the network. When it receives a message (from
the base station or from another sensor), it compares its local
message to the received one and updates its local message
with the received one if this later is greater.

The first aim is to guarantee that messages observed on sub-
networks are identical on all nodes.

4.5 The observer
Here we describe the observer application we have imple-
mented over all observers.

Our application is written in JAVA, thus we have to imple-
ment a library allowing communication in USB port. Al-
though current libraries are very limited 5, then we use
TinyOS library for USB communications between the base
station and the computer.

Our application is split in two parts. The first part is dedi-
cated to sending input actions to the network and the second
part is dedicated to receive reactions.

4.5.1 Network listening
The network listening is achieved according to radio range
coverage of the base station. We catch, during data sending,
messages from all sensors and we analyze their contents. The
packet structure is detailed as follows:

Src Dest AM Grp Len Data

(2) (2) (1) (1) (1) (0...29)

Table 1: TinyOS packet format. The byte size of

the fields are detailed

We catch messages in transit on the network and analyze if
messages from all sensors are the same. Our main aims are:

➢ Collecting sensor messages,

➢ Analyzing messages and timing constraints.

4.5.2 Scenario Sending
The aim of our scenario is to send every 5 seconds a message
on the network via the base station. This message represents
a number which will be increased after each step. Message
sending is a broadcast to all sensors located in the radio
range of the sub-network.

Figure 5: First Representation

Figure 6: Second Representation

4.6 Results
We tested two representations of the network described on
Figure 5 and on Figure 6.

In the first case, all sensors communicate in the radio range
of the base station. We notice that dead nodes and bad
communications are detected by the observer application in
all cases. Nevertheless, we have no guarantee on packet
lost. The application can check in the first iteration that
the sensor has some troubles. But if in the second iteration
sensor message is received, the application can decide if this
sensor is in bad location regarding radio range coverage.

In the second case, some sensors are located in the radio
range of the sub-network and all others are outside of it.
But the connectivity is guaranteed by having some relaying
sensors on the sub-network. We have observed the same
results than in the previous case. But if a sensor relay is
switched off (Figure 7), we have observed communication
troubles. That allows us to expect the use of a router node
for future works.

Up to now, we have not described formally all faults we are
able to detect. But next investigations of our work will be
dedicated to collect all possible faults and to show formally
how are we able to detect these faults by our methodology.

Figure 7: A router node

5. CONCLUSION AND FUTURE WORK
We described a distributed test architecture for Wireless
Sensor Networks by using observers. We presented a method-
ology to check if some faults occur on a wireless sensor net-
work. The main contribution is the use of collaboratives
observers over the WSN. The observers checks the correct-
ness of the application by means of monitoring a scenario
over the whole network. Thanks to this, we can establish a
kind of conformance relation.

Two important issues will be investigated in the next future:

➢ Formal description of faults: this issue is very useful
and could be used for fault coverage.

➢ Robustness of the monitoring process: this issue en-

5JUSB, javax.usb

sures that the monitoring is able to be maintained even
if some observers have troubles.

R. Cardell-Oliver shows in [9] works about robustness and
longevity of network on WSN to rainfall.

Finally, we intend also to handle a real-time monitoring for
energy levels, network quality, sensor workloads.

6. REFERENCES
[1] Tutornet: A tiered wireless sensor network testbed.

2005.

[2] Rajeev Alur and David L. Dill. A theory of timed
automata. Theoretical Computer Science, 126:183–235,
1994.

[3] Ismail Berrada, Richard Castanet, and Patrick Félix.
Testing communicating systems : a model, a
methodology and a tool. In 17th IFIP International
Conference on Testing of Communicating Systems;
Lecture Notes in Computer Science, Montreal,
Canada, may 2005. Elsevier.

[4] A. Bertolino, F. Corradini, P. Inveradi, and
H. Muccini. Deriving test plans from architectural
descriptions. In ACM Proceedings, International
Conference on Software Engineering ICSE2000, June
2000, June 2000.

[5] Johan Blom, Anders Hessel, Bengt Jonsson, and Paul
Pettersson. Specifying and generating test cases using
observer automata. In Proc. 4 th International
Workshop on Formal Approaches to Testing of
Software 2004 (FATES’04), volume 3395 of Lecture
Notes in Computer Science, pages 125–139.
Springer–Verlag, 2005.

[6] Adilson Luiz Bonifácio, Arnaldo Vieira Moura, and
ao Sim Adenilso da Silva. A generalized model-based
test generation method. In SEFM ’08: Proceedings of
the 2008 Sixth IEEE International Conference on
Software Engineering and Formal Methods, pages
139–148, Washington, DC, USA, 2008. IEEE
Computer Society.

[7] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen,
Martin Leucker, and Alexander Pretschner.
Model-Based Testing of Reactive Systems: Advanced
Lectures (Lecture Notes in Computer Science).
Springer-Verlag New York, Inc, Secaucus, NJ, USA,
2005.

[8] L. Cacciari and O. Rafiq. Controllability and
observability in distributed testing. Information and
Software Technology, 41(11-12):767–780, 9/15 1999.

[9] Rachel Cardell-oliver, Keith Smettem, Mark Kranz,
and Kevin Mayer. Field testing a wireless sensor
network for reactive environmental monitoring. In In
International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, pages
14–17, 2004.

[10] T. S. Chow. Testing software design modeled by
finite-state machines. IEEE Trans.Softw.Eng.,
4(3):178–187, 1978.

[11] Camille Constant. Génération automatique de tests
pour des modèles avec variables ou récursivité.,
2008-11-24 2008. ID: tel-00424546, version 1.

[12] Vlado Handziski, Andreas Köpke, Andreas Willig, and
Adam Wolisz. Twist: a scalable and reconfigurable
testbed for wireless indoor experiments with sensor
networks. In REALMAN ’06: Proceedings of the 2nd
international workshop on Multi-hop ad hoc networks:
from theory to reality, pages 63–70, New York, NY,
USA, 2006. ACM.

[13] Anders Hessel and Paul Pettersson. A test case
generation algorithm for real-time systems. Quality
Software, International Conference on, 0:268–273,
2004.

[14] William Hoarau. Injection de fautes dans les systèmes
distribués, 21 mars 2008.

[15] David Johnson, Tim Stack, Russ Fish,
Daniel Montrallo Flickinger, Leigh Stoller, Robert
Ricci, and Jay Lepreau. Mobile emulab: A robotic
wireless and sensor network testbed. In INFOCOM.
IEEE, 2006.

[16] Fujiwara Bochmann Khendek, S. Fujiwara, G. V.
Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi. Test selection based on finite state
models. IEEE Transactions on Software Engineering,
17:591–603, 1991.

[17] A. Khoumsi. Testing distributed real-time systems in
the presence of inaccurate clock synchronization.
Journal of Information Soft. Technology (IST), 45,
Dec 2003.

[18] Ahmed Khoumsi. Test execution for distributed real
time systems.

[19] Ahmed Khoumsi. Testing distributed real time
systems using a distributed test architecture.
Computers and Communications, IEEE Symposium
on, 0:0648, 2001.

[20] David Lee and Mihalis Yannakakis. Principles and
methods of testing finite state machines — a survey.

[21] Frank Jin Ye Luo. A diagnostic method for
non-deterministic finite state machines, 1996.

[22] Carlos Eduardo Pereira and Luigi Carro. Distributed
real-time embedded systems: Recent advances, future
trends and their impact on manufacturing plant
control. Annual Reviews in Control, 31(1):81–92, 2007.

[23] D. Raychaudhuri, M. Ott, and I. Secker. Orbit radio
grid tested for evaluation of next-generation wireless
network protocols. In TRIDENTCOM ’05:
Proceedings of the First International Conference on
Testbeds and Research Infrastructures for the
DEvelopment of NeTworks and COMmunities, pages
308–309, Washington, DC, USA, 2005. IEEE
Computer Society.

[24] Ahmad A. Saifan, Ernesto Posse, and Juergen Dingel.
Run-time conformance checking of mobile and
distributed systems using executable models. In
PADTAD ’09: Proceedings of the 7th Workshop on
Parallel and Distributed Systems, pages 1–11, New
York, NY, USA, 2009. ACM.

[25] H. Schmidt. Trustworthy components-compositionality
and prediction. The Journal of Systems and Software,
65:215–225, 2003.

[26] Abhishek B. Sharma, Leana Golubchik, and Ramesh
Govindan. Sensor faults: Detection methods and
prevalence in real-world datasets. ACM Transactions
on Sensor Networks (TOSN), 6(3):1–39, 2010.

[27] A. Tesanovic, D. Nystrom, J. Hansson, and
C. Norstrom. Towards aspectual component-based
development of real-time systems. In Proceeding of the
9th International Conference on Real-Time and
Embedded Computing Systems and Applications
(RTCSA 2003), February 2003, February 2003.

[28] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt
Welsh. Motelab: a wireless sensor network testbed. In
IPSN ’05: Proceedings of the 4th international
symposium on Information processing in sensor
networks, page 68, Piscataway, NJ, USA, 2005. IEEE
Press.

[29] J. Zalewski. Developing component-based software for
real-time systems. In 27th Euromicro Conference
2001: A Net Odyssey (euromicro’01), September 2001,
September 2001.

[30] Peter Zimmerer. Test architectures for testing
distributed systems. In 12th International software
quality week (QW’99), May 1999, May 1999.

