
HAL Id: hal-00596053
https://hal.science/hal-00596053

Submitted on 9 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Variational Model for Histogram Transfer of Color
Images

Nicolas Papadakis, Edoardo Provenzi, Vicent Caselles

To cite this version:
Nicolas Papadakis, Edoardo Provenzi, Vicent Caselles. A Variational Model for Histogram Trans-
fer of Color Images. IEEE Transactions on Image Processing, 2011, 20 (6), pp.1682-1695.
�10.1109/TIP.2010.2095869�. �hal-00596053�

https://hal.science/hal-00596053
https://hal.archives-ouvertes.fr


1

A Variational Model for Histogram Transfer of

Color Images

N. Papadakis1, E. Provenzi2, and Vicent Caselles2

1CNRS, LJK, UMR 5224, Grenoble, France
2Departament de Tecnologies de la Informació i les Comunicacions ,UPF -
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Abstract

In this paper we propose a variational formulation for intermediate color histogram equalization of

two or more images. We study an energy functional composed by three terms: one tends to approach

the cumulative histograms of the original images, the other two tends to maintain the initial colors and

geometry. By minimizing this energy, we obtain an algorithm that balances equalization and conservative

features. As a result, the original images evolve approaching the intermediate histogram between the

original images. As a novel result, this midway histogram does not need to be specified in advance, but

it is a natural result of the model. Finally, we provide experiments showing that the proposed method

compares well with the state of the art.

I. INTRODUCTION

This paper is devoted to a variational formulation of color grading, that is the color matching

of two or more images. We will show that, by minimizing a suitable energy functional, images

will be matched to an intermediate common histogram.

Color grading is a main tool for color matching in the post-production industry and its need

arises in many applications. For example, the same scene can be photographed with different

cameras or under different illumination conditions, resulting in images that may have quite

different colors. Other noticeable examples are given by flicker stabilization of video sequences

and color balancing, a process that is mostly done manually.
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On the other hand, color grading plays an important role also in one of the main topics in

computer vision: the numerical comparison of images in order to correlate them or extract mutual

information. Applications can be found in different contexts like depth or disparity computation in

stereo images, or optical flow computation. Due the use of different cameras or to the variability

of light conditions, a color normalization may be an important step previous to the numerical

image comparison.

The main approach to color grading is based on the computation of a color transfer map.

Given two images, a source and a target, the problem is to find a mapping that transforms the

source into an image with a color statistics that is as similar as possible to that of the target.

For some applications, instead of a target image, one might want to specify a reference palette

to be matched. The modified image should keep the geometry of the original one, only its color

aspect should be modified.

In this paper we propose a new variational model to transform two or more color images in

order to approach their color histograms as much as possible. To briefly describe the process, let

us consider here the case of two given color images ~U, ~V : we want to transform them into new

images ~u and ~v that approximately share an intermediate color histogram which is not specified

in advance and, at the same time, we want to maintain the geometry of ~U and ~V , respectively.

Thus, the energy has to combine the comparison of histograms with color and shape constraints

(which can be codified by the gradient direction). The shape constraints can be related to the

filtering process constrained by the original gradient field used in [6].

Let us remark that the mapping to an intermediate histogram permits to distribute the errors

in the histogram matching process without privileging one particular image with respect to the

others. Up to our knowledge, there is no method in the literature that allows realizing such a

process without defining the histogram beforehand.

The plan of the paper is the following. In Section II we provide a review of the state of the

art in color grading and midway histogram equalization, emphasizing the role played by the

Monge-Kantorovich mass transportation theory. As a technical tool, in Section III we define

the L2 distance between the cumulative histogram of an image I and a reference one and we

compute its first variation with respect to I . In Section IV we describe our variational model for

intermediate color histogram equalization of a given set of color images. The model penalizes the

histogram separation of the set of images and constrains each of them to preserve its color and
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geometric information. In Section V we describe the algorithm we use to minimize the proposed

energy. In Section VI we present some experiments that illustrate the model and compare it with

the results obtained using the algorithm proposed in [13]. Finally, in Section VII we summarize

our main conclusions.

II. REVIEW OF THE STATE OF THE ART IN COLOR GRADING AND MIDWAY HISTOGRAM

EQUALIZATION

As previously commented, the central problem in color grading is to find a suitable transfer

map. This function can be computed to match simple statistical values, like mean and variance

[1], the covariance matrix [2], or the whole color histogram [3]–[6]. The matching of statistics

can thus be done separately for each channel in the lαβ color space which has uncorrelated

components as in [1]. Another possibility is to compute an affine map [7]–[9] to map the

covariance matrices of the two color images. Concerning the map of color histograms, several

works have also been proposed, for instance, in [10], matching of color histograms is done on

the three channels independently. The color histogram equalization can also be performed by

computing a transfer map using mesh deformations to fit the existing histogram to a uniform

histograms [11].

The formulation of color histogram matching in terms of Monge-Kantorovich’s mass trans-

portation theory has been considered in [3], [12], [13]. In [3], [12] the authors compute a transport

plan (also called transference plan, see [14]) matching two histograms which minimizes the total

displacement cost measured in terms of the Earth Mover Distance (EMD) (also called Wasserstein

distance [14]) and solve this problem using linear programming.

This technique has been applied in [12] to midway color histogram equalization (see [15],

[16] for the case of gray level images), that is, to the problem of finding a midway histogram

in the sense of EMD distance [14] and computing mappings that transform the original images

into images that share this histogram.

In [13], assuming that the histograms of two given color images can be approximated by

multivariate Gaussian distributions, Monge-Kantorovich’s formulation is restricted to find a linear

map that approximates the transfer of histograms. In practice, this method is applied to transfer

the histogram of one image to another although it could be used to define a midway histogram

as in [12], [15].
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The transfer map in the color grading method proposed in [6] is computed by iteratively

equalizing all principal axis marginals computed for every possible rotation of the histogram,

until convergence. Then the method is refined by a filtering process, constrained by the original

gradient field, to reduce possible grain artifacts [6].

For later convenience, let us remind here a remark about midway histogram equalization

pointed out by Delon [15]: if H0, H1 are the cumulative histograms of two original gray-scale

images I0 and I1, respectively, then mapping them to have a cumulative histogram which is the

direct average of the original ones, i.e. H̃ := (H0 + H1)/2, is not always a suitable choice for

midway equalization. An illuminating counterexample is given by the case when I0 and I1 are

unimodal images with spread modes centered at the levels λ0 and λ1, respectively, with λ0 6= λ1.

Ideally, one would expect a midway image to present a single mode centered at (λ0 + λ1)/2,

instead it is clear that the composition of I0 with H̃−1 ◦H0 spreads the gray levels of the image

on two modes centered at λ0 and λ1 in order to make its histogram correspond as much as

possible to H̃ . Thus, it generates new structures that were not present before [12], [15]. Instead,

the natural intermediate histogram H̄ is given by

H̄ :=

(
H−1

0 +H−1
1

2

)−1

. (1)

Let ψ0 := H̄−1 ◦H0 and ψ1 := H̄−1 ◦H1 be the mappings of images I0 and I1 into images that

share the midway histogram H̄ . Defining T := H−1
1 ◦H0, we have

ψ0 =
I +H−1

1 ◦H0

2
=
I + T

2
, ψ1 =

I +H−1
0 ◦H1

2
=
I + T−1

2
(2)

and H̄ =
(
I+T

2

)−1 ◦ H0 = H1 ◦
(
I+T−1

2

)−1

. Observe that T maps I0 into an image whose

histogram is H1. In [16] ψ0, ψ1 are computed using a dynamic programming algorithm.

Delon shows that these results can be embedded in a more abstract Monge-Kantorovich’s

framework which has the advantage to be easily extendible to any dimension, thus permitting to

analyze color images. Let h0, h1 be the histograms of two generic images I0, I1, then h0, h1 can be

seen as the Lebesgue densities of the probability measures dµ0(x) = h0(x)dx, dµ1(x) = h1(x)dx

describing the distribution of the image values. The search of an intermediate histogram between

h0 and h1 is then equivalent to the search of an intermediate measure between µ0 and µ1. It can

be proven that H̄ can be seen as the cumulative distribution function of the middle point µ 1
2

of

the geodesic that connects µ0 and µ1 in the space of probability measures with respect to the
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quadratic transportation cost [14], [15]. As already observed, the discrete Monge-Kantorovich

problem gives a transport plan that requires the solution of a linear programming problem [3],

[12] to be computed. Let us mention that transport plans permit to split the mass of a bin of a

given image histogram and distribute it between several bins of the other histogram. This may

be considered a disadvantage. Moreover, the transport plan has the dimension of the product

between the number of bins in both the original and the target image, this prevents from using

fine quantization of the color space (although this may be unavoidable due to the insufficient

quantization of color images). Finally, the extension to the case of more than two color images

is not obvious.

As stated in the Introduction, the variational method proposed in this paper approaches the

color histogram of the given images without pre-computing it and can be applied to more than

two images.

III. A VARIATIONAL APPROACH TO HISTOGRAM TRANSFER

Our aim is to propose a variational formulation for midway histogram equalization. Assume

that we are given two color images ~U : Ω~U → R3 and ~V : Ω~V → R3 where Ω~U ,Ω~V denote

the corresponding image domains. We want to map the images ~U, ~V onto new images ~u,~v,

respectively, so that ~u and ~v share, as much as possible, a common intermediate histogram

between those of ~U and ~V . Thus, the main ingredients of the proposed energy are the distance

between the two color histograms of ~u and ~v and the constraints that impose ~u and ~v to display

the same geometric information as ~U and ~V , respectively.

In order to define such an energy, we need to discuss first the variational formulation of

histogram transfer based on the L2 distance between two histograms. In order to make our

presentation more comprehensible, we shall discuss first the case of gray level images (which

have one-dimensional histograms) and compute the first variation of the corresponding energy.

This will clarify the differences between this functional and the transport approach to midway

histogram equalization and will also explain why we need to impose color and geometric

constraints. We will then consider the two-dimensional case, N = 2, presenting the energy

functional and its first variation. The rigorous computation details and the formulae of the color

case, N = 3, are quite cumbersome, for this reason we will discuss them in the Appendix VIII.

Let us first fix the notation that will be used throughout the paper.
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A. Notation

We assume that images are defined on a discrete rectangular domain, which we denote by

Ω = {1, . . . ,W} × {1, . . . , H} ⊂ N2, W,H ≥ 1 being integers; x = (x1, x2) denote the

coordinates of an arbitrary pixel in Ω. We assume that each image channel has a normalized

dynamic range which we suppose to be [0, 1], so that images are described by vector functions
~I : Ω→ [0, 1]N , ~I(x) = (I1(x), . . . , IN(x)). For color images, we have N = 3 and Ik(x) is the

intensity level of the pixel x ∈ Ω in the chromatic channel k ∈ {R,G,B}. The histogram of the

image ~I will be denoted by the density function h~I : [0, 1]N 7→ [0, 1], while H~I : [0, 1]N 7→ [0, 1]

will represent the cumulative histogram of ~I . Thus, if ~λ = (λ1, . . . , λN) ∈ [0, 1]N represents the

generic N -dimensional intensity level, we have:

H~I(
~λ) =

∫ λ1

0

· · ·
∫ λN

0

h~I(~µ)d~µ. (3)

Note that the cumulative histogram can be equivalently defined from the image ~I as:

H~I(
~λ) =

1

|Ω|
|{x ∈ Ω, such that I1(x) ≤ λ1, . . . , IN(x) ≤ λN}|, (4)

where | | denotes the area operator.

B. The L2 distance between the cumulative histogram of a gray-scale image and a reference

one and its first variation

Let I : Ω → [0, 1] be a gray level image whose cumulative histogram is HI(λ) = 1
|Ω| |{x ∈

Ω : I(x) ≤ λ}|, λ ∈ [0, 1]. Let Href(λ) be a given reference cumulative histogram. In order

to impose the cumulative histogram of I to be close to Href(λ) we propose to minimize the

following energy:

E(I) =
1

2

∫ 1

0

(HI(λ)−Href(λ))2 dλ. (5)

Obviously, the minimum would be attained when HI(λ) = Href(λ). This energy term will be later

used together with other (attachment to data and shape-preserving) terms in order to construct

an energy for intermediate histogram equalization of a given set of images.

Let us compute the first variation of the energy (5). For that, observe that we may write

HI(λ) =
1

|Ω|
∑
x∈Ω

hλ(I(x)), (6)
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where

hλ(r) = χ[0,λ](r) λ, r ≥ 0, (7)

χ[0,λ] being the characteristic function of the set [0, λ]. Hence, if J : Ω → R+ denotes a

perturbation, we have
d

dε

∣∣∣∣
ε=0

HI+εJ(λ) =
1

|Ω|
d

dε

∣∣∣∣
ε=0

∑
x∈Ω

hλ(I(x) + εJ(x))

=
1

|Ω|
∑
x∈Ω

d

dε
|ε=0hλ(I(x) + εJ(x))

= − 1

|Ω|
∑
x∈Ω

δ(I(x)− λ)J(x) .

(8)

Then
d

dε

∣∣∣∣
ε=0

E(I + εJ) = − 1

|Ω|

∫ 1

0

(HI(λ)−Href(λ))
∑
x∈Ω

δ(I(x)− λ)J(x) dλ

= − 1

|Ω|
∑
x∈Ω

∫ 1

0

(HI(λ)−Href(λ))δ(I(x)− λ)J(x) dλ

= − 1

|Ω|
∑
x∈Ω

(HI(I(x))−Href(I(x)))J(x) .

(9)

That is

∇IE(I) = − 1

|Ω|
(HI(I(x))−Href(I(x))). (10)

Remark 3.1: We may use a gradient descent algorithm to minimize the energy (5). Initializing

with I0 = I , for some positive evolution parameter step τ , the process is described by the equation

Ik+1 = Ik − τ∇IkE(Ik). (11)

Remark 3.2: If H1, H2 are two given reference cumulative histograms, the energy

E1,2(I) :=
1

2

∫ 1

0

(HI(λ)−H1(λ))2 dλ+
1

2

∫ 1

0

(HI(λ)−H2(λ))2 dλ. (12)

expresses the distance of HI to H1 and H2. Using (10), the Euler-Lagrange equation ∇IE1,2(I) =

0 can be written as

HI(I(x)) =
H1(I(x)) +H2(I(x))

2
. (13)

As we observed in Section II, this is not a suitable choice for intermediate histogram equalization

since it may generate new unwanted structures (level lines) in the image. Thus, this energy term

will be constrained in order to keep the geometry of the original image. Before going into details

about this constraining, let us extend the above computations to the vector case.
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C. The L2 distance between the cumulative histogram of a color image and a reference one and

its first variation

Let us consider the case of vector valued images ~I : Ω→ [0, 1]N . To simplify the presentation,

let us study here the case N = 2, the case of color images with N = 3 will be considered in

Appendix VIII. Thus, if ~I = (I1, I2) and ~λ = (λ1, λ2) ∈ [0, 1]2, the cumulative histogram of I

is defined by H~I(
~λ) = 1

|Ω| |{x : I1(x) ≤ λ1, I2(x) ≤ λ2}|. Let Href(~λ) be a reference cumulative

histogram. We then define the transfer energy:

E(~I) =
1

2

∫ 1

0

∫ 1

0

(H~I(
~λ)−Href(~λ))2 d~λ. (14)

If H1, H2 are defined by

H1(i1, i2) ≡
∫ i2

0

H(i1, λ2)dλ2, H2(i1, i2) ≡
∫ i1

0

H(λ1, i2)dλ1, (15)

then, as it will be proven in Appendix VIII, the first variations of E(~I) with respect to I1, I2 are

∇I1E(~I) = − 1

|Ω|
[
H1
~I
(I1(x), 1)−H1

ref(I1(x), 1)
]

+
1

|Ω|
[
H1
~I
(I1(x), I2(x))−H1

ref(I1(x), I2(x))
] (16)

∇I2E(~I) = − 1

|Ω|
[
H2
~I
(1, I2(x))−H2

ref(1, I2(x))
]

+
1

|Ω|
[
H2
~I
(I1(x), I2(x))−H2

ref(I1(x), I2(x))
]
.

(17)

D. Symmetrization of the cumulation of histogram

Let us mention that, by definition of cumulative histogram, the process presented above

presents an important unwanted limitation that can be simply explained in the case N = 1.

Indeed, note that for any grey image I : Ω 7→ [0, 1], we have HI(1) = 1
|Ω| |{x : I(x) ≤ 1}| = 1.

As a consequence, when computing the gradient value of white pixels of color value 1, we

will always find HI(1) − Href(1) = 1 − 1 = 0, so the white pixels can never change their

intensity value. To remove this limitation, we need to consider H∗, the histogram defined as

H∗I (λ) = |{x : I(x) ≥ λ}|, λ ∈ [0, 1]. The energy (5) should then be completed with the term
1
2

∫ 1

0
(H∗I (λ)−H∗ref(λ))2 dλ, so that the symmetrized energy will be

E(I) =
1

2

∫ 1

0

[
(HI(λ)−Href(λ))2 + (H∗I (λ)−H∗ref(λ))2

]
dλ, (18)
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that will allow the white pixels to move their value. Obviously, by symmetry, this new term will

not affect the black pixels, as H∗I (0) = 1 for any image I : Ω → [0, 1]. For the N -dimensional

case, N > 1, we have

E(~I) =
1

2

∫ 1

0

· · ·
∫ 1

0︸ ︷︷ ︸
N times

[
(H~I(

~λ)−Href(~λ))2 + (H∗~I (~λ)−H∗ref(
~λ))2

]
d~λ, (19)

It is clear that the gradient formulae previously written still hold for the symmetrized energy,

modulo the introduction of a symmetric term, or terms (for the higher dimensional case), in H∗.

IV. INTERMEDIATE HISTOGRAM EQUALIZATION OF A SET OF IMAGES

As reviewed in section II, histogram equalization is mainly addressed from the point of view

of mass transfer [6], [13], [15], where the unknown is the transfer function ϕ : [0, 1]N 7→ [0, 1]N

mapping a variable histogram to a reference one. Considering the problem of equalizing (at

least) two different images with respect to their midway histogram, these methods require an a

priori computation of the midway histogram. The purpose of this section is to show how can we

evolve simultaneously different images so that their histograms get naturally as close as possible

to an unspecified intermediate histogram.

A. An energy term to approach the histogram of two images

Suppose that we are given two color images ~U : Ω~U → [0, 1]3 and ~V : Ω~V → [0, 1]3,
~U = (U1, U2, U3), ~V = (V1, V2, V3), and we want to map them into two images with a common

histogram as much as this is possible. We can then try to construct two color images ~u =

(u1, u2, u3) and ~v = (v1, v2, v3) related to ~U , ~V , respectively, and defined on the spatial domains

Ω~U and Ω~V , so that they minimize the histogram-based energy EH :

EH(~u,~v) =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

(H~u(~λ)−H~v(~λ))2 d~λ+
1

2

∫ 1

0

∫ 1

0

∫ 1

0

(H∗~u(~λ)−H∗~v (~λ))2 d~λ. (20)

That is, ~u,~v should have similar histograms and be relatively close to the original images ~U , ~V .

Note that, even if the final histograms of ~u and ~v are equal, we cannot guarantee that this is

the true midway histogram of ~U and ~V (in the sense described in Section II). If we consider for

instance two unimodal images ~U = λ0 and ~V = λ1, all pixels of each image are initially equal

and they will always share a common value all along the minimization process (since in this
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case, the gradient (10) is the same for the whole image). Then, we could obtain any unimodal

image ~u = ~v = s, s ∈ [0, 1], as a minimum of energy (20), while we would prefer finding the

particular value s ≡ λ0+λ1
2

. This value can be obtained if we add a data attachment term to

enforce that ~u,~v are, respectively, close to ~U , ~V . Thus, we propose to complement the energy

term (20) with data attachment terms constraining the color and the geometric information of

the images ~u,~v to be close to the one in ~U , ~V .

B. Attachment to data and to the image geometry

Contrary to the methods based on histogram transfer, as our variables are the images, we can

directly add some color and geometrical restrictions on the image evolution.

a) Constraining the colors: In order to enforce ~u and ~v to remain as close as possible to

the original images ~U and ~V we define the following attachment to data energy term ED:

ED(~u,~v) =
α~U
2

∑
x∈Ω~U

‖~U(x)− ~u(x)‖2 +
α~V
2

∑
x∈Ω~V

‖~V (x)− ~v(x)‖2 , (21)

where α~U and α~V are positive real parameters. With this new term, by setting α~U = α~V , we can

constrain the final images ~u and ~v to have a similar distance to their original values ~U and ~V .

Let us go back to the unimodal toy example ~U = λ0 and ~V = λ1 and consider the energy

EHD = EH + ED, with α~U = α~V = ε > 0. In this case both solutions ~u,~v are unimodal, say

~u = λ0, ~v = λ1 with λ0 < λ1. Then we can write the energy EHD in terms of λ0, λ1 and check

that when ε > 0 is small enough (to constrain the histogram term EH to be preponderant in

EHD) the minimum of EHD is reached for the unimodal image ~u = ~v = λ0+λ1
2

whose histogram

corresponds to the midway one1.

In real applications, the energy EH is obviously never zero, so we do not reach the true

midway histogram. Nevertheless, from our experiments, we can assert that the histogram and

data energies (20) and (21) allow the histograms of images ~u and ~v to converge naturally to a

histogram in a neighborhood of the midway histogram of images ~U and ~V .

1This would not be the case by considering a L1 attachment to data term ED(~u,~v) = αU ||U − u||1 +αV ||V − v||1. Indeed,

the energy EH,D would have the same value for any unimodal image ~u = ~v = s, s ∈ [λ0, λ1].
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b) Constraining the image geometry: We can constrain the shapes of ~u and ~v to be those

of the given images ~U and ~V . To describe the shapes of Ui, Vi we use the normals to its level

lines, that is, we use the vector fields θ(Ui) = ∇Ui

|∇Ui| , θ(Vi) = ∇Vi
|∇Vi| [17] (the quotient must be set

to 0 when the denominator is 0) where ∇ denotes here a discrete gradient operator (see Section

V-B). Then we say that the scalar image ui shares the same shapes as Ui (in some sense, the

same level lines) if θ(Ui) • θ(ui) = 1, i.e. when θ(Ui) •∇ui = |∇ui| (see [17] for more details).

In order to constrain the shapes of ~u and ~v to be those of ~U and ~V , respectively, we consider

(together with the histogram and color terms) the following shape preserving energy ES

ES(~u,~v) = β~U

3∑
i=1

∑
Ω~U

(|∇ui| − θ(U)i • ∇ui) + β~V

3∑
i=1

∑
Ω~V

(|∇vi| − θ(V )i • ∇vi) , (22)

where β~U and β~V are positive parameters. Imposing the channels of two color images ~U and ~u

to share the same shapes (or level lines) is not a strong constraint on the color distributions.

Remark 4.1: A related approach. In the case of histogram transfer by estimation of the transfer

function ϕ : [0, 1]3 → [0, 1]3, an analogous local shape preservation is sometimes applied as a

post-processing. For instance, in [6], the authors tackle the problem of transferring the histogram

h~V of an image ~V to the histogram h~U of image ~U . First, they compute the transfer function

ϕ so that hϕ◦~U ' h~V and then look for an image ~u sharing the shapes of the original image ~U

and whose color histogram is hϕ◦~U by solving:

min
~u

3∑
i=1

∑
x∈Ω~U

|∇Ui(x)−∇ui(x)|+
∑
x∈Ω~U

|~u(x)− ϕ(~U(x))|. (23)

We note that ϕ(~U(x)) is known since the transfer function is previously computed. Different

strategies for that can be found in [6], [13]. For instance, in [13], the following Monge’s optimal

transportation problem is solved:

min
ϕ

∫ 1

0

∫ 1

0

∫ 1

0

‖ϕ(~λ)− ~λ‖2h~U(~λ)d~λ, (24)

where the possible transfer maps ϕ are restricted to be linear. The optimal transfer map minimizes

the displacement cost of colors when mapping the histogram of ~U to h~V .

C. A model for intermediate histogram equalization of a set of images

Combining the histogram energy (20) with the color and geometry preserving terms of Section

IV-B, we finally get the following energy functional for equalizing the color of two images ~U
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and ~V :

E~U,~V (~u,~v) = EH(~u,~v) + ED(~u,~v) + ES(~u,~v). (25)

The energy can be extended to deal with the equalization of more than two images. Let us

consider ~Uk, k = 1, . . . ,m, a set of color images. We can then use the energy (25) and define

the following problem

min
~u1,...,~um

∑
1≤k<l≤m

E~Uk,~U l(~uk, ~ul), (26)

in order to normalize the color of the set of images ~Uk.

V. DESCRIPTION OF AN ALGORITHM TO MINIMIZE E~U,~V

In this Section we describe the algorithm we used to minimize (25).

A. A primal-dual algorithm

Since the shape preserving term (22) includes a total variation regularization, we minimize E

through a primal-dual proximal point algorithm. Let us detail this process for the minimization

of E with respect to ~u when ~v is fixed. Discarding the terms involving only ~v, we have

min
~u
EH(~u,~v) +

α~U
2

∑
x∈Ω~U

‖~U(x)− ~u(x)‖2 + β~U

3∑
i=1

∑
Ω

(|∇ui| − θ(U)i · ∇ui)

= min
~u

max
~σ∈S
EH(~u,~v) +

α~U
2

∑
x∈Ω~U

‖~U(x)− ~u(x)‖2 + β~U

3∑
i=1

∑
Ω

(σi · ∇ui − θ(U)i · ∇ui)

= min
~u

max
~σ∈S
EH(~u,~v) +

α~U
2

∑
x∈Ω~U

‖~U(x)− ~u(x)‖2 − β~U
3∑
i=1

∑
Ω

div(σi − θ(U)i)ui,

(27)

where S = {~σ = (σ1, σ2, σ3), with σi : Ω~U × Ω~U → R2 and |σi| ≤ 1}.

Starting from initial values ~u0 and ~σ0 ∈ S and given two positive time steps τ and τσ, the

primal-dual proximal point algorithm consists of a gradient ascent method for the dual variable

σ and a gradient descent for the variable ~u. The dual step is then

σk+1
i = σki + τσβ~U∇u

k
i . (28)
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while the primal step is

uk+1
i = uki − τ∇uE~U,~V (~uk, ~vk)

= uki − τ
(
∇uEH(~uk, ~vk) + α~U(uki − Ui)− β~U div(σki − θ(U)i)

)
,

(29)

where the gradient ∇uki
EH(~uk, ~vk) can be computed as in the Appendix. At the end of each

step, the dual vector variable σk+1
i is projected into the unitary ball S, while the variable uk+1

i

is projected into [0, 1].

Similar equations can be written for the variables ~v.

B. The discrete gradient and divergence

Let us first give the definition of the discrete gradient and divergence operators. Assume that

the discrete spatial domain is Ω := {1, . . . ,W} × {1, . . . , H}. A scalar image is thus a vector

in X := RW×H . If u ∈ X , the discrete gradient is a vector in X ×X given by

∇u =

u+
x

u+
y

 , (30)

where

u+
x (i, j) =

 u(i+ 1, j)− u(i, j) if i < W,

0 if i = W,
(31)

and

u+
y (i, j) =

 u(i, j + 1)− u(i, j) if j < H,

0 if j = H.
(32)

The discrete divergence operator is determined by the relation 〈div σ, u〉X = −〈σ,∇u〉X×X
for all u ∈ X , σ = (σ1, σ2) ∈ X ×X , where 〈·, ·〉X , 〈·, ·〉X×X denote the scalar products in X ,

X ×X , respectively. Thus, div σ = (σ1)−x + (σ2)−y , where

(σ1)−x (i, j) =


σ1(i, j) if i = 1,

σ1(i, j)− σ1(i− 1, j) if 1 < i < W,

−σ1(i− 1, j) if i = W,

(33)

and

(σ2)−y (i, j) =


σ2(i, j) if j = 1,

σ2(i, j)− σ2(i, j − 1) if 1 < j < H,

−σ2(i, j − 1) if j = H.

(34)
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Finally, let us underline that the histograms are discretized in bins. In practice, we used M

bins for each channel, so that the dimension of the histograms is M3. The value of the histogram

HI for the color (λ1, λ2, λ3) is thus HI([λ1M ], [λ2M ], [λ3M ]), where [·] denotes the integer part

of its argument.

VI. EXPERIMENTS

In all our experiments, we used the same set of parameters. The histogram is discretized into

M = 64 bins. Concerning the model parameters, we used α~U = α~V = 0.1 for the data term and

β~U = β~V = 0.1 for the shape preserving term. The time steps for the primal-dual proximal point

algorithm are fixed as τ = τσ = 10−4.

A. Histogram transfer

We first apply our process with ~v = ~V being fixed, so that only the image ~u can change

its values. In this case, we recover the same problem as the one considered in [13]. As the

code of [13] is available on the web2, we have compared this method with ours in terms of the

distance between histograms. If h~u and h~v are the histograms of images ~u and ~v, respectively,

both methods are compared by means of the quantity∫ 1

0

∫ 1

0

∫ 1

0

(h~u(~λ)− h~v(~λ))2dλ, (35)

computed for the images ~u obtained using both our method and the one in [13].

In [13], the authors show experiments on color grading between very different images. We

think that this kind of experiments is not well adapted to compare different methods, as there is

no ground truth available. As a consequence, we used a data set composed of pairs of images

showing the same painting which are taken by unknown cameras and with different illuminations.

We considered paintings, as they involve strong color contrast, and are quite close to the examples

of color grading shown in [13]. This data set is thus favorable to the application of [13]. The

original and final images obtained by both methods, the one in [13] and ours, on the paintings

are shown in Figures 1 and 2. As illustrated in table I, both approaches give similar errors in the

sense of (35), the method of [13] being slightly better in general. Both methods, nevertheless,

give good results in terms of visual quality.

2http://www.mee.tcd.ie/∼sigmedia/Research/ColourGrading
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Reference image ~V Original image ~U

Result ~u with [13] Result ~u with our method

Fig. 1. Comparison between our method and the one of [13] for the painting of Géricault: The Raft of the Medusa.

Data Initial error Final error with [13] Final error with our method

Medusa 0.001576 0.000149 0.000215

Joconde 0.010981 0.001281 0.002050

Tentation 0.001766 0.000223 0.000415

Rising Sun 0.001134 0.000188 0.000115

Cypress 0.000163 0.000025 0.000077

TABLE I

QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND THE ONE OF [13] WITH CRITERIUM (35).

B. Intermediate histogram equalization of a set of images

Let us consider ~Uk, k = 1, . . . ,m, a set of color images representing the same scene with

different orientations or illuminations. We solve the problem (26) in order to normalize the color

of the set of images ~Uk. As already commented, we underline that, to our knowledge, there is no

method in the literature that allows realizing such a process without defining a midway histogram

beforehand. In [3], [12], when m = 2, the problem has been considered from the point of view
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Reference image ~V Original image ~U Result ~u with [13] Result ~u with our method

Fig. 2. Comparison between our method and the one of [13] for our data set. First row: Dali, Tentation. Second

row: Monet, Impression Rising Sun. Third row: Van Gogh: Cypress against a starry sky. Fourth row: Da Vinci,

Joconde.

of Monge-Kantorovich mass transportation theory leading to a linear programming problem for

the computation of the transport plan transferring both histograms. Transport plans permit to
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split the mass of a bin of one of the histograms and distribute it between several bins in the

other one. In [13], assuming that the histograms of two given color images can be approximated

by multivariate Gaussian distributions, the Monge-Kantorovich formulation is restricted to find

a linear map that approximates the transfer of histograms. The color grading method proposed

in [6] is based on the computation of a transfer map and could be adapted to compute a midway

histogram equalization (see [15]) in the case of two images. The transfer map is computed

by iteratively equalizing all principal axis marginals computed for every possible rotation of

the histogram, until convergence. Then the method is refined by a filtering process to reduce

possible grain artifacts [6]. As mentioned in Section IV-B, this process is related to our geometry

attachment term. Thus our method, although different in spirit, has common points with [6]. On

the other hand, it is more adapted to the consideration of more than two images.

In Figures 3, 4 and 5 we show some examples of intermediate histogram equalization for sets

of three images.
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~U1 ~U2 ~U3

~u1 ~u2 ~u3

Fig. 3. Lighthouse sequence. First line: Original images. Second line: Final images.

VII. CONCLUSIONS AND PERSPECTIVES

We have proposed in this paper a variational model for intermediate color histogram equaliza-

tion of two or more color images. Given a set of images, we transform them by minimizing an

energy functional which is composed by three different terms: on one side we have a histogram

transport term that tends to approach the cumulative histograms of the original images; on the

other side we have two conservative terms that tend to maintain unaltered color and image

geometry. The balance between these two opposite actions is vital for our purposes: the original

images evolve in order to approach a common intermediate histogram that does not need to

be specified in advance. Up to authors’ knowledge, this is a novel property in the literature
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~U1 ~U2 ~U3

~u1 ~u2 ~u3

Fig. 4. Chapel sequence. First line: Original images. Second line: Final images.

on the present subject. We have developed a primal-dual algorithm to minimize the proposed

energy functional and shown that its results compare well with the state of the art. The flexibility

provided by the variational framework enables to think about various refinements of the proposed

model: for instance, one could introduce a local color enhancement term to enforce the action

of the algorithm discussed in this paper on images affected by color cast. This condition is

quite common, in fact most pictures are taken under illuminant conditions that can be very

different from the standard D65 ‘white light’, thus a color cast is very likely to be present in

the corresponding image.
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~U1 ~U2 ~U3

~u1 ~u2 ~u3

Fig. 5. Gros Horloge sequence. First line: Original images. Second line: Final images.
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VIII. APPENDIX: THE FIRST VARIATION OF THE HISTOGRAM ENERGY TERMS

A. The case N = 2

Let us compute the first variations of the energy (14) with respect to I1 and I2. We observe

that

H~I(
~λ) =

1

|Ω|
∑
x∈Ω

h~λ(~I(x)) . (36)

where

h~λ(r1, r2) = χ[0,λ1](r1)χ[0,λ2](r2) λ1, λ2, r1, r2 ≥ 0. (37)

Hence, if ~J = (J1, J2) : Ω→ R+ × R+ denotes a perturbation, we have

d

dε

∣∣∣∣
ε=0

H~I+ε ~J(λ) =
1

|Ω|
d

dε

∣∣∣∣
ε=0

∑
x∈Ω

h~λ(~I(x) + ε ~J(x)) =
1

|Ω|
∑
x∈Ω

d

dε

∣∣∣∣
ε=0

h~λ(~I(x) + ε ~J(x))

= − 1

|Ω|
∑
x∈Ω

[δ(I1(x)− λ1)hλ2(I2(x))J1(x) + δ(I2(x)− λ2)hλ1(I1(x))J2(x)] .

(38)

Then
d

dε

∣∣∣∣
ε=0

E(~I + ε ~J)

= − 1

|Ω|

∫ 1

0

∫ 1

0

[
H~I(

~λ)−Href(~λ)
]∑
x∈Ω

(
δ(I1(x)− λ1)hλ2

(I2(x))J1(x) + δ(I2(x)− λ2)hλ1
(I1(x))J2(x)

)
d~λ

= − 1

|Ω|
∑
x∈Ω

∫ 1

0

∫ 1

0

[
H~I(

~λ)−Href(~λ)
] (
δ(I1(x)− λ1)hλ2

(I2(x))J1(x) + δ(I2(x)− λ2)hλ1
(I1(x))J2(x)

)
d~λ

= − 1

|Ω|
∑
x∈Ω

(∫ 1

0

(∫ 1

0

[
H~I(λ1, λ2)−Href(λ1, λ2)

]
δ(I1(x)− λ1) dλ1

)
hλ2(I2(x)) dλ2

)
J1(x)

− 1

|Ω|
∑
x∈Ω

(∫ 1

0

(∫ 1

0

[
H~I(λ1, λ2)−Href(λ1, λ2)

]
δ(I2(x)− λ2) dλ2

)
hλ1

(I1(x)) dλ1

)
J2(x)

= − 1

|Ω|
∑
x∈Ω

∫ 1

I2(x)

[
H~I(I1(x), λ2)−Href(I1(x), λ2)

]
dλ2 J1(x)

− 1

|Ω|
∑
x∈Ω

∫ 1

I1(x)

[
H~I(λ1, I2(x))−Href(λ1, I2(x))

]
dλ1 J2(x).

(39)
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That is,

∇I1E(~I) = − 1

|Ω|

∫ 1

I2(x)

[H~I(I1(x), λ2)−Href(I1(x), λ2)] dλ2 , (40)

∇I2E(~I) = − 1

|Ω|

∫ 1

I1(x)

[H~I(λ1, I2(x))−Href(λ1, I2(x)] dλ1. (41)

Then (16) and (17) follow.

B. The case N = 3

Let us consider the case N = 3. Let ~I = (I1, I2, I3) be a color image defined on the domain

Ω and H~I(
~λ) = 1

|Ω| |{x ∈ Ω : I1(x) ≤ λ1, I2(x) ≤ λ3, I3(x) ≤ λ3}|, ~λ ∈ [0, 1]3. As above, let

Href(~λ) be a specified cumulative histogram. We consider the energy:

E(~I) =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

(H~I(
~λ)−Href(~λ))2 d~λ, (42)

Let

H1(i1, i2, i3) ≡
∫ i2

0

∫ i3

0

H(i1, λ2, λ3)dλ2dλ3, (43)

H2(i1, i2, i3) ≡
∫ i1

0

∫ i3

0

H(λ1, i2, λ3)dλ1dλ3, (44)

H3(i1, i2, i3) ≡
∫ i1

0

∫ i2

0

H(λ1, λ2, i3)dλ1dλ2. (45)

With similar computations as in the case N = 2 we have:

∇I1E(~I) = − 1

|Ω|

∫ 1

I2(x)

∫ 1

I3(x)

[H~I(I1(x), λ2, λ3)−Href (I1(x), λ2, λ3)] dλ3dλ2

= − 1

|Ω|
[
H1
~I
(I1(x), 1, 1)−H1

ref(I1(x), 1, 1)
]

+
1

|Ω|
[
H1
~I
(I1(x), I2(x), 1)−H1

ref(I1(x), I2(x), 1)
]

+
1

|Ω|
[
H1
~I
(I1(x), 1, I3(x))−H1

ref(I1(x), 1, I3(x))
]

− 1

|Ω|
[
H1
~I
(I1(x), I2(x), I3(x))−H1

ref(I1(x), I2(x), I3(x))
]
,

(46)
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∇I2E(~I) = − 1

|Ω|

∫ 1

I1(x)

∫ 1

I3(x)

[H~I(λ1, I2(x), λ3)−Href (λ1, I2(x), λ3)] dλ3dλ1

= − 1

|Ω|
[
H2
~I
(1, I2(x), 1)−H2

ref(1, I2(x), 1)
]

+
1

|Ω|
[
H2
~I
(I1(x), I2(x), 1)−H2

ref(I1(x), I2(x), 1)
]

+
1

|Ω|
[
H2
~I
(1, I2(x), I3(x))−H2

ref(1, I2(x), I3(x))
]

− 1

|Ω|
[
H2
~I
(I1(x), I2(x), I3(x))−H2

ref(I1(x), I2(x), I3(x))
]
,

(47)

∇I3E(~I) = − 1

|Ω|

∫ 1

I1(x)

∫ 1

I2(x)

[H~I(λ1, λ2, I3(x))−Href (λ1, λ2, I3(x))] dλ2dλ1

= − 1

|Ω|
[
H3
~I
(I1(x), 1, 1)−H3

ref(I1(x), 1, 1)
]

+
1

|Ω|
[
H3
~I
(1, I2(x), I3(x))−H3

ref(1, I2(x), I3(x))
]

+
1

|Ω|
[
H3
~I
(I1(x), 1, I3(x))−H3

ref(I1(x), 1, I3(x))
]

− 1

|Ω|
[
H3
~I
(I1(x), I2(x), I3(x))−H3

ref(I1(x), I2(x), I3(x))
]
.

(48)
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