Effect of the Viscosity Ratio on the Morphology and Properties of PET/HDPE Blends with and Without Compatibilization
Résumé
The influence of the molecular weight of polyethylene on the morphology and mechanical properties of blends of high-density polyethylene (HDPE) dispersed as droplets in a poly(ethylene terephthalate) (PET) matrix at various compositions was investigated. The difference of morphologies can be easily explained by the influence of the molecular weight on the viscosity ratio and therefore, on the critical capillary number. The compatibilizing efficiency of copolymers containing glycidyl methacrylate groups was also addressed in relation to their nature, the protocol for their drying and the molecular weight of the HDPE phase. The increase of adhesion between PET and HDPE was found to have a larger influence on tensile properties than the reduction of interfacial tension. The amount of compatibilizer needed for adhesion improvement depends on the interfacial area that is defined by both the interfacial tension and viscosity ratio of the components. A qualitative relation between the optimum amount of compatibilizer and the critical capillary number can be written.