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Introduction

An integer linear program where constraints are partitioned in two subsets can be formulated as follows:

(P )

                   max c t x s.c. Ax = a Bx = b x ∈ X where c ∈ R n , A is a m × n matrix, B is a p × n matrix, a ∈ R m , b ∈ R p and X ⊆ N n .
These problems are generally NP-hard and bounds are needed to solve them in generic branch and bound like schemes. To improve the bound based on the continuous relaxation of (P ), Lagrangian methods, like Lagrangian Relaxation (LR) [START_REF] Geoffrion | Lagrangian relaxation for integer programming[END_REF], Lagrangian Decomposition (LD) [START_REF] Guignard | Lagrangian decomposition: a model yielding stronger langrangian bounds[END_REF][START_REF] Guignard | Lagrangian decomposition for integer programming: theory and applications[END_REF][START_REF] Michelon | Méthodes lagrangiennes pour la programmation linéaire avec variables entières[END_REF][START_REF] Nagih | Dualité lagrangienne en programmation fractionnaire concave-convexe en variables 0-1[END_REF][START_REF] Nagih | A Lagrangian Decomposition for 0-1 Hyperbolic Programming Problems[END_REF], Lagrangian substitution [START_REF] Reinoso | Lagrangian decomposition for integer programming: a new scheme[END_REF] and Surrogate Relaxation (SR) [START_REF] Glover | A multiphase dual algorithm for the 0-1 integer programming problem[END_REF], are well-known techniques for obtaining bounds in Integer Linear Programming (ILP). This work recalls the existing link between LR and classical Dantzig-Wolfe Decomposition (DWD) [START_REF] Gb | Decomposition principle for linear programs[END_REF] and establishes the relationship between LD and DWD to derive a new DW master model.

The equivalence between DWD and LR is well known [START_REF]The omnipresence of Lagrange[END_REF]. Solving a linear program by Column Generation (CG), using DWD, is the same as solving the Lagrangian dual by Kelley's cutting plane method [START_REF] Kelley | The cutting-plane method for solving convex programs[END_REF]. This work recalls the previous result and extends it to LD, which can be viewed as a specific DWD, to prove the superiority of the new bound obtained.

The paper is organized as follows. Section 2 deals with LR, LD and DWD principles. Section 3 shows the relationship between LD and DWD, and gives a new proof on the LD bound dominance over the LR one. In Section 4 we illustrate with two DW master models on the 0-1 Bi-dimensional Knapsack Problem (0-1 BKP) and the Generalized Assignment Problem (GAP). In section 5 we present some computational results on the two previous problems.

Lagrangian duals and Dantzig-Wolfe decomposition

These approaches can be used in the pre-treatment phase of an exact or heuristic method in order to compute better bounds than linear relaxation. In this section, we recall the principle of Lagrangian duality and its link with DWD and Column Generation (CG).

Dual Lagrangian relaxation

LR consists in omitting some complicating constraints (Ax = a) and in incorporating them in the objective function using a Lagrangian multiplier π ∈ R m . We obtain the following relaxation:

(LR(π))              max c t x + π t (a -Ax) s. c. Bx = b x ∈ X.
For any π ∈ R m , the value of (LR(π)) is an upper bound on v(P ). The best one is given by the LR dual:

(LRD) ≡ min π∈R m (LR(π)) ≡ min π∈R m max {x∈X,Bx=b} c t x + π t (a -Ax).
Let be X B = {x ∈ X|Bx = b} and Conv(X B ) its convex hull (boundary of the convex polygon), supposed bounded. We denoted by x (k) , k ∈ {1, . . . , K} the extreme points of Conv(X B ). Hence, (LRD) can be reformulated as follows:

(LRD) ≡ min π∈R m max k=1,...,K c t x (k) + π t (a -Ax (k) ) ≡              min z s.t. z + π t (Ax (k) -a) ≥ c t x (k) , k = 1, . . . , K π ∈ R m , z ∈ R.
This new formulation potentially contains an exponential number of constraints, equal to K. Kelley's cutting plans method [START_REF] Kelley | The cutting-plane method for solving convex programs[END_REF] considers a reduced set of these constraints that handle a restricted problem. Cuts (constraints) are added at each iteration until the optimum reached.

Lagrangian decomposition dual

It is well-known that the efficiency of branch and bound like scheme depends on the quality of the bounds. To improve those provided by LR, Guignard and Kim [START_REF] Guignard | Lagrangian decomposition: a model yielding stronger langrangian bounds[END_REF][START_REF] Guignard | Lagrangian decomposition for integer programming: theory and applications[END_REF] have proposed to use LD. In such an approach, copy constraints are added to the formulation (P ) to build an equivalent problem:

                           max c t x s. c. Ax = a By = b x = y x ∈ X, y ∈ Y, with Y ⊇ X
where the copy variables permits to split the initial problem in two independent sub-problems after applying LR on the copy constraints x = y:

(LD(w))                    max c t x + w t (y -x) s. c. Ay = a Bx = b x ∈ X, y ∈ Y,
where w ∈ R n are dual variables associated to the copy constraints. We obtain the two following independent sub-problems:

(LD y (w))              max w t y s. c. Ay = a y ∈ Y and (LD x (w))              max (c -w) t x s. c. Bx = b x ∈ X
The LD dual is given by (LDD) min

w∈R n v(LD(w)) where v(LD(w)) = max{w t y|y ∈ Y A } + max{(c -w) t x|x ∈ X B } with Y A = {y | Ay = a, y ∈ Y } X B = {x | Bx = b, x ∈ X}.
This dual can be rewritten as :

(LDD)      min max(c -w) t x + max w t y w ∈ R n x ∈ X B y ∈ Y A .
We assume that the convex hull of the sets Y A and X B are bounded. We denote by x (k) , k ∈ {1, . . . , K} the extreme points of X B and by y (l) , l ∈ {1, . . . , L} those of Y A . We obtain the following formulation:

(LDD)

     min max(c -w) t x (k) + max w t y (l) w ∈ R n k = 1, . . . , K l = 1, . . . , L
which can be expressed in this equivalent linear form:

(LDD)                    min z 1 + z 2 z 1 ≥ (c -w) t x (k) , k = 1, . . . , K z 2 ≥ w t y (l) , l = 1, . . . , L w ∈ R n , z 1 , z 2 ∈ R.
The following theorem give the well-known dominance relationship between (P ), (LRD), (LDD) and (LP ) which is the linear relaxation of (P ).

Theorem 1 [5,6] v(P ) ≤ v(LDD) ≤ v(LRD) ≤ v(LP ).

Dantzig-Wolfe decomposition and column generation

The key idea of DWD [START_REF] Gb | Decomposition principle for linear programs[END_REF] is to reformulate the problem by substituting the original variables with a convex combination of the extreme points of the polyhedron corresponding to a substructure of the formulation.

We know that

∀x ∈ Conv(X B ), x = K k=1 λ k x (k) with K k=1 λ k = 1, λ k ≥ 0, ∀k ∈ 1, . . . , K.
By substituting in (P ) we obtain the master problem of DWD:

(M P )                    max K k=1 (c t x (k) )λ k s.c. K k=1 (Ax (k) )λ k = a K k=1 λ k = 1 λ k ≥ 0, k = 1, . . . , K.
(M P ) contains m + 1 constraints and (potentially) a huge number of variables (i.e. the number K of extreme points of Conv(X B )).

Remark 1 Due to the fact that (LRD) is a dual of (M P ), v(LRD) = v(M P ) [START_REF]The omnipresence of Lagrange[END_REF].

CG consists in generating iteratively a subset of the extreme points of X B to determine an optimal solution of (M P ) by solving alternatively:

• a Restricted Master Problem of DWD on a subset K of {1, . . . , K}:

(RM P )                    max k∈K (c t x (k) )λ k s.c. k∈K (Ax (k) )λ k = a k∈K λ k = 1 λ k ≥ 0 , k ∈ K • a pricing problem: (SP )              max c t x -π t Ax -π 0 s. c. Bx = b x ∈ X
where (π, π 0 ) ∈ R m × R are the dual variables provided by the resolution of (RM P ). The solution of (SP ) is incorporated (as a column) in (RM P ) if its value is non negative.

This process ends when there is no more variables in {1, . . . , K}\K with a positive reduced cost.

Lagrangian and Dantzig-Wolfe decompositions

This section is dedicated to Lagrangian decomposition duality. We establish the relationship between LD, DWD and CG. We consider the following DW master problem :

(M P D)                            max K k=1 (cx (k) )λ k K k=1 x (k) λ k -L l=1 y (l) γ l = 0 K k=1 λ k = 1 L l=1 γ l = 1 λ k ≥ 0, k = 1, . . . , K, γ l ≥ 0, l = 1, . . . , L
where x (k) , k ∈ {1, . . . , K} the extreme points of X B and by y (l) , l ∈ {1, . . . , L} those of Y A .

Lemma 1 The value of this master problem (M P D) provides a better upper bound on v(P ) than the value of the classical DWD (M P ).

Proof: v(M P D) =                            max K k=1 (cx (k) )λ k K k=1 x (k) λ k -L l=1 y (l) γ l = 0 K k=1 λ k = 1 L l=1 γ l = 1 λ k ≥ 0, k = 1, . . . , K, γ l ≥ 0, l = 1, . . . , L.

By duality

v(M P D) =                    min z 1 + z 2 z 1 + w t x (k) ≥ cx k , k = 1, . . . , K (1) z 2 -w t y (l) ≥ 0, l = 1, . . . , L (2) 
w ∈ R n , z 1 , z 2 ∈ R
If we consider only a subset of the multipliers w ∈ R n such that w t = π t A, where π is a vector of R m , and substitute in ( 1) and ( 2) we obtain the following problem:

                   min z 1 + z 2 z 1 + π t Ax (k) ≥ cx k , k = 1, . . . , K z 2 -π t Ay (l) ≥ 0, l = 1, . . . , L w ∈ R n , z 1 , z 2 ∈ R
for which the dual is:

                           max K k=1 (cx (k) )λ k K k=1 Ax (k) λ k -L l=1 Ay (l) γ l = 0 K k=1 λ k = 1 L l=1 γ l = 1 λ k ≥ 0, k = 1, . . . , K, γ l ≥ 0, l = 1, . . . , L.
As y (l) , l ∈ {1, . . . , L} are the extreme points of Y A , we have Ay (l) = a, and by l γ l = 1, we obtain the problem (M P ). Thus v(M P D) ≤ v(M P ) Remark 2 If n > m, the set {π t A, π ∈ R m } R n and then v(M P D) can be stricly better than v(M P ).

Remark 3 As (LDD) (resp. (LRD)) is the dual of (M P D) (resp. (M P )), we can state that

v(M P D) = v(LDD) = min w∈R n v(LD(w)) ≤ min π t ∈R m v(LD(π t A))
and

min π t ∈R m v(LD(π t A)) = min π∈R m v(LR(π)) = v(LRD) = v(M P
). This approach supply an alternative proof to the dominance of LD over LR.

Decomposition models

This section is devoted to an illustration of this new DWD model on two classical combinatorial optimization problems : the 0-1 bi-dimensional knapsack problem and the generalized assignment problem.

The 0-1 bi-dimensional knapsack problem

This problem consists in selecting a subset of given objects (or items) in such a way that the total profit of the selected objects is maximized while two knapsack constraints are satisfied. The formulation of this problem is given by :

(0 -1 BKP )                    max n i=1 c i x i s. c. n i=1 a i x i ≤ A n i=1 b i x i ≤ B x i ∈ {0, 1}, i = 1, . . . , n
where n is the number of objects (or items), the coefficients a i (i = 1, . . . , n), b i (i = 1, . . . , n) and c i (i = 1, . . . , n) are positive integers and A and B are integers such that max{a i : i = 1, . . . , n} ≤ A < i=1,...,n a i and max{b i : i = 1, . . . , n} ≤ B < i=1,...,n b i .

The classical Dantzig-Wolfe master problem is given by:

                   max K k=1 ( n i=1 c i x (k) i )λ k s.c. K k=1 ( n i=1 a i x (k) i )λ k ≤ A K k=1 λ k = 1 λ k ≥ 0, k = 1, . . . , K.
where x (k) , k = 1, . . . , K, are the extreme points of Conv({x i ∈ {0, 1}| n i=1 b i x i ≤ B, i = 1, . . . , n}); and the pricing problem is:

             min n i=1 (c i -πa i )x i -πA s. c. n i=1 b i x i ≤ B x i ∈ {0, 1}, i = 1, . . . , n.
The master problem associated to Lagrangian decomposition is given by:

                           max K k=1 ( n i=1 c i x (k) i )λ k K k=1 ( n i=1 x (k) i )λ k -L l=1 ( n i=1 y (l) i )γ l = 0 K k=1 λ k = 1 L l=1 γ l = 1 λ k ≥ 0, k = 1, . . . , K, γ l ≥ 0, l = 1, . . . , L
where x (k) , k = 1, . . . , K (resp. y (l) , l = 1, . . . , L), are the extreme points of Conv({x i ∈ {0, 1}, i = 1, . . . , n| n i=1 b i x i ≤ B, i = 1, . . . , n}) (resp. Conv({y i ∈ {0, 1}, i = 1, . . . , n| n i=1 a i y i ≤ A}));

and the pricing problems are:

             min n i=1 u i y i s. c. n i=1 a i y i ≤ A y i ∈ {0, 1}, i = 1, . . . , n and              min n i=1 (c i -u i )x i s. c. n i=1 b i x i ≤ B x i ∈ {0, 1}, i = 1, . . . , n.
where x i , i = 1, . . . , n and y i , i = 1, . . . , n are equal to 1 if object i is filled in the knapsack.

The generalized assignment problem

It consists of finding a maximum profit assignment of T jobs to I agents such that each job is assigned to precisely one agent subject to capacity restrictions on the agents [START_REF] Martello | Generalized assignment problems[END_REF]. The standard integer programming formulation is the following:

                   max i t c it x it s. c. i x it = 1, t = 1, . . . , T t r it x it ≤ b i , i = 1, . . . , I x it ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T
Two classical Dantzig-Wolfe decompositions can be made, by relaxing the assignment constraints or the capacity constraints.

The first classical Dantzig-Wolfe master problem is given by:

                   max K k=1 ( i t c it x (k) it )λ k s.c. K k=1 ( i x (k) it )λ k = 1, t = 1, . . . , T K k=1 λ k = 1 λ k ≥ 0, k = 1, . . . , K
where x (k) , k = 1, . . . , K, are the extreme points of Conv({x it ∈ {0, 1}| t r it x it ≤ b i , i = 1, . . . , I}); and the associated pricing problem is:

             min i t (c it -π t )x it -t π t s. c. t r it x it ≤ b i , i = 1, . . . , I
x it ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.

The second classical Dantzig-Wolfe master problem is given by:

                   max L l=1 ( i t c it y (l) it )γ l s.c. L l=1 ( t r it y (l) it )γ l ≤ b i , i = 1, . . . , I L l=1 γ l = 1 γ l ≥ 0, l = 1, . . . , L
where y (l) , l = 1, . . . , L are the extreme points of Conv({y it ∈ {0, 1}| i y it = 1, t = 1, . . . , T }); and the associated pricing problem is:

             min i t (c it -π i )y it -i π i s. c. i y it = 1, t = 1, . . . , T y it ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T
The master problem associated to Lagrangian decomposition is given by:

                           max K k=1 ( i t c it x (k) it )λ k K k=1 ( i t x (k) it )λ k -L l=1 ( i t y (l) it )γ l = 0 K k=1 λ k = 1 L l=1 γ l = 1 λ k ≥ 0, k = 1, . . . , K, γ l ≥ 0, l = 1, . . . , L
where x (k) , k = 1, . . . , K (resp. y (l) , l = 1, . . . , L), are the extreme points of

Conv({x it ∈ {0, 1}| t r it x it ≤ b i , i = 1, . . . , I}) (resp. Conv({y it ∈ {0, 1}| i y it = 1, t = 1, . . . , T }));
and the pricing problems are:

             min i t u it y it s. c. i y it = 1, t = 1, . . . , T y it ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T and              min i t (c it -u it )x it s. c. t r it x it ≤ b i , i = 1, . . . , I x it ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.
where x it , i = 1, . . . , I, t = 1, . . . , T and y it , i = 1, . . . , I, t = 1, . . . , T are equal to 1 if job t is assigned to agent i.

Numerical experiments

This section is devoted to an experimental comparative study between LD and LR when solved by the CG algorithm. We consider the two optimization problems defined in the previous section : the 0-1 bidimensional knapsack problem and the generalized assignment problem.

We consider in our tests 6 instances of the 0-1 bi-dimensional knapsack problem from the OR-Library. Table 1 presents a comparative study between CG resolution of LD and LR formulations (denoted CG LD and CG LR respectively). The master and pricing problems are solved by CPLEX11.2 solver. CG LR and CG LD optimality are reached for all instances. As expected, LD gives better upper bounds then LR. On average on instances WEINGi, i = 1, . . . , 6, %vE associated to LD (resp. RL) is 0.02 (resp. 0.78), but we observe that the average resolution time of CG LR (0.07 s) is very small compared to CG LD computation time (10.54 s), this is due to the fact that the computational effort of each CG LD iteration is greater than the CG LR one and to the slow convergence of CG LD compared to CG LR.

We consider also in our tests 6 instances of the GAP from the OR-Library. All instances gapi, i = 1, . . . , 6 have the same size, 5 agents and 15 jobs. The master and pricing problems are solved by CPLEX11.2 solver. Table 2 shows a comparison between LR and LD algorithms performances, when we apply for LR the second classical Dantzig-Wolfe decomposition, by relaxing the capacity constraints (cf section 4.2). As before, CG LR and CG LD optimality are reached for all instances. LD gives better upper bounds then LR. On average on instances gapi, i = 1, . . . , 6, %vE associated to LD (resp. RL) is 0.13 (resp. 2.85), but we observe that the average resolution time of CG LR (0.24 s) is still very small compared to CG LD computation time (282.58 s).

The first classical Dantzig-Wolfe decomposition for LR, by relaxing the assignment constraints (cf section 4.2), has been also tested on the same instances, the results show that the bounds are tighter (but they are not better then those obtained by LD) and the column generation algorithm takes more iterations and time to converge.

Conclusion

This paper focused on Dantzig-Wolfe Decomposition principle. We propose a new Dantzig-Wolfe master problem for integer linear programming, which allows to propose an alternative dominance proof of Lagrangian Decomposition bound over Lagrangian Relaxation bound. As illustration, we have given the two Dantzig-Wolfe decomposition models for the 0-1 Bi-dimensional Knapsack Problem and the Generalized Assignment Problem. The obtained experimental results demonstrate the superiority of the Lagrangian Decomposition bound, but the gain on bound quality impose an additional computation effort. In fact, at each iteration of the column generation algorithm for the Lagrangian decomposition, two pricing problems (generally integer problems) have to be solved. Through this experimental study, we conclude that column generation resolution of Lagrangian decomposition can be useful if we want to obtain a good initial bound, as for example at the root node of a branch and bound or a branch and price scheme.

Table 1

 1 Lagrangian relaxation and Lagrangian decomposition for (0-1 BKP)

				WEING1					WEING2		
		vR	%vE	Iter	tG	tSP	tMP	vR	%vE	Iter	tG	tSP	tMP
	CG LR 141 388.50	0.1	6	0.12	0.12	0.00	130 883.00	0.0	1	0.01	0.01	0.00
	CG LD 141 383.00	0.1	136	9.55	8.72	0.24	130 883.00	0.0	157	13.61	12.56	0.40
				WEING3					WEING4		
		vR	%vE	Iter	tG	tSP	tMP	vR	%vE	Iter	tG	tSP	tMP
	CG LR	97 613.92	2.0	5	0.13	0.11	0.00	122 321.58	2.5	7	0.08	0.06	0.01
	CG LD	95 677.00	0.0	142	11.42	10.64	0.25	119 337.00	0.0	156	12.68	11.54	0.33
				WEING5					WEING6		
		vR	%vE	Iter	tG	tSP	tMP	vR	%vE	Iter	tG	tSP	tMP
	CG LR	98 796.00	0.0	1	0.01	0.00	0.01	130 697.80	0.1	6	0.05	0.05	0.00
	CG LD	98 796.00	0.0	77	3.51	2.99	0.16	130 623.00	0.0	162	12.47	11.51	0.33
	vR: the relaxation value.										
	%vE: the gap between relaxation and optimal values.							
	Iter: number of iterations.										
	tG: the global resolution time (s).									
	tSP: the global resolution time of pricing problems (s).							
	tM: cumulated master problems resolution time (s).							

Table 2

 2 Lagrangian relaxation and Lagrangian decomposition for (GAP)

			gap1						gap2		
	vR	%vE	Iter	tG	tSP	tMP	vR	%vE	Iter	tG	tSP	tMP
	CG LR 343.59	2.3	33	0.27	0.16	0.03	339.38	3.8	26	0.22	0.17	0.00
	CG LD 337.00	0,3	1169	383.13	343.61	29.37	327.00	0,0	894	258.41	234.55	15.78
			gap3						gap4		
	vR	%vE	Iter	tG	tSP	tMP	vR	%vE	Iter	tG	tSP	tMP
	CG LR 349.68	3.2	33	0.22	0.14	0.01	350.40	2.8	31	0.25	0.17	0.00
	CG LD 339.50	0.1	945	273.18	245.89	19.01	341.00	0.0	878	282.25	258.89	15.74
			gap5						gap6		
	vR	%vE	Iter	tG	tSP	tMP	vR	%vE	Iter	tG	tSP	tMP
	CG LR 335.76	3.0	35	0.28	0.17	0.05	351.82	2.0	30	0.22	0.12	0.08
	CG LD 327.25	0.4	595	163.86	149.73	9.05	345.00	0.0	1115	334.65	301.99	23.93
	vR: the relaxation value.										
	%vE: the gap between relaxation and optimal values.							
	Iter: number of iterations.										
	tG: the global resolution time (s).									
	tSP: the global resolution time of pricing problems (s).							

tM: cumulated master problems resolution time (s).