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Abstract

This paper analyses the space-time interdependency of a spatially explicit birth-death pro-
cess based on the intensity function. Based on intensity functions, these formulations can
be, to some extent, analytically solved to obtain explicit formulae of, for instance, the total
point population size contained in the unit torus at equilibrium. The definition of continu-
ous space-time processes based on point intensities opens up new promising lines of research
to analyse ecological dynamics: our spatially explicit birth-death process can be easily ex-
panded to mimic other realistic ecological scenarios. Note that although space-time stochastic
processes are (generally) intractable, theoretical development of their corresponding intensity
function provides useful insights into these complex dynamics. Hence, the analytical analy-
sis of the point intensity provides a complementary method to simulation-based analyses of
complex space-time processes.
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ACCEPTED MANUSCRIPT1. Introduction

The incorporation of spatial elements into ecological models has become increasingly popular
during the last few decades. The development of computer software such as Geographic Information
Systems (GIS) and the dramatic increase in processing speed and memory on personal computers
have clearly contributed to such tendency. Moreover, the incorporation of spatial information has
revealed, and continues revealing, unexpected results on stability and dynamics from local (i.e.
non-spatial) models. For instance, several authors suggest that the spatial structure of ecological
dynamics affects population as much as average birth and death rates, competition and predation
do (see, amongst others, Tilman and Kareiva, 1997; Bascompte and Solé, 1998).

Although considerable attention has been paid to model spatio-temporal ecological dynamics
of populations, including diffusion-reaction models (Skellam, 1951; Levin, 1979; Kareiva, 1990;
Okuvo and Levin, 2001), lattice-base models (Durret and Levin, 1994) and metapopulation models
(Hanski, 1999), rather less research has been done to analyse continuous spatio-temporal dynamics
of “single” individuals. The assumption of individual organism information is crucial to understand
ecological phenomena where different type-class of organisms, such as organism size and species,
are exploiting the same region but at distinct distinguished locations. For instance, Pacala and
Deutschman (1995) show how crucial the spatial distribution of individual trees can be to maintain
forest ecosystem function.

A natural way to analyse and model continuous space-time dynamics of single individuals
can be done through the development of spatial point processes. Loosely speaking, a spatial point
process is a stochastic mechanism which generates a countable set of events xi in a bounded region A
(see, for instance, Stoyan et al., 1995 or Diggle, 2003). Point process theory plays a fundamental role
to analyse and model ecological patterns. Since the Neyman’s (1939) pioneering paper suggesting
the use of spatial point processes to model the spatial distribution of insect larvae, a large amount
of spatially explicit approaches has been formulated to generate purely spatial patterns (see, for
instance, Diggle, 2003). Relevant examples include the family of cluster processes, based on the
contagious distribution of Neyman (1939), conceived to generate aggregated spatial patterns of
individuals, inhomogeneous Poisson processes to create spatial heterogeneity, and Gibbs processes
to generate inhibitory point patterns. However, most of these point process models generate spatial
patterns in terms of purely spatial relationship, though in real life biological population of plants
and animals evolve through time.

A novel way to analyse space-time processes can be done through the development of multi-

generation point processes (Diggle, 2003; Comas and Mateu, 2007). These type of point processes
have the potential to generate spatial point patterns evolving through discrete time. Moreover, given
that they are (usually) defined by fairly tractable mathematical formulations, it is possible to make
substantial analytical progress of such approaches (Comas and Mateu, 2007). However, although
multi-generation point processes can be a reasonable approximation for population reproducing at
discrete interval of times (such as annual plants), these type of processes may not satisfactorily
analyse dynamics of individuals reproducing continuously through time.

Renshaw and Särkkä (2001) formulate a continuous space-time stochastic process to generate
spatial patterns of (marked) points on the unit torus. Although this approach defines a simple and
flexible framework to generate spatial patterns where the underlying point structure is constantly
changing, this model is based on the simulation of growing and interacting (marked) points rather
than on the simulation of the underlying marked point intensity measure (i.e. first order properties;
see, for instance, Stoyan et al., 2005). This paper expands the work of Comas and Mateu (2007) by
analysing several continuous space-time processes formulated through the point intensity, assuming
a spatially explicit birth-death process.
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ACCEPTED MANUSCRIPTThe main purpose of this paper is to study the space-time interdependency of continuous space-
time stochastic processes through the analysis of the underlying intensity function. Specific aims
and features are to (i) formulate a spatially explicit birth-death process dependent on the spatial
configuration of points and based on the intensity function, and (ii) provide conditions for stability
of such a model. In particular, we start in Section 2 with a simple spatially explicit birth-death
process. Then, in Section 3, we consider a more realistic approach by introducing parent-to-parent
interaction effects to limit offspring production, providing the condition for stability. Finally, in
Section 4, we discuss the applicability of such formulation and suggest a tentative way to simulate
such processes.

2. A simple continuous space-time birth-death process

Let Z(x; t) be the random intensity function depending on a spatial location x ∈ R
2 and a

temporal instant t of a point process Φt ⊂ R
2, where the subindex denotes the temporal instant t.

Then, in the subsequent small time interval of length dt, the increase in point intensity due to the
reproduction of a single organism is αdt, and consequently, the increase in size due to all organisms
located over a given region A ⊂ R

2 is

α

∫

A

Z(y; t)g(x− y)dydt

where g(x−y) is a time invariant radially symmetric bivariate probability density function (p.d.f.),
i.e. the offspring spatial distribution around “parent” events. Moreover, in this subsequent small
time interval the decrease in population size due to the death of a single organism is µdt, and the
point mortality due to all Z(x; t) points is µZ(x; t)dt. Hence

Z(x; t + dt) = Z(x; t) + α

∫

A

Z(y; t)g(x− y)dydt− Z(x; t)µdt (2.1)

which, on dividing both sides by dt, gives

dZ(x; t)/dt = α

∫

A

Z(y; t)g(x− y)dy − Z(x; t)µ. (2.2)

Note that Z(y; t) could be the intensity function of a Poisson cluster process (i.e. a Cox process).
Also notice that a symmetric p.d.f. g(·) and a stationary “parent” event distribution (i.e. the points
at time t) implies stationarity in the resulting point distribution at time t + dt. Furthermore, we
can consider that

∫

A

Z(y; t)g(x− y)dy ≡

N(t)
∑

i=1

g(x− ξi) (2.3)

where ξi ∈ Φt are points located in A at time t, and N(t) is the total number of points in A at
time t, i.e. N(t) =

∫

A
Z(x; t)dx. The relation in (2.3) is due to the fact that only those spatial

positions y ∈ R
2 where there is a point ξi ∈ Φt at time t contribute to the birth process. Moreover,

on applying standard mathematical results, we obtain that

dN(t)

dt
=

∫

A

dZ(x; t)

dt
dx, (2.4)

which is valid as long as dZ(x; t)/dt is continous in both t and x. On substituting (2.3) into (2.2),
and integrating both sides of (2.2) over the region A, we obtain

dN(t)/dt =

∫

A

(

α

N(t)
∑

i=1

g(x − ξi) − Z(x; t)µ

)

dx (2.5)
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ACCEPTED MANUSCRIPTwhich can be further simplified to give

dN(t)/dt =

∫

A

α

N(t)
∑

i=1

g(x − ξi)dx − N(t)µ, (2.6)

yielding
dN(t)/dt = N(t)α − N(t)µ, (2.7)

since
∫

A
g(x− ξi)dx = 1, assuming that the area of region A is “big enough”. Solving the equation

(2.7) leads to the relation
N(t) = N(0) exp{(α − µ)t}. (2.8)

Expression (2.8) is the non-spatial expression of the population size growth for a simple linear
birth-death process (see, for instance, Renshaw, 1991), which results in an exponential growth.
Note that this population growth is independent of the spatial distribution of offspring around
parent-events, which is expected since offspring distribution neither affect the birth rate nor the
death rate. This model can be a reasonable approximation for a population when there is no limit
in the available food resource to ensure that there is no competition between individuals. However,
if the availability of food resources and space is limited, population cannot grow without limit;
individuals start to interact with each other reducing the total number of individuals.

3. Introducing a birth rate dependent on the spatial point structure

A first choice to ensure that the process (2.2) remains bounded is to consider that the birth
rate α depends on the spatial configuration of points. Usually, in real life, one may expect that
the interaction between parent-individuals affects negatively/positively the resulting reproduction
dynamics. For instance, certain types of trees reduce their canopy size as the result of interaction
pressure. Having smaller canopies, these interacting trees produce far less number of seeds than
those trees which are isolated.

Consider that the birth rate is positively/negatively affected by the distance between parent-
events. Thus, the offspring production due to the point intensity located at y at time t can be
defined as

αZ(y; t) exp

(

−

∫

A

d(‖y − z‖)dz

)

. (3.9)

Here d(·) is a time invariant function relating parent spatial configuration and offspring production.
A possible choice of d(·) includes the Strauss-like pair potential function (Strauss, 1975), for which

d(‖y − z‖) =

{

c if ‖y − z‖ < R, y and z contain a point and y 6= z at time t
0 otherwise

(3.10)

where R is the interaction distance, i.e. the interaction range, and c is a constant interaction
effect. Whilst under c > 0 interacting parents reduce offspring production, for c < 0 parent-to-
parent interaction favours offspring production. Then, substituting the density-dependent offspring
production due to the point intensity Z(y; t) (expression (3.9)) into (2.2) we obtain

dZ(x; t)/dt = α

∫

A

Z(y; t) exp

(

−

∫

A

d(‖y − z‖)dz

)

g(x− y)dy − Z(x; t)µ, (3.11)

which is the increase in point intensity assuming a birth rate dependent on the spatial point struc-
ture. Moreover, on noting that

∫

A

d(‖y − z‖; t)dz = c u(y; t), (3.12)
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ACCEPTED MANUSCRIPTwhere u(y; t) is the number of points that interact with the spatial position y at time t, expression
(3.11) can be written as

dZ(x; t)/dt = α

∫

A

Z(y; t) exp(−c u(y; t))g(x− y)dy − Z(x; t)µ. (3.13)

Since u(y; t) = 0, 1, 2, . . . it follows that
∫

A

Z(y; t) exp(−c u(x; t))g(x− y)dy =

∫

A0(t)

Z(y; t) exp(0)g(x− y)dy

+

∫

A1(t)

Z(y; t) exp(−c)g(x − y)dy

+

∫

A2(t)

Z(y; t) exp(−2c)g(x − y)dy + . . .

(3.14)

where Ai(t), for i = 0, 1 . . ., denotes a subregion of A where i balls b(0, R) (see (3.10) for the Strauss
process) with radius R centrered at an arbitrary point 0 overlap with each other at time t. Following
expression (2.3) we can write

∫

Ai(t)

Z(y; t) exp(−ic)g(x − y)dy ≡ exp(−ic)

Ni(t)
∑

j=1

g(x − ξj)

where ξj ∈ Φt is any point located in A at time t interacting with i neighbours, and Ni(t) is the
total number of points in A at time t interacting with i neighbours. Whence we can rewrite (3.14)
via

∫

A

Z(y; t) exp(−c u(x; t))g(x− y)dy =

∞
∑

i=0

exp(−ic)

Ni(t)
∑

j=1

g(x − ξj). (3.15)

On substituting (3.15) into (3.13), we obtain

dZ(y; t)/dt = α

∞
∑

i=0

exp(−ic)

Ni(t)
∑

j=1

g(x− ξj) − Z(y; t)µ (3.16)

which on integrating over A yields

dN(t)/dt =

∫

A

(

α
∞

∑

i=0

exp(−ic)

Ni(t)
∑

j=1

g(x− ξj)

)

dx − N(t)µ. (3.17)

This can be further simplified to give

dN(t)/dt = α

∞
∑

i=0

exp(−ic)Ni(t) − N(t)µ (3.18)

given that for a given i (in (3.17))

∫

A

exp(−ic)

Ni(t)
∑

j=1

g(x− ξj)dx = exp(−ic)

∫

A

g(x − ξ1)dx + . . . +

∫

A

g(x− ξNi(t))dx

= exp(−ic)Ni(t)

since
∫

A
g(x − ξj)dx = 1 assuming a “large enough” area A. Notice that Ni(t), i.e. the number

of points that interact with i neighbours, is fully dependent on the spatial distribution of offspring
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ACCEPTED MANUSCRIPTaround “parent” events. Thus if c = 0, i.e. the interaction between parents does not affect the
production of offspring (see expression (3.10)), from (3.18) we obtain

dN(t)/dt = α

∞
∑

i=0

Ni(t) − N(t)µ

i.e. dN(t)/dt = αN(t) − µN(t), since
∑∞

i=0 Ni(t) = N(t), the population size grows/decays expo-
nentially (see expression (2.7)). Then we can write Ni(t) as

Ni(t) = N(t)P (b(0, r) = i; t)

where P (b(0, r) = i; t) is the conditional probability of having i points within a ball b(0, R) (see the
interaction expression (3.10)) with radius R centrered at an arbitrary point 0. Hence expression
(3.18) can be written via

dN(t)/dt = α

∞
∑

i=0

exp(−ic)N(t)P (b(0, r) = i; t) − N(t)µ.

From this equation we see that in equilibrium

α

∞
∑

i=0

exp(−ic)P (b(0, r) = i; t)N∗ − N∗µ = 0, (3.19)

where N∗ is N(t) in equilibrium (assuming this equilibrium exists). Expression (3.19) suggests two
equilibrium states, an unstable situation when N∗ = 0, and a stable one when

∞
∑

i=0

exp(−ic)P (b(0, r) = i; t) = µ/α.

Then given that
∑∞

i=0 P (b(0, r) = i; t) = 1 and 0 ≤ P (b(0, r) = i; t) ≤ 1 (i.e. a probability), if c = 0,
i.e. the interaction between parents does not affect the production of offspring, an equilibrium state
is only reached when µ = α (see also expression (2.7)). Moreover, if c < 1, i.e. parent-to-parent
interaction favours offspring production, it is required that µ < α to have a stable equilibrium. In
words, if the interaction between parents promotes offspring production, the rate of mortality has
to be larger than the birth rate in order to bound the population growth. Finally, if c > 1, i.e.
parent-to-parent interaction effects reduce offspring production, it is required that µ < α, i.e. the
rate of mortality has to be smaller than the birth rate to have a stable state.

4. Final remarks

Few approaches have been formulated to analyse continuous space-time interdependencies
(see, amongst others, Renshaw and Särkkä, 2001; Särkkä and Renshaw, 2006; Comas and Ma-
teu, 2007). For instance, Renshaw and Särkkä (2001) formulate an immigration-growth-spatial
interaction process to generate spatial patterns of marked points. This approach is based on the
simulation of growing and interacting marked points rather than on the simulation of the under-
lying marked point intensities (i.e. first order properties). As such, they analyse such complex
space-time structures via stochastic simulation. Whilst Särkkä and Renshaw (2006) explore the
space-time interdependency of distinct growth and interaction functions, and Renshaw and Comas
(2005) study the limiting case when random point mortality tends to zero µ → 0. Moreover, Comas
and Mateu (2007) show that the formulation of multi-generation (i.e. discrete time) point processes
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ACCEPTED MANUSCRIPTbased on the point intensities permits analytical analysis of such complex point process models.
Their results suggest that analytical analyses of the underlying intensity function of such complex
space-time models provide a complementary method to simulation-based analyses in order to study
these complex dynamics.

This paper, therefore, has expanded the work of Comas and Mateu (2007) by analysing a
continuous space-time birth-death process, confirming that the analitical study of the underlying
intensity function can provide a novel way to formulate and analyse continuous space-time stochastic
processes. Note that although in this paper we have focused our attention on a spatially explicit
birth-death process assuming density-dependent effects on parent offspring production, this model
can be easily expanded to mimic other realistic ecological scenarios. For instance, far more complex
models can be formulated by changing the robust and easy-to-interpret Strauss-type interaction
function by other interaction mechanisms.

Regarding the simulation of these continuous space-time stochastic processes, it can be done
through the evaluation of the Z(x; t) for those spatial positions that contain an already established
point and spatial positions of tentative newly arrived points to test for point establishment, mortality
and interaction effects. As such, the simulation of these point processes is based on point positions
rather than on intensity functions (see, for instance, Renshaw and Särkkä, 2001). This clearly does
not limit the potential number of point positions (as for a process in the lattice space), because
newly arrived points can explore any spatial location, while keeping the procedure reasonably fast
in terms of required computing time.

Finally, we conclude this paper by saying that the definition of continuous space-time pro-
cesses based on the point intensity opens up new promising lines of research to analyse realistic
ecological dynamics.
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